
Review

Effectiveness of Machine Learning in Detecting Vessels
Encapsulating Tumor Clusters in Hepatocellular Carcinoma:
Systematic Review and Meta-Analysis

Huili Shui1,2,3, MD; Wenyu Wu1,2,3, MD; Zhenming Xie1,2,3, MD; Bing Yang1,2,3, MD; Jia Deng1,2,3, MD; Dongxin

Tang1,2,3, MD
1Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
2Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province,
China
3Guizhou Traditional Chinese Medicine Oncology Heritage and Technology Innovation Talent Base, Guiyang, Guizhou Province, China

Corresponding Author:
Dongxin Tang, MD
Guizhou University of Traditional Chinese Medicine
71 Baoshan North Road, Yunyan District
Guiyang, Guizhou Province
China
Phone: 86 18608511204
Email: hemingankang@sina.com

Abstract

Background: Vessels encapsulating tumor clusters (VETC) are significantly associated with poor prognosis in hepatocellular
carcinoma (HCC). However, identifying VETC early remains challenging. Recently, machine learning has shown promise for
VETC detection, but their diagnostic accuracy lacks systematic validation.

Objective: This meta-analysis aimed to systematically evaluate the diagnostic accuracy of machine learning models for detecting
VETC in patients with HCC.

Methods: The Cochrane Library, Embase, Web of Science, and PubMed were searched up to June 21, 2025. Eligible studies
focused on machine learning models for HCC VETC diagnosis. Studies that merely analyzed risk factors or lacked outcome
measures were excluded. The Prediction Model Risk of Bias Assessment Tool was used to evaluate the risk of bias. A bivariate
mixed-effects model was used for a meta-analysis based on 2×2 diagnostic tables. Subgroup analyses were performed according
to modeling variables (nonradiomic vs radiomic features) and model types (traditional machine learning vs deep learning).

Results: This meta-analysis included 31 studies comprising 6755 patients with HCC (2699 VETC-positive). Nineteen studies
used machine learning models based on nonradiomic features, and 12 used radiomic features (including deep learning). In the
validation set, the nonradiomic model demonstrated a pooled sensitivity of 0.72 (95% CI 0.66-0.78), specificity of 0.74 (95% CI
0.68-0.80), and an area under the summary receiver operating characteristic curve (SROC AUC) of 0.80 (95% CI 0.76-0.83).
The radiomic model showed sensitivity of 0.81 (95% CI 0.73-0.87), specificity of 0.73 (95% CI 0.67-0.79), and SROC AUC of
0.84 (95% CI 0.80-0.87). Traditional machine learning achieved sensitivity of 0.84 (95% CI 0.71-0.92), specificity of 0.75 (95%
CI 0.67-0.81), and SROC AUC of 0.83 (95% CI 0.80-0.86). Deep learning exhibited sensitivity of 0.77 (95% CI 0.69-0.84),
specificity of 0.70 (95% CI 0.59-0.79), and SROC AUC of 0.81 (95% CI 0.77-0.85).

Conclusions: This meta-analysis is the first to quantitatively assess the efficacy of machine learning models in HCC VETC
diagnosis, addressing an evidence gap in this field. Unlike previous descriptive reviews, this analysis provides the first quantitative
evidence revealing the potential value of machine learning in detecting HCC VETC. The findings provide a foundation for
developing and refining subsequent intelligent detection tools. Despite their promising prospects, machine learning models have
not yet reached the maturity required for clinical translation, owing to methodological heterogeneity, limited validation, and a
high risk of bias. Future research should focus on conducting multicenter, large-sample, standardized, prospective studies to
advance clinical translation.

Trial Registration: PROSPERO CRD420251084894; https://www.crd.york.ac.uk/PROSPERO/view/CRD420251084894
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Introduction

Liver cancer is the sixth most frequently diagnosed malignancy
and the third leading cause of cancer-related mortality
worldwide. In 2022, there were approximately 865,000 new
cases of liver cancer and 757,948 related deaths. Hepatocellular
carcinoma (HCC) accounts for 75% to 85% of primary liver
cancers. Higher incidence and mortality rates are predominantly
observed in developing regions, including Mongolia, Cambodia,
Laos, Thailand, Vietnam, and Egypt [1]. Consequently, HCC
has become a significant global oncological concern. For
early-stage HCC, curative interventions such as surgical
resection, liver transplantation, and ablation are recommended.
For intermediate stages, locoregional therapies are typically
used, while systemic treatment is preferred for individuals with
a significant intrahepatic tumor burden. Advanced HCC is
primarily managed with immune checkpoint inhibitors [2].
While these treatments have prolonged the survival of some
patients, others still have a poor prognosis, even after undergoing
the same treatment regimen. Patients with HCC have an overall
5-year survival rate of less than 20% [3]. Adding to the clinical
challenge, the postoperative recurrence rate for HCC is high,
at around 70%, even after curative resection. This persistent
risk is a primary factor in unfavorable long-term patient
prognosis [4]. Several factors have been associated with poor
HCC prognosis, including microvascular invasion [5], the
macrotrabecular-massive subtype [6], and the coexpression of
Ki-67 and cytokeratin 19 [7]. Thus, identifying the key factors
that drive poor prognosis in HCC is crucial.

