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Abstract

Background: Vessels encapsulating tumor clusters (VETC) are significantly associated with poor prognosis in hepatocellular
carcinoma (HCC). However, identifying VETC early remains challenging. Recently, machine learning has shown promise for
VETC detection, but their diagnostic accuracy lacks systematic validation.

Objective: Thismeta-analysisaimed to systematically eval uate the diagnostic accuracy of machinelearning modelsfor detecting
VETC in patients with HCC.

Methods: The Cochrane Library, Embase, Web of Science, and PubMed were searched up to June 21, 2025. Eligible studies
focused on machine learning models for HCC VETC diagnosis. Studies that merely analyzed risk factors or lacked outcome
measures were excluded. The Prediction Model Risk of Bias Assessment Tool was used to evaluate the risk of bias. A bivariate
mixed-effects model was used for ameta-analysis based on 2x2 diagnostic tables. Subgroup analyses were performed according
to modeling variables (nonradiomic vs radiomic features) and model types (traditional machine learning vs deep learning).

Results: This meta-analysis included 31 studies comprising 6755 patients with HCC (2699 VETC-positive). Nineteen studies
used machine learning models based on nonradiomic features, and 12 used radiomic features (including deep learning). In the
validation set, the nonradiomic model demonstrated a pooled sensitivity of 0.72 (95% Cl 0.66-0.78), specificity of 0.74 (95% CI
0.68-0.80), and an area under the summary receiver operating characteristic curve (SROC AUC) of 0.80 (95% CI 0.76-0.83).
The radiomic model showed sensitivity of 0.81 (95% Cl 0.73-0.87), specificity of 0.73 (95% Cl 0.67-0.79), and SROC AUC of
0.84 (95% CI 0.80-0.87). Traditional machine learning achieved sensitivity of 0.84 (95% CI 0.71-0.92), specificity of 0.75 (95%
Cl 0.67-0.81), and SROC AUC of 0.83 (95% CI 0.80-0.86). Deep learning exhibited sensitivity of 0.77 (95% Cl 0.69-0.84),
specificity of 0.70 (95% Cl 0.59-0.79), and SROC AUC of 0.81 (95% Cl 0.77-0.85).

Conclusions: This meta-analysis is the first to quantitatively assess the efficacy of machine learning modelsin HCC VETC
diagnosis, addressing an evidence gap in thisfield. Unlike previous descriptive reviews, thisanalysis providesthefirst quantitative
evidence revealing the potential value of machine learning in detecting HCC VETC. The findings provide a foundation for
developing and refining subsequent intelligent detection tools. Despite their promising prospects, machine learning models have
not yet reached the maturity required for clinical transglation, owing to methodological heterogeneity, limited validation, and a
high risk of bias. Future research should focus on conducting multicenter, large-sample, standardized, prospective studies to
advance clinical translation.

Trial Registration: PROSPERO CRD420251084894; https.//www.crd.york.ac.uk/PROSPERO/view/CRD420251084894
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Introduction

Liver cancer isthe sixth most frequently diagnosed malignancy
and the third leading cause of cancer-related mortality
worldwide. In 2022, there were approximately 865,000 new
cases of liver cancer and 757,948 rel ated deaths. Hepatocel lular
carcinoma (HCC) accounts for 75% to 85% of primary liver
cancers. Higher incidence and mortality rates are predominantly
observed in devel oping regions, including Mongolia, Cambodia,
Laos, Thailand, Vietnam, and Egypt [1]. Consequently, HCC
has become a significant global oncological concern. For
early-stage HCC, curative interventions such as surgical
resection, liver transplantation, and ablation are recommended.
For intermediate stages, locoregional therapies are typicaly
used, while systemic treatment is preferred for individualswith
a significant intrahepatic tumor burden. Advanced HCC is
primarily managed with immune checkpoint inhibitors [2].
While these treatments have prolonged the survival of some
patients, othersstill have apoor prognosis, even after undergoing
the same treatment regimen. Patients with HCC have an overall
5-year survival rate of lessthan 20% [3]. Adding to the clinical
challenge, the postoperative recurrence rate for HCC is high,
at around 70%, even after curative resection. This persistent
risk is a primary factor in unfavorable long-term patient
prognosis [4]. Severa factors have been associated with poor
HCC prognosis, including microvascular invasion [5], the
macrotrabecular-massive subtype [6], and the coexpression of
Ki-67 and cytokeratin 19 [7]. Thus, identifying the key factors
that drive poor prognosisin HCC is crucial.

Recently, there has been an increasein attention directed toward
adistinct microvascular pattern known as vessel s encapsulating
tumor clusters (VETC). First described by Fang et al [8] in 2015,
VETC refersto avascular network surrounding tumor clusters
inaspiderweb configuration. This pattern has been characterized
as an independent vascular morphology that is distinct from
epithelial-mesenchymal transition. It facilitates the release of
entire tumor clusters into the bloodstream and enables a
noninvasive metastatic mechanismin HCC. Research indicates
that the prevalence of VETC correlates with tumor stage and
aggressiveness. VETC occurs in approximately 30%-40% of
patients undergoing resection, 50%-55% of individuals with
postresection recurrence, and up to 76% of patients with
unresectabl e disease receiving liver transplants [9]. A positive
VETC status substantially influences the long-term prognosis
of patients with HCC [10]. Recent studies show that patients
with VETC have significantly shorter overall and disease-free
survival than patients without VETC [11]. The presence of
VETC has been established as arobust predictor of aggressive
HCC behavior [10]. A meta-analysisby Wang et a [12] further
confirmed VETC as a significant predictor of overal survival
and tumor recurrence, supporting its role as an effective
prognostic biomarker. Furthermore, multiparameter prognostic
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models that incorporate VETC status demonstrate superior
predictive capacity for disease-free and overall survival in
patients with HCC compared to the conventional
tumor-node-metastasi s staging system. These modelsfacilitate
personalized temporal survival estimation and have the potential
to enhance clinical decision-making regarding surveillance
management and therapeutic strategies [13,14]. Concurrently,
VETC status is valuable in guiding systemic therapy selection
and predicting treatment response in HCC. Notably, patients
with VETC experience greater survival benefits from therapies
including sorafenib [15], lenvatinib [16], and transarterial
chemoembolization [17] than their VETC-negative counterparts
do. These observations suggest that VETC-based stratified
treatment strategies may optimize patient outcomes further,
providing an evidence base for clinical decision-making [9].
Therefore, early detection of VETC statusisclinically relevant
for improving HCC prognosis. Currently, adefinitive diagnosis
of VETC relies on histopathological examination of biopsy or
resected tissue specimens. However, this approach has several
limitations. Technical challengesinclude dependence on tumor
size and needle gauge, as well as variability among clinicians
and pathologists. Procedura risks encompass hemorrhage,
seeding metastasis, sampling error, and uncertainty in tumor
characterization [18]. Thus, noninvasive methodsfor identifying
VETC status in HCC are urgently needed to circumvent the
limitations of tissue acquisition. Recent advancementsin image
processing and artificial intelligence have sparked growing
interest in clinical oncology in the development of predictive
model sthat integrate computed tomography, magnetic resonance
imaging (MRI), and contrast-enhanced ultrasound with machine
learning algorithms. This methodology is increasingly being
explored for the noninvasive diagnosis of HCC VETC [19-21].
Several studies have explored the potential for directly
diagnosing VETC in HCC using images alone [22,23].
Furthermore, machinelearning modelsthat incorporate clinical
and imaging features have been developed to noninvasively
predict VETC status[20,24]. Despite these promising findings,
thereisalack of systematic evidence substantiating the efficacy
of machine learning—based approaches for VETC detection in
HCC. Thislack of evidence posesasignificant challengeto the
devel opment and improvement of artificial intelligence—assisted
diagnostic tools. To address this deficiency, this systematic
review and meta-analysis were conducted to summarize the
performance of machine learning in noninvasively detecting
VETC in HCC. The aim is to provide evidence-based support
for developing and optimizing future intelligent diagnostic tools.

Methods

Study Registration
This meta-analysiswas conducted in strict accordance with the

PRISMA (Preferred Reporting Items for a Systematic Review
and Meta-Analysis; checklist provided in Multimedia A ppendix
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1) Diagnostic Test Accuracy Studies guidelines [25] and was
prospectively registered with the International Prospective
Register of Systematic Reviews (CRD420251084894).