Recently, there has been an increase in attention directed toward
a distinct microvascular pattern known as vessels encapsulating
tumor clusters (VETC). First described by Fang et al [8] in 2015,
VETC refers to a vascular network surrounding tumor clusters
in a spiderweb configuration. This pattern has been characterized
as an independent vascular morphology that is distinct from
epithelial-mesenchymal transition. It facilitates the release of
entire tumor clusters into the bloodstream and enables a
noninvasive metastatic mechanism in HCC. Research indicates
that the prevalence of VETC correlates with tumor stage and
aggressiveness. VETC occurs in approximately 30%-40% of
patients undergoing resection, 50%-55% of individuals with
postresection recurrence, and up to 76% of patients with
unresectable disease receiving liver transplants [9]. A positive
VETC status substantially influences the long-term prognosis
of patients with HCC [10]. Recent studies show that patients
with VETC have significantly shorter overall and disease-free
survival than patients without VETC [11]. The presence of
VETC has been established as a robust predictor of aggressive
HCC behavior [10]. A meta-analysis by Wang et al [12] further
confirmed VETC as a significant predictor of overall survival
and tumor recurrence, supporting its role as an effective
prognostic biomarker. Furthermore, multiparameter prognostic

models that incorporate VETC status demonstrate superior
predictive capacity for disease-free and overall survival in
patients with HCC compared to the conventional
tumor-node-metastasis staging system. These models facilitate
personalized temporal survival estimation and have the potential
to enhance clinical decision-making regarding surveillance
management and therapeutic strategies [13,14]. Concurrently,
VETC status is valuable in guiding systemic therapy selection
and predicting treatment response in HCC. Notably, patients
with VETC experience greater survival benefits from therapies
including sorafenib [15], lenvatinib [16], and transarterial
chemoembolization [17] than their VETC-negative counterparts
do. These observations suggest that VETC-based stratified
treatment strategies may optimize patient outcomes further,
providing an evidence base for clinical decision-making [9].
Therefore, early detection of VETC status is clinically relevant
for improving HCC prognosis. Currently, a definitive diagnosis
of VETC relies on histopathological examination of biopsy or
resected tissue specimens. However, this approach has several
limitations. Technical challenges include dependence on tumor
size and needle gauge, as well as variability among clinicians
and pathologists. Procedural risks encompass hemorrhage,
seeding metastasis, sampling error, and uncertainty in tumor
characterization [18]. Thus, noninvasive methods for identifying
VETC status in HCC are urgently needed to circumvent the
limitations of tissue acquisition. Recent advancements in image
processing and artificial intelligence have sparked growing
interest in clinical oncology in the development of predictive
models that integrate computed tomography, magnetic resonance
imaging (MRI), and contrast-enhanced ultrasound with machine
learning algorithms. This methodology is increasingly being
explored for the noninvasive diagnosis of HCC VETC [19-21].
Several studies have explored the potential for directly
diagnosing VETC in HCC using images alone [22,23].
Furthermore, machine learning models that incorporate clinical
and imaging features have been developed to noninvasively
predict VETC status [20,24]. Despite these promising findings,
there is a lack of systematic evidence substantiating the efficacy
of machine learning–based approaches for VETC detection in
HCC. This lack of evidence poses a significant challenge to the
development and improvement of artificial intelligence–assisted
diagnostic tools. To address this deficiency, this systematic
review and meta-analysis were conducted to summarize the
performance of machine learning in noninvasively detecting
VETC in HCC. The aim is to provide evidence-based support
for developing and optimizing future intelligent diagnostic tools.

Methods

Study Registration
This meta-analysis was conducted in strict accordance with the
PRISMA (Preferred Reporting Items for a Systematic Review
and Meta-Analysis; checklist provided in Multimedia Appendix
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1) Diagnostic Test Accuracy Studies guidelines [25] and was
prospectively registered with the International Prospective
Register of Systematic Reviews (CRD420251084894).

Eligibility Criteria
Textbox 1 presents the eligibility criteria for studies.

Textbox 1. Eligibility criteria.

Inclusion criteria

• Participants diagnosed with hepatocellular carcinoma

• Cohort, case-control, or cross-sectional studies

• Studies that developed machine learning models for the diagnosis vessels encapsulating tumor clusters

• Publications reported in English

Exclusion criteria

• Reviews, guidelines, expert opinions, or conference abstracts

• Studies that only performed risk factor analyses without constructing machine learning models

• Studies lacking key metrics for assessing the accuracy of machine learning models

• Studies reporting only univariable predictive performance

Data Sources and Search Strategy
According to the PRISMA search guidelines, the PubMed,
Embase, Cochrane Library, and Web of Science databases were
searched up to June 21, 2025. The search combined Medical
Subject Headings and free-text terms, with no restrictions on
language, country, or publication date. The search strategy was
developed independently for this analysis. It was not adapted
from existing systematic reviews, nor did it incorporate
additional information sources or use search filters. The strategy
did not undergo peer review before its execution, and no updates
were made to the search following the initial retrieval. Based
on the existing literature, we manually examined the reference
lists of selected studies and relevant reviews to identify
additional articles. Conference proceedings were excluded, and
no attempts were made to contact authors for additional
information [26]. Details are presented in Table S1 in
Multimedia Appendix 2.

Study Selection
All retrieved articles were imported into EndNote (version 21;
Clarivate) to remove duplicates. Two researchers (HS and ZX)
screened the titles and abstracts of the articles independently
and excluded the irrelevant ones. Subsequently, the full texts
of potentially eligible studies were acquired and assessed for
final inclusion. The researchers then cross-checked their results.
Any discrepancies were resolved through discussion or
adjudication by a third researcher (WW).

Data Extraction
Prior to data extraction, a standardized spreadsheet was
developed. The extracted data included the following: first
author, number of VETC cases, patient source, total sample
size, study design, detection method, number of VETC cases
in the training set, total training set size, country, method of
validation set generation, model type, publication year, total
validation set size, number of VETC cases in the validation set,
and modeling variables.

Risk of Bias
The Prediction Model Risk of Bias Assessment Tool was applied
to evaluate the risk of bias across four domains: participants,
predictors, analysis, and outcome. Each domain contained 2-9
signaling questions, which could be answered as “yes or
probably yes,” “no or probably no,” or “no information.”
Domain-specific judgments were categorized as low, high, or
unclear risk of bias. A domain was judged as having a low risk
of bias if all signaling questions were answered “yes or probably
yes”; a high risk of bias if at least one was answered “no or
probably no”; or an unclear risk of bias if at least 1 was
answered “no information” while all others were answered “yes
or probably yes.” Two researchers (HS and ZX) conducted the
assessment independently. They then cross-checked their results.
Any disagreements were settled by consensus or arbitration by
a third researcher (WW).

Synthesis Methods
A bivariate random-effects model was used for the meta-analysis
based on available 2×2 diagnostic tables (either reported directly
or reconstructed from reported performance metrics and sample
size). The following pooled estimates were derived with their
corresponding 95% CIs, sensitivity, specificity, positive
likelihood ratio (LR+), negative likelihood ratio (LR–),
diagnostic odds ratio (DOR), and the area under the summary
receiver operating characteristic curve (SROC AUC). Deeks’
funnel plot was used to evaluate small-study effects. Fagan’s
nomogram was applied to evaluate clinical applicability.
Subgroup analyses were conducted according to modeling
variables (nonradiomic vs radiomic features) and model type
(traditional machine learning vs deep learning). A P value of
<.05 indicated statistical significance. Stata (version 15.1;
StataCorp LLC) was used for all meta-analyses.
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Results

Study Selection
The database search yielded 302 potentially relevant articles.
Of these, 177 duplicates were excluded (117 identified by
software and 60 manually). After screening the titles and

abstracts, 89 articles unrelated to the topic were removed. The
full texts of the remaining 36 articles were assessed for
eligibility. Among them, 5 records were excluded; 3 because
they did not develop machine learning models, and 2 because
they were conference abstracts without full-text publication.
Ultimately, 31 eligible studies were included [20-24,27-52].
The specific process is depicted in Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for a Systematic Review and Meta-Analysis) flow diagram of the selection process for studies applying
machine learning to detect hepatocellular carcinoma vessels encapsulating tumor clusters.

Study Characteristics
The 31 studies were published between 2021 and 2025. All
were conducted in China and Japan. Of these, 8 studies used a
case-control design, and 23 used a cohort design. Patient data
were derived from multiple centers in 10 studies and from single
centers in 21 studies. A total of 6755 participants with HCC
were included, 2699 of whom were identified as VETC-positive.
Regarding detection methods, 1 study used radiomic features
based on computed tomography, 6 studies used MRI-based
radiomics, 5 studies used deep learning, and 19 studies used
traditional machine learning. The training sets collectively
comprised 4411 participants with HCC, including 1714 with
VETC. Internal validation was conducted in 14 studies, external
validation in 3 studies, and both in 7 studies. The validation sets
encompassed 2344 participants with HCC, 955 of whom were
VETC-positive. The prediction models incorporated machine
learning (n=5), logistic regression (n=24), least absolute
shrinkage and selection operator regression (n=1), and random
forest (n=1). Detailed characteristics are illustrated in Tables
S2-S4 in Multimedia Appendix 2.