Textbox 1. Eligibility criteria.

Shui et &

Eligibility Criteria
Textbox 1 presents the eligibility criteriafor studies.

Inclusion criteria
«  Participants diagnosed with hepatocellular carcinoma

«  Cohort, case-control, or cross-sectional studies

«  Studiesthat developed machine learning models for the diagnosis vessel s encapsulating tumor clusters

«  Publications reported in English

Exclusion criteria

« Reviews, guidelines, expert opinions, or conference abstracts

«  Studiesthat only performed risk factor analyses without constructing machine learning models

«  Studieslacking key metrics for assessing the accuracy of machine learning models

«  Studies reporting only univariable predictive performance

Data Sources and Search Strategy

According to the PRISMA search guidelines, the PubMed,
Embase, Cochrane Library, and Web of Science databaseswere
searched up to June 21, 2025. The search combined Medical
Subject Headings and free-text terms, with no restrictions on
language, country, or publication date. The search strategy was
developed independently for this analysis. It was not adapted
from existing systematic reviews, nor did it incorporate
additional information sources or use search filters. The strategy
did not undergo peer review beforeits execution, and no updates
were made to the search following the initial retrieval. Based
on the existing literature, we manually examined the reference
lists of selected studies and relevant reviews to identify
additional articles. Conference proceedings were excluded, and
no attempts were made to contact authors for additional
information [26]. Details are presented in Table Sl in
Multimedia Appendix 2.

Study Selection

All retrieved articles were imported into EndNote (version 21;
Clarivate) to remove duplicates. Two researchers (HS and ZX)
screened the titles and abstracts of the articles independently
and excluded the irrelevant ones. Subsequently, the full texts
of potentially eligible studies were acquired and assessed for
final inclusion. Theresearchers then cross-checked their results.
Any discrepancies were resolved through discussion or
adjudication by athird researcher (WW).

Data Extraction

Prior to data extraction, a standardized spreadsheet was
developed. The extracted data included the following: first
author, number of VETC cases, patient source, total sample
size, study design, detection method, number of VETC cases
in the training set, total training set size, country, method of
validation set generation, model type, publication year, total
validation set size, number of VETC casesin the validation set,
and modeling variables.

https://www.jmir.org/2026/1/e82839

Risk of Bias

The Prediction Model Risk of Bias Assessment Tool wasapplied
to evaluate the risk of bias across four domains: participants,
predictors, analysis, and outcome. Each domain contained 2-9
signaling questions, which could be answered as “yes or
probably yes” “no or probably no,” or “no information.”
Domain-specific judgments were categorized as low, high, or
unclear risk of bias. A domain wasjudged as having alow risk
of biasif al signaling questionswere answered “yes or probably
yes’; a high risk of bias if at least one was answered “no or
probably no”; or an unclear risk of bias if at least 1 was
answered “no information” while al otherswere answered “yes
or probably yes.” Two researchers (HS and ZX) conducted the
assessment independently. They then cross-checked their results.
Any disagreements were settled by consensus or arbitration by
athird researcher (WW).

Synthesis M ethods

A bivariate random-effects model was used for the meta-analysis
based on available 2x2 diagnostic tables (either reported directly
or reconstructed from reported performance metrics and sample
size). The following pooled estimates were derived with their
corresponding 95% Cls, sensitivity, specificity, positive
likelihood ratio (LR+), negative likelihood ratio (LR-),
diagnostic odds ratio (DOR), and the area under the summary
receiver operating characteristic curve (SROC AUC). Deeks
funnel plot was used to evaluate small-study effects. Fagan’'s
nomogram was applied to evaluate clinical applicability.
Subgroup analyses were conducted according to modeling
variables (nonradiomic vs radiomic features) and model type
(traditional machine learning vs deep learning). A P value of
<.05 indicated statistical significance. Stata (version 15.1;
StataCorp LLC) was used for all meta-analyses.
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Results

Study Selection

The database search yielded 302 potentialy relevant articles.
Of these, 177 duplicates were excluded (117 identified by
software and 60 manually). After screening the titles and
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abstracts, 89 articles unrelated to the topic were removed. The
full texts of the remaining 36 articles were assessed for
eligibility. Among them, 5 records were excluded; 3 because
they did not develop machine learning models, and 2 because
they were conference abstracts without full-text publication.
Ultimately, 31 eligible studies were included [20-24,27-52].
The specific processis depicted in Figure 1.

Figurel. PRISMA (Preferred Reporting Itemsfor a Systematic Review and Meta-Analysis) flow diagram of the sel ection process for studies applying
machine learning to detect hepatocellular carcinoma vessels encapsulating tumor clusters.
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Study Char acteristics

The 31 studies were published between 2021 and 2025. All
were conducted in China and Japan. Of these, 8 studies used a
case-control design, and 23 used a cohort design. Patient data
werederived from multiple centersin 10 studiesand from single
centers in 21 studies. A total of 6755 participants with HCC
wereincluded, 2699 of whom wereidentified as VET C-positive.
Regarding detection methods, 1 study used radiomic features
based on computed tomography, 6 studies used MRI-based
radiomics, 5 studies used deep learning, and 19 studies used
traditional machine learning. The training sets collectively
comprised 4411 participants with HCC, including 1714 with
VETC. Interna validation was conducted in 14 studies, externa
validationin 3 studies, and bothin 7 studies. The validation sets
encompassed 2344 participants with HCC, 955 of whom were
VETC-positive. The prediction models incorporated machine
learning (n=5), logistic regression (n=24), least absolute
shrinkage and selection operator regression (n=1), and random
forest (n=1). Detailed characteristics are illustrated in Tables
S2-S4 in Multimedia Appendix 2.
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Risk of Bias

The Prediction Model Risk of Bias Assessment Tool was applied
across 4 domains to assess the overall risk of bias. First, 8 of
the 31 €ligible studies in the participants domain used a
case-control design, which introduced a high risk of bias due
to potential differences in data sources and patient selection.
Second, case-control studies were judged to carry a high risk
of bias in the predictors domain because predictor assessment
was influenced by knowledge of the outcome. Third, in the
outcome domain, VETC status was consistently defined and
confirmed viahistopathological examination. Sincethe outcome
definition, measurement, and classification were independent
of predictor assessment and participant selection, this domain
was assessed as having alow risk of bias. Fourth, intheanalysis
domain, 14 studies were judged to have a high risk of bias due
to an insufficient sample size (including an events-per-variable
ratio of <10in model development, avalidation set size of <100,
or an absence of external validation). A total of 12 studieswere
rated as having an unclear risk of bias due to an inability to
calculate the events-per-variable ratio. One study provided no
explanation for missing values and was therefore judged to be
at high risk of bias regarding missing data. Concerning model
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validation, 6 studies relied solely on random data splitting validation method used and were categorized as having an

without cross-validation or mediator effect testing, resulting in
a high risk of bias. Overall, 10 studies did not report the

unclear risk of bias. Detailed assessment results are shown in
Figure 2.

Figure 2. Risk of bias assessment for the included primary studies using the Prediction Model Risk of Bias Assessment Tool.
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Meta-Analysis

Training Set-Overall

A total of 27 models from the training sets provided 2x2
diagnostic tables, with a 39% VETC-positive proportion. The
pooled estimates were as follows. sensitivity 0.77 (95% ClI
0.72-0.82), specificity 0.83 (95% CI 0.78-0.87), LR+ 4.5 (95%
Cl 3.5-5.8), LR-0.27 (95% CI 0.22-0.34), DOR 16 (95% ClI
11-24), and SROC AUC 0.87 (95% CI 0.84-0.89; Figures S1
and S2 in Multimedia Appendix 2). No significant small-study
effect wasillustrated via Deeks' funnel plot (P=.70; Figure S3
in Multimedia Appendix 2). Assuming a40% apriori probability
for the disease, the likelihood of an individual actually having
VETC, given a VETC diagnosis by the model, was 75%.
Conversely, the likelihood of an individua actually not having
VETC, given anon-VETC diagnosis by the model, was 85%
(Figure $4 in Multimedia Appendix 2).