Risk of Bias
The Prediction Model Risk of Bias Assessment Tool was applied
across 4 domains to assess the overall risk of bias. First, 8 of
the 31 eligible studies in the participants domain used a
case-control design, which introduced a high risk of bias due
to potential differences in data sources and patient selection.
Second, case-control studies were judged to carry a high risk
of bias in the predictors domain because predictor assessment
was influenced by knowledge of the outcome. Third, in the
outcome domain, VETC status was consistently defined and
confirmed via histopathological examination. Since the outcome
definition, measurement, and classification were independent
of predictor assessment and participant selection, this domain
was assessed as having a low risk of bias. Fourth, in the analysis
domain, 14 studies were judged to have a high risk of bias due
to an insufficient sample size (including an events-per-variable
ratio of <10 in model development, a validation set size of <100,
or an absence of external validation). A total of 12 studies were
rated as having an unclear risk of bias due to an inability to
calculate the events-per-variable ratio. One study provided no
explanation for missing values and was therefore judged to be
at high risk of bias regarding missing data. Concerning model
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validation, 6 studies relied solely on random data splitting
without cross-validation or mediator effect testing, resulting in
a high risk of bias. Overall, 10 studies did not report the

validation method used and were categorized as having an
unclear risk of bias. Detailed assessment results are shown in
Figure 2.

Figure 2. Risk of bias assessment for the included primary studies using the Prediction Model Risk of Bias Assessment Tool.

Meta-Analysis

Training Set-Overall
A total of 27 models from the training sets provided 2×2
diagnostic tables, with a 39% VETC-positive proportion. The
pooled estimates were as follows: sensitivity 0.77 (95% CI
0.72-0.82), specificity 0.83 (95% CI 0.78-0.87), LR+ 4.5 (95%
CI 3.5-5.8), LR– 0.27 (95% CI 0.22-0.34), DOR 16 (95% CI
11-24), and SROC AUC 0.87 (95% CI 0.84-0.89; Figures S1
and S2 in Multimedia Appendix 2). No significant small-study
effect was illustrated via Deeks’ funnel plot (P=.70; Figure S3
in Multimedia Appendix 2). Assuming a 40% a priori probability
for the disease, the likelihood of an individual actually having
VETC, given a VETC diagnosis by the model, was 75%.
Conversely, the likelihood of an individual actually not having
VETC, given a non-VETC diagnosis by the model, was 85%
(Figure S4 in Multimedia Appendix 2).

Training Set-Nonradiomic Features
A total of 18 nonradiomic models from the training sets provided
2×2 diagnostic tables, with 38% representing VETC-positive
cases. The pooled estimates were as follows: sensitivity 0.74
(95% CI 0.67-0.79), specificity 0.81 (95% CI 0.77-0.85), LR+
3.9 (95% CI 3.2-4.7), LR– 0.33 (95% CI 0.27-0.40), DOR 12
(95% CI 9-16), and SROC AUC 0.85 (95% CI 0.81-0.88;
Figures S5 and S6 in Multimedia Appendix 2). No significant
small-study effect was detected via Deeks’ funnel plot (P=.46;
Figure S7 in Multimedia Appendix 2). Assuming a 40% a priori
probability for the disease, the likelihood of an individual
actually having VETC, given a VETC diagnosis by the model,
was 72%. Conversely, the likelihood of an individual actually
not having VETC, given a non-VETC diagnosis by the model,
was 82% (Figure S8 in Multimedia Appendix 2).

Training Set-Radiomic Features
A total of 9 radiomic models from the training set provided 2×2
diagnostic tables, with a VETC-positive rate of 40%. The pooled

estimates were as follows: sensitivity 0.83 (95% CI 0.75-0.90),
specificity 0.86 (95% CI 0.71-0.94), LR+ 6.0 (95% CI 2.6-13.5),
LR– 0.19 (95% CI 0.11-0.32), DOR 31 (95% CI 9-106), and
SROC AUC 0.91 (95% CI 0.88-0.93; Figures S9 and S10 in
Multimedia Appendix 2). No significant small-study effect was
observed via Deeks’ funnel plot (P=.40; Figure S11 in
Multimedia Appendix 2). Assuming a 40% a priori probability
for the disease, the likelihood of an individual actually having
VETC, given a VETC diagnosis by the model, was 80%.
Conversely, the likelihood of an individual actually not having
VETC, given a non-VETC diagnosis by the model, was 89%
(Figure S12 in Multimedia Appendix 2).