Training Set-Nonradiomic Features

A total of 18 nonradiomic modelsfrom thetraining sets provided
2x2 diagnostic tables, with 38% representing VETC-positive
cases. The pooled estimates were as follows. sensitivity 0.74
(95% Cl 0.67-0.79), specificity 0.81 (95% CI 0.77-0.85), LR+
3.9 (95% CI 3.2-4.7), LR-0.33 (95% CI 0.27-0.40), DOR 12
(95% CI 9-16), and SROC AUC 0.85 (95% CI 0.81-0.88;
Figures S5 and S6 in Multimedia Appendix 2). No significant
small-study effect was detected via Deeks' funnel plot (P=.46;
Figure S7in Multimedia Appendix 2). Assuming a40% apriori
probability for the disease, the likelihood of an individual
actually having VETC, given a VETC diagnosis by the model,
was 72%. Conversely, the likelihood of an individual actually
not having VETC, given anon-VETC diagnosis by the model,
was 82% (Figure S8 in Multimedia Appendix 2).

Training Set-Radiomic Features

A total of 9 radiomic modelsfrom thetraining set provided 2x2
diagnostic tables, with aVETC-positive rate of 40%. The pooled

https://www.jmir.org/2026/1/e82839
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estimates were asfollows: sensitivity 0.83 (95% CI 0.75-0.90),
specificity 0.86 (95% CI 0.71-0.94), LR+ 6.0 (95% CI 2.6-13.5),
LR-0.19 (95% CI 0.11-0.32), DOR 31 (95% CI 9-106), and
SROC AUC 0.91 (95% CI 0.88-0.93; Figures S9 and S10 in
Multimedia Appendix 2). No significant small-study effect was
observed via Deeks funnel plot (P=.40; Figure S11 in
Multimedia Appendix 2). Assuming a40% apriori probability
for the disease, the likelihood of an individual actualy having
VETC, given a VETC diagnosis by the model, was 80%.
Conversely, the likelihood of an individual actually not having
VETC, given a non-VETC diagnosis by the model, was 89%
(Figure S12 in Multimedia Appendix 2).

Of these, 6 traditional machine learning models provided 2x2
diagnogtic tables, with aVETC-positive rate of 39%. The pooled
estimates were asfollows: sensitivity 0.88 (95% CI 0.70-0.96),
specificity 0.85 (95% CI 0.67-0.94), LR+ 5.7 (95% CI 2.2-15.2),
LR-0.14 (95% CI 0.04-0.45), DOR 40 (95% CI 5-326), and
SROC AUC 0.93 (95% CI 0.90-0.95; Figures S13 and S14 in
Multimedia Appendix 2). No significant small-study effect was
found viaDeeks funnel plot (P=.78; Figure S15 in Multimedia
Appendix 2). Assuming a 40% a priori probability for the
disease, the likelihood of an individua actualy having VETC,
given a VETC diagnosis by the model, was 79%. Conversely,
thelikelihood of an individual actually not having VETC, given
anon-VETC diagnosis by the model, was 91% (Figure S16 in
Multimedia Appendix 2).

Only 3 deep learning studies reported 2x2 diagnostic tables. Yu
et al [35] developed an MRI-based deep learning model with a
sensitivity of 0.87, a specificity of 0.54, and an area under the
receiver operating characteristic curve (ROC AUC) of 0.83
(95% CI 0.83-0.84). Xu et a [49] reported a contrast-enhanced
ultrasound—based model with sensitivity of 0.75, specificity of
0.92, and ROC AUC of 0.92 (95% CI 0.88-0.96). Yang et a
[48] developed an MRI-based model with a sensitivity of 0.71,
a specificity of 0.97, and an ROC AUC of 0.90 (95% CI
0.85-0.95).
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Validation Set-Overall

A total of 27 models in the validation set provided complete
2x2 diagnostic tables, with aVVETC-positive proportion of 41%.
The pooled estimates were asfollows:. sensitivity 0.77 (95% ClI
0.72-0.81), specificity 0.74 (95% CI 0.69-0.78), LR+ 2.9 (95%
Cl 2.5-3.3), LR- 0.32 (95% CI 0.26-0.38), DOR 9 (95% ClI
7-12), and SROC AUC 0.82 (95% CI 0.78-0.85; Figures S17
and S18 in Multimedia Appendix 2). Deeks funnel plot
demonstrated no significant small-study effects (P=.09; Figure
S19 in Multimedia Appendix 2). Assuming a 40% a priori
probability for the disease, the likelihood of an individual
actually having VETC, given a VETC diagnosis by the model,
was 66%. Conversely, the likelihood of an individual actually
not having VETC, given anon-VETC diagnosis by the model,
was 83% (Figure S20 in Multimedia Appendix 2).