Of these, 6 traditional machine learning models provided 2×2
diagnostic tables, with a VETC-positive rate of 39%. The pooled
estimates were as follows: sensitivity 0.88 (95% CI 0.70-0.96),
specificity 0.85 (95% CI 0.67-0.94), LR+ 5.7 (95% CI 2.2-15.2),
LR– 0.14 (95% CI 0.04-0.45), DOR 40 (95% CI 5-326), and
SROC AUC 0.93 (95% CI 0.90-0.95; Figures S13 and S14 in
Multimedia Appendix 2). No significant small-study effect was
found via Deeks’ funnel plot (P=.78; Figure S15 in Multimedia
Appendix 2). Assuming a 40% a priori probability for the
disease, the likelihood of an individual actually having VETC,
given a VETC diagnosis by the model, was 79%. Conversely,
the likelihood of an individual actually not having VETC, given
a non-VETC diagnosis by the model, was 91% (Figure S16 in
Multimedia Appendix 2).

Only 3 deep learning studies reported 2×2 diagnostic tables. Yu
et al [35] developed an MRI-based deep learning model with a
sensitivity of 0.87, a specificity of 0.54, and an area under the
receiver operating characteristic curve (ROC AUC) of 0.83
(95% CI 0.83-0.84). Xu et al [49] reported a contrast-enhanced
ultrasound–based model with sensitivity of 0.75, specificity of
0.92, and ROC AUC of 0.92 (95% CI 0.88-0.96). Yang et al
[48] developed an MRI-based model with a sensitivity of 0.71,
a specificity of 0.97, and an ROC AUC of 0.90 (95% CI
0.85-0.95).
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Validation Set-Overall
A total of 27 models in the validation set provided complete
2×2 diagnostic tables, with a VETC-positive proportion of 41%.
The pooled estimates were as follows: sensitivity 0.77 (95% CI
0.72-0.81), specificity 0.74 (95% CI 0.69-0.78), LR+ 2.9 (95%
CI 2.5-3.3), LR– 0.32 (95% CI 0.26-0.38), DOR 9 (95% CI
7-12), and SROC AUC 0.82 (95% CI 0.78-0.85; Figures S17
and S18 in Multimedia Appendix 2). Deeks’ funnel plot
demonstrated no significant small-study effects (P=.09; Figure
S19 in Multimedia Appendix 2). Assuming a 40% a priori
probability for the disease, the likelihood of an individual
actually having VETC, given a VETC diagnosis by the model,
was 66%. Conversely, the likelihood of an individual actually
not having VETC, given a non-VETC diagnosis by the model,
was 83% (Figure S20 in Multimedia Appendix 2).

Validation Set-Nonradiomic Features
A total of 12 nonradiomic models in the validation set provided
2×2 diagnostic tables, with a VETC-positive proportion of 40%.
The pooled estimates were as follows: sensitivity 0.72 (95% CI
0.66-0.78), specificity 0.74 (95% CI 0.68-0.80), LR+ 2.8 (95%
CI 2.3-3.5), LR– 0.37 (95% CI 0.31-0.45), DOR 8 (95% CI
6-10), and SROC AUC 0.80 (95% CI 0.76-0.83; Figures S21
and S22 in Multimedia Appendix 2). No significant small-study
effect was detected via Deeks’ funnel plot (P=.98; Figure S23
in Multimedia Appendix 2). Assuming a 40% a priori probability
for the disease, the likelihood of an individual actually having
VETC, given a VETC diagnosis by the model, was 65%.
Conversely, the likelihood of an individual actually not having
VETC, given a non-VETC diagnosis by the model, was 80%
(Figure S24 in Multimedia Appendix 2).

Validation Set-Radiomic Features
A total of 15 radiomic models in the validation set provided
2×2 diagnostic tables, with a VETC-positive rate of 41%. The
pooled estimates were as follows: sensitivity 0.81 (95% CI
0.73-0.87), specificity 0.73 (95% CI 0.67-0.79), LR+ 3.0 (95%
CI 2.5-3.7), LR– 0.26 (95% CI 0.19-0.36), DOR 12 (95% CI
8-17), and SROC AUC 0.84 (95% CI 0.80-0.87; Figures S25
and S26 in Multimedia Appendix 2). No significant small-study
effect was observed via Deeks’ funnel plot (P=.11; Figure S27
in Multimedia Appendix 2). Assuming a 40% a priori probability
for the disease, the likelihood of an individual actually having
VETC, given a VETC diagnosis by the model, was 67%.
Conversely, the likelihood of an individual actually not having
VETC, given a non-VETC diagnosis by the model, was 85%
(Figure S28 in Multimedia Appendix 2).

Of these, 9 traditional machine learning models provided 2×2
diagnostic tables, with a VETC-positive rate of 41%. The pooled
estimates were as follows: sensitivity 0.84 (95% CI 0.71-0.92),
specificity 0.75 (95% CI 0.67-0.81), LR+ 3.3 (95% CI 2.6-4.3),
LR– 0.21 (95% CI 0.11-0.39), DOR 16 (95% CI 8-32), and
SROC AUC 0.83 (95% CI 0.80-0.86; Figure S29 and S30 in
Multimedia Appendix 2). No significant small-study effect was
shown via Deeks’funnel plot (P=.37; Figures S31 in Multimedia
Appendix 2). Assuming a 40% a priori probability for the
disease, the likelihood of an individual actually having VETC,
given a VETC diagnosis by the model, was 69%. Conversely,

the likelihood of an individual actually not having VETC, given
a non-VETC diagnosis by the model, was 88% (Figure S32 in
Multimedia Appendix 2).

Additionally, 6 deep learning models reported 2×2 diagnostic
tables, with a VETC-positive proportion of 41%. The pooled
estimates were as follows: sensitivity 0.77 (95% CI 0.69-0.84),
specificity 0.70 (95% CI 0.59-0.79), LR+ 2.6 (95% CI 1.9-3.5),
LR– 0.32 (95% CI 0.24-0.43), DOR 8 (95% CI 5-13), and SROC
AUC 0.81 (95% CI 0.77-0.85; Figures S33 and S34 in
Multimedia Appendix 2). Deeks’ funnel plot suggested
significant small-study effects (P=.04; Figure S35 in Multimedia
Appendix 2). Assuming a 40% a priori probability for the
disease, the likelihood of an individual actually having VETC,
given a VETC diagnosis by the model, was 63%. Conversely,
the likelihood of an individual actually not having VETC, given
a non-VETC diagnosis by the model, was 82% (Figure S36 in
Multimedia Appendix 2).

Discussion

Summary of Main Findings
This meta-analysis demonstrates that developing prediction
models based on machine learning to detect HCC VETC status
appears to be a feasible approach. Currently, these models are
primarily constructed using nonradiomic and radiomic features.
For nonradiomic machine learning models in the validation set,
the pooled estimates were 0.72 (95% CI 0.66-0.78) for
sensitivity and 0.74 (95% CI 0.68-0.80) for specificity. For
radiomic machine learning models, the estimates were a
sensitivity of 0.81 (95% CI 0.73-0.87) and a specificity of 0.73
(95% CI 0.67-0.79). For traditional machine learning models,
the estimates were a sensitivity of 0.84 (95% CI 0.71-0.92) and
a specificity of 0.75 (95% CI 0.67-0.81). For deep learning
models, the estimates were a sensitivity of 0.77 (95% CI
0.69-0.84) and a specificity of 0.70 (95% CI 0.59-0.79).

Comparison With Previous Reviews
Previous research by Hyungjin Rhee et al [53] reviewed the
angiodynamic changes in multistep HCC carcinogenesis. They
introduced the typical pathological, clinical, and imaging
features of HCC VETC and provided detailed guidance for
VETC diagnosis. However, their study focused primarily on
describing pathological mechanisms and typical features, lacking
a quantitative assessment of different diagnostic methods. Ken
Liu et al [9] investigated various methods for diagnosing VETC,
including histopathology, imaging, and laboratory tests. They
suggested that VETC could be predicted radiologically. While
their research provided a comprehensive analysis of various
diagnostic approaches, they did not quantitatively compare the
sensitivity and specificity of different diagnostic methods. This
omission limited a thorough evaluation of VETC diagnostic
accuracy. Miaomiao Wang et al [54] explored the potential of
machine learning in HCC VETC detection through a literature
review and provided guidance for the auxiliary VETC diagnosis.
While their review demonstrated the potential applications of
machine learning in VETC detection, it lacked a direct
comparison of different types of machine learning models,
making it difficult to assess these models’ actual application
value in clinical practice. This study summarized nonradiomic
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(clinical features, image features, etc) and radiomic prediction
models, and the diagnosis of current HCC VETC status appears
to be an ideal noninvasive detection scheme that provides
specific guidance for clinicians.

This study found that the model variables used to detect HCC
VETC include both nonradiomic features (clinical features,
image features, etc) and radiomic features. The clinical features
primarily consist of alpha-fetoprotein, carbohydrate antigen
19-9, aspartate aminotransferase, and indirect bilirubin. Image
features mainly comprise intratumoral necrosis, low signal
intensity around the tumor in the hepatobiliary phase, the
tumor-to-liver signal intensity ratio on the hepatobiliary phase,
and the tumor-to-liver apparent diffusion coefficient ratio.
Various studies used different modeling variables. Most studies
did not quantitatively present the association of modeling
variables with VETC. Thus, a further summary of such
correlations was not performed. Recently, radiomics has
advanced the development and application of prediction models
by converting images into repeatable quantitative data.
Prediction models based on radiomic features have demonstrated
significant clinical value in diagnosing and treating HCC.
Studies have shown that radiomic features are effective in
predicting HCC microvascular invasion [5], early recurrence
[55], and Ki-67 and cytokeratin 19 expression [7].