Validation Set-Nonradiomic Features

A total of 12 nonradiomic modelsin the validation set provided
2x2 diagnostic tables, with aVVETC-positive proportion of 40%.
The pooled estimates were asfollows: sensitivity 0.72 (95% ClI
0.66-0.78), specificity 0.74 (95% CI 0.68-0.80), LR+ 2.8 (95%
Cl 2.3-3.5), LR- 0.37 (95% CI 0.31-0.45), DOR 8 (95% ClI
6-10), and SROC AUC 0.80 (95% CI 0.76-0.83; Figures S21
and S22 in Multimedia A ppendix 2). No significant small-study
effect was detected via Deeks' funnel plot (P=.98; Figure S23
in MultimediaAppendix 2). Assuming a40% apriori probability
for the disease, the likelihood of an individual actualy having
VETC, given a VETC diagnosis by the model, was 65%.
Conversely, the likelihood of an individual actually not having
VETC, given a non-VETC diagnosis by the model, was 80%
(Figure S24 in Multimedia Appendix 2).

Validation Set-Radiomic Features

A total of 15 radiomic models in the validation set provided
2x2 diagnostic tables, with a VETC-positive rate of 41%. The
pooled estimates were as follows. sensitivity 0.81 (95% ClI
0.73-0.87), specificity 0.73 (95% CI 0.67-0.79), LR+ 3.0 (95%
Cl 2.5-3.7), LR-0.26 (95% CI 0.19-0.36), DOR 12 (95% ClI
8-17), and SROC AUC 0.84 (95% CI 0.80-0.87; Figures S25
and S26 in Multimedia A ppendix 2). No significant small-study
effect was observed via Deeks' funnel plot (P=.11; Figure S27
in MultimediaAppendix 2). Assuming a40% apriori probability
for the disease, the likelihood of an individual actually having
VETC, given a VETC diagnosis by the model, was 67%.
Conversely, the likelihood of an individual actually not having
VETC, given anon-VETC diagnosis by the model, was 85%
(Figure S28 in Multimedia Appendix 2).

Of these, 9 traditional machine learning models provided 2x2
diagnostic tables, with aVETC-positive rate of 41%. The pooled
estimates were as follows: sensitivity 0.84 (95% Cl 0.71-0.92),
specificity 0.75 (95% Cl 0.67-0.81), LR+ 3.3 (95% ClI 2.6-4.3),
LR- 0.21 (95% CI 0.11-0.39), DOR 16 (95% CI 8-32), and
SROC AUC 0.83 (95% CI 0.80-0.86; Figure S29 and S30 in
Multimedia Appendix 2). No significant small-study effect was
shownviaDeeks funnel plot (P=.37; FiguresS31in Multimedia
Appendix 2). Assuming a 40% a priori probability for the
disease, the likelihood of an individua actualy having VETC,
given a VETC diagnosis by the model, was 69%. Conversely,
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thelikelihood of an individual actually not having VETC, given
anon-VETC diagnosis by the model, was 88% (Figure S32 in
Multimedia Appendix 2).

Additionally, 6 deep learning models reported 2x2 diagnostic
tables, with a VETC-positive proportion of 41%. The pooled
estimates were asfollows: sensitivity 0.77 (95% Cl 0.69-0.84),
specificity 0.70 (95% CI 0.59-0.79), LR+ 2.6 (95% CI 1.9-3.5),
LR-0.32(95% Cl 0.24-0.43), DOR 8 (95% Cl 5-13), and SROC
AUC 0.81 (95% CI 0.77-0.85; Figures S33 and S34 in
Multimedia Appendix 2). Deeks funnel plot suggested
significant small-study effects (P=.04; Figure S35in Multimedia
Appendix 2). Assuming a 40% a priori probability for the
disease, the likelihood of an individua actualy having VETC,
given a VETC diagnosis by the model, was 63%. Conversely,
thelikelihood of an individual actually not having VETC, given
anon-VETC diagnosis by the model, was 82% (Figure S36 in
Multimedia Appendix 2).