In this meta-analysis, only a limited number of studies explored
the diagnostic performance of radiomics for HCC VETC. While
the studies demonstrated promising results, radiomics still faces
significant challenges in practical application. For example, the
quality of the image appears to change under different image
parameters. Most studies in this meta-analysis did not discuss
how such changes in image features affect radiomics results.
Additionally, image segmentation is primarily divided into
manual and deep learning automatic segmentation. The studies
included in this meta-analysis primarily used manual
segmentation. However, manual segmentation may be affected
by the segmenter’s prior knowledge. Although some researchers
have attempted to summarize its repeatability through
independent segmentation by multiple people, it is difficult to
avoid the influence of the segmenter’s experience on the
region-of-interest area division. Therefore, future studies should
consider developing and promoting a standardized radiomics
analysis process manual to improve research repeatability. Many
studies have demonstrated that models combining radiomics,
clinical features, and imaging features perform better in disease
diagnosis and prognosis prediction [56]. In this study, relatively
few studies attempted to construct prediction models using a
combination of clinical features and radiomics. Therefore, an
effective quantitative analysis of the advantages of a combined
model was difficult to perform. Future studies should explore
and verify the value of radiomic models constructed from
clinical features and imaging features in improving the
diagnostic accuracy of HCC VETC.

The prediction models used in this study primarily encompassed
logistic regression, random forest, deep learning, and least
absolute shrinkage and selection operator regression. Due to
the interpretability of its parameters, logistic regression allows
for the development of simple and intuitive nomograms in
clinical practice and appears to be favored by many researchers

[57-59]. However, the interpretability of other machine learning
models, such as random forest, support vector machines, and
XGBoost, depends on analyses like Shapley additive
explanations. Using them in clinical practice requires developing
plugins, which increases the complexity of the application
process [60-62]. Thus, from the perspectives of clinical
simplicity and interpretability, logistic regression has relatively
ideal advantages. Nonetheless, in many cases, logistic
regression’s predictive accuracy often appears no better than
that of traditional machine learning models, such as random
forest [46,63]. In radiomics, the core advantage of deep learning
lies in its ability to efficiently process image data for disease
diagnosis and prognosis prediction [64,65]. Relatively few
studies in the radiomic feature literature included in this
meta-analysis addressed deep learning models. Initial evidence
suggested that deep learning models did not perform
significantly better than traditional machine learning models.
The primary reasons for this include the following. First, the
study only incorporated 6 deep learning research projects, which
is a relatively small sample size. Deep learning models typically
require large-scale datasets to leverage their full advantages.
Second, most studies lacked external validation, leaving the
generalizability of the models inadequately tested. Third,
variations in image acquisition parameters and quality across
different research centers suggest that the design of deep
learning model architectures and hyperparameter optimization
may not yet be optimal. Therefore, future research developing
intelligent tools to detect HCC VETC should attempt to integrate
multicenter, large-sample medical image data to construct deep
learning models for training and validation.

Advantages and Limitations
This meta-analysis is the first comprehensive summary of the
performance of machine learning models in diagnosing HCC
VETC. It provides evidence-based support for the subsequent
development or updating of artificial intelligence systems.
However, this study also has the following limitations. First,
all 31 eligible studies originated from East Asia, and most relied
primarily on internal validation. The lack of multicenter,
multiethnic validation limited the assessment of the models’
generalizability. Second, the best prediction model from each
article was extracted, which covered a narrow range of machine
learning types. The differences between different machine
learning methods were not described. Third, the modeling
variables were diverse. They were only presented without a
quantitative description of their association with HCC VETC.
Future research should adopt more transparent and interpretable
modeling approaches to identify efficient predictors. Fourth,
although deep learning can efficiently process image data, it
does not have a significant advantage over traditional machine
learning-based radiomics. However, the literature is limited,
and the interpretation of the results may be subject to certain
limitations. Fifth, HCC VETC is a novel mode of microvascular
metastasis that has been proposed in recent years, and the
associated research is in its initial stage. The positive definition
has not yet been standardized.

J Med Internet Res 2026 | vol. 28 | e82839 | p. 7https://www.jmir.org/2026/1/e82839
(page number not for citation purposes)

Shui et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conclusions
This meta-analysis is the first to provide a systematic and
quantitative assessment of machine learning for diagnosing
HCC VETC, thereby addressing an evidence gap in this field.
Unlike previous reviews, this study provides a quantitative
evaluation of diagnostic performance. The findings demonstrate
the feasibility and clinical potential of using machine learning
to determine VETC status in patients with HCC. Notably,
radiomics-based models exhibited significantly better
performance than nonradiomic models. While deep learning
efficiently processes image data in radiomics, its performance

is not significantly better than traditional machine learning-based
radiomics. Despite their promising prospects, machine learning
models have not yet reached the maturity required for clinical
translation, owing to methodological heterogeneity, limited
validation, and a high risk of bias. Future research should focus
on conducting multicenter, large-sample, standardized,
prospective studies to develop intelligent detection tools with
higher performance. Validating the models across multiple
regions and ethnic populations is essential to ensure their
generalizability. This will ultimately enable the effective
translation of research into clinical applications.

Funding
This research was supported by the Guizhou Provincial Engineering Research Center for Medical Transformation of Traditional
Chinese Medicine and Ethnic Medicine in Cancer Prevention and Treatment (Qian-Jiao-Ji, 2023, No. 037), the Guizhou Provincial
Science and Technology Program (Qian-Ke-He Platform Talents, 2020, No. 5013), the Talent Base for Traditional Chinese
Medicine Oncology Inheritance and Technological Innovation of Guizhou Province (Qian-Ren-Ling-Fa, 2018, No. 3), and the
Guizhou High-Level Innovative Talent Training Program (“Hundred-Level” Talents; Qian-Ke-He Ren-Cai, 2016, No. 4032).

The funding agency for this study did not participate in any aspect of the research design, data collection, analysis, interpretation
of results, or manuscript preparation.

Data Availability
All data used in this study are included in the main text and supplementary materials. For further information or clarification,
please contact the corresponding researchers.

Authors' Contributions
Conceptualization: HS
Methodology: HS, WW
Formal analysis: HS, JD, BY, WW
Investigation: HS
Data curation: HS, ZX, WW
Visualization: JD, BY
Writing—Original Draft: HS, JD, BY
Writing—Review & Editing: HS, DT
Supervision: DT
Project administration: DT
Funding acquisition: DT
All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript

Conflicts of Interest
None declared.

Multimedia Appendix 1
PRISMA-S checklist.
[DOCX File , 23 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Supplementary documents.
[DOCX File , 36193 KB-Multimedia Appendix 2]

References

1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263.
[FREE Full text] [doi: 10.3322/caac.21834] [Medline: 38572751]

J Med Internet Res 2026 | vol. 28 | e82839 | p. 8https://www.jmir.org/2026/1/e82839
(page number not for citation purposes)

Shui et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v28i1e82839_app1.docx&filename=ae5d41839aab2821a4dcd98b3880aecc.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e82839_app1.docx&filename=ae5d41839aab2821a4dcd98b3880aecc.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e82839_app2.docx&filename=cdc47e9981879b1eef5daf5d405ed068.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e82839_app2.docx&filename=cdc47e9981879b1eef5daf5d405ed068.docx
https://onlinelibrary.wiley.com/doi/10.3322/caac.21834
http://dx.doi.org/10.3322/caac.21834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38572751&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


2. Hwang SY, Danpanichkul P, Agopian V, Mehta N, Parikh ND, Abou-Alfa GK, et al. Hepatocellular carcinoma: updates
on epidemiology, surveillance, diagnosis and treatment. Clin Mol Hepatol. 2025;31(Suppl):S228-S254. [FREE Full text]
[doi: 10.3350/cmh.2024.0824] [Medline: 39722614]

3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33. [FREE Full text]
[doi: 10.3322/caac.21708] [Medline: 35020204]

4. Herrero A, Toubert C, Bedoya JU, Assenat E, Guiu B, Panaro F, et al. Management of hepatocellular carcinoma recurrence
after liver surgery and thermal ablations: state of the art and future perspectives. Hepatobiliary Surg Nutr. 2024;13(1):71-88.
[FREE Full text] [doi: 10.21037/hbsn-22-579] [Medline: 38322198]

5. Li L, Wu C, Huang Y, Chen J, Ye D, Su Z. Radiomics for the preoperative evaluation of microvascular invasion in
hepatocellular carcinoma: a meta-analysis. Front Oncol. 2022;12:831996. [FREE Full text] [doi: 10.3389/fonc.2022.831996]
[Medline: 35463303]

6. Ziol M, Poté N, Amaddeo G, Laurent A, Nault J, Oberti F, et al. Macrotrabecular-massive hepatocellular carcinoma: a
distinctive histological subtype with clinical relevance. Hepatology. 2018;68(1):103-112. [doi: 10.1002/hep.29762] [Medline:
29281854]

7. Zhou L, Chen Y, Li Y, Wu C, Xue C, Wang X. Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19
expression in hepatocellular carcinoma: a systematic review and meta-analysis. Front Oncol. 2023;13:1323534. [FREE
Full text] [doi: 10.3389/fonc.2023.1323534] [Medline: 38234405]

8. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular
carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62(2):452-454. [doi:
10.1002/hep.27760] [Medline: 25711742]

9. Liu K, Dennis C, Prince DS, Marsh-Wakefield F, Santhakumar C, Gamble JR, et al. Vessels that encapsulate tumour clusters
vascular pattern in hepatocellular carcinoma. JHEP Rep. 2023;5(8):100792. [doi: 10.1016/j.jhepr.2023.100792] [Medline:
37456680]

10. Renne SL, Woo HY, Allegra S, Rudini N, Yano H, Donadon M, et al. Vessels encapsulating tumor clusters (VETC) is a
powerful predictor of aggressive hepatocellular carcinoma. Hepatology. 2020;71(1):183-195. [