Discussion

Summary of Main Findings

This meta-analysis demonstrates that developing prediction
models based on machine learning to detect HCC VETC status
appears to be afeasible approach. Currently, these models are
primarily constructed using nonradiomic and radiomic features.
For nonradiomic machinelearning modelsin the validation set,
the pooled estimates were 0.72 (95% CI 0.66-0.78) for
sensitivity and 0.74 (95% CI 0.68-0.80) for specificity. For
radiomic machine learning models, the estimates were a
sensitivity of 0.81 (95% Cl 0.73-0.87) and a specificity of 0.73
(95% CI 0.67-0.79). For traditional machine learning models,
the estimates were a sensitivity of 0.84 (95% CI 0.71-0.92) and
a specificity of 0.75 (95% Cl 0.67-0.81). For deep learning
models, the estimates were a sensitivity of 0.77 (95% ClI
0.69-0.84) and a specificity of 0.70 (95% CI 0.59-0.79).

Comparison With Previous Reviews

Previous research by Hyungjin Rhee et a [53] reviewed the
angiodynamic changes in multistep HCC carcinogenesis. They
introduced the typical pathological, clinical, and imaging
features of HCC VETC and provided detailed guidance for
VETC diagnosis. However, their study focused primarily on
describing pathol ogical mechanismsand typical features, lacking
a quantitative assessment of different diagnostic methods. Ken
Liuet a [9] investigated various methodsfor diagnosing VETC,
including histopathology, imaging, and laboratory tests. They
suggested that VETC could be predicted radiologically. While
their research provided a comprehensive analysis of various
diagnostic approaches, they did not quantitatively compare the
sensitivity and specificity of different diagnostic methods. This
omission limited a thorough evaluation of VETC diagnostic
accuracy. Miaomiao Wang et al [54] explored the potential of
machine learning in HCC VETC detection through aliterature
review and provided guidancefor theauxiliary VETC diagnosis.
While their review demonstrated the potential applications of
machine learning in VETC detection, it lacked a direct
comparison of different types of machine learning models,
making it difficult to assess these models' actual application
valuein clinical practice. This study summarized nonradiomic
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(clinical features, image features, etc) and radiomic prediction
models, and the diagnosis of current HCC VETC status appears
to be an idea noninvasive detection scheme that provides
specific guidance for clinicians.

This study found that the model variables used to detect HCC
VETC include both nonradiomic features (clinical features,
image features, etc) and radiomic features. The clinical features
primarily consist of alphafetoprotein, carbohydrate antigen
19-9, aspartate aminotransferase, and indirect bilirubin. Image
features mainly comprise intratumoral necrosis, low signa
intensity around the tumor in the hepatobiliary phase, the
tumor-to-liver signal intensity ratio on the hepatobiliary phase,
and the tumor-to-liver apparent diffusion coefficient ratio.
Various studies used different modeling variables. Most studies
did not quantitatively present the association of modeling
variables with VETC. Thus, a further summary of such
correlations was not performed. Recently, radiomics has
advanced the devel opment and application of prediction models
by converting images into repeatable quantitative data
Prediction models based on radiomic features have demonstrated
significant clinical value in diagnosing and treating HCC.
Studies have shown that radiomic features are effective in
predicting HCC microvascular invasion [5], early recurrence
[55], and Ki-67 and cytokeratin 19 expression [7].

Inthismeta-analysis, only alimited number of studies explored
the diagnostic performance of radiomicsfor HCC VETC. While
the studies demonstrated promising results, radiomics still faces
significant challengesin practical application. For example, the
quality of the image appears to change under different image
parameters. Most studies in this meta-analysis did not discuss
how such changes in image features affect radiomics results.
Additionally, image segmentation is primarily divided into
manual and deep learning automatic segmentation. The studies
included in this meta-analysis primarily used manual
segmentation. However, manual segmentation may be affected
by the segmenter’s prior knowledge. Although someresearchers
have attempted to summarize its repeatability through
independent segmentation by multiple people, it is difficult to
avoid the influence of the segmenter’s experience on the
region-of-interest areadivision. Therefore, future studies should
consider developing and promoting a standardized radiomics
analysis process manual to improve research repeatability. Many
studies have demonstrated that models combining radiomics,
clinical features, and imaging features perform better in disease
diagnosis and prognosis prediction [56]. In this study, relatively
few studies attempted to construct prediction models using a
combination of clinical features and radiomics. Therefore, an
effective quantitative analysis of the advantages of a combined
model was difficult to perform. Future studies should explore
and verify the value of radiomic models constructed from
clinical features and imaging features in improving the
diagnostic accuracy of HCC VETC.

The prediction modelsused in this study primarily encompassed
logistic regression, random forest, deep learning, and least
absolute shrinkage and selection operator regression. Due to
the interpretability of its parameters, logistic regression allows
for the development of simple and intuitive nomograms in
clinical practice and appearsto be favored by many researchers
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[57-59]. However, theinterpretability of other machinelearning
models, such as random forest, support vector machines, and
XGBoost, depends on analyses like Shapley additive
explanations. Usingtheminclinical practice requires developing
plugins, which increases the complexity of the application
process [60-62]. Thus, from the perspectives of clinical
simplicity and interpretability, logistic regression hasrelatively
ideal advantages. Nonetheless, in many cases, logistic
regression’s predictive accuracy often appears no better than
that of traditional machine learning models, such as random
forest [46,63]. In radiomics, the core advantage of deep learning
liesin its ability to efficiently process image data for disease
diagnosis and prognosis prediction [64,65]. Relatively few
studies in the radiomic feature literature included in this
meta-analysis addressed deep learning models. Initial evidence
suggested that deep learning models did not perform
significantly better than traditional machine learning models.
The primary reasons for this include the following. First, the
study only incorporated 6 deep learning research projects, which
isarelatively small ssmple size. Deep learning modelstypically
require large-scale datasets to leverage their full advantages.
Second, most studies lacked external validation, leaving the
generalizability of the models inadequately tested. Third,
variations in image acquisition parameters and quality across
different research centers suggest that the design of deep
learning model architectures and hyperparameter optimization
may not yet be optimal. Therefore, future research developing
intelligent toolsto detect HCC VETC should attempt to integrate
multicenter, large-sample medical image datato construct deep
learning models for training and validation.

Advantages and Limitations

This meta-analysis is the first comprehensive summary of the
performance of machine learning models in diagnosing HCC
VETC. It provides evidence-based support for the subsequent
development or updating of artificial intelligence systems.
However, this study also has the following limitations. First,
all 31 digible studiesoriginated from East Asia, and most relied
primarily on interna validation. The lack of multicenter,
multiethnic validation limited the assessment of the models
generalizability. Second, the best prediction model from each
articlewas extracted, which covered anarrow range of machine
learning types. The differences between different machine
learning methods were not described. Third, the modeling
variables were diverse. They were only presented without a
guantitative description of their association with HCC VETC.
Future research should adopt more transparent and interpretable
modeling approaches to identify efficient predictors. Fourth,
although deep learning can efficiently process image data, it
does not have a significant advantage over traditional machine
learning-based radiomics. However, the literature is limited,
and the interpretation of the results may be subject to certain
limitations. Fifth, HCC VETC isanovel mode of microvascular
metastasis that has been proposed in recent years, and the
associated researchisinitsinitial stage. The positive definition
has not yet been standardized.
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Conclusions

This meta-analysis is the first to provide a systematic and
guantitative assessment of machine learning for diagnosing
HCC VETC, thereby addressing an evidence gap in this field.
Unlike previous reviews, this study provides a quantitative
evaluation of diagnostic performance. The findings demonstrate
the feasibility and clinical potential of using machine learning
to determine VETC status in patients with HCC. Notably,
radiomics-based models exhibited significantly better
performance than nonradiomic models. While deep learning
efficiently processes image data in radiomics, its performance
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isnot significantly better than traditional machinelearning-based
radiomics. Despitetheir promising prospects, machinelearning
models have not yet reached the maturity required for clinical
trandation, owing to methodological heterogeneity, limited
validation, and ahigh risk of bias. Future research should focus
on conducting multicenter, large-sample, standardized,
prospective studies to develop intelligent detection tools with
higher performance. Validating the models across multiple
regions and ethnic populations is essential to ensure their
generaizability. This will ultimately enable the effective
translation of research into clinical applications.
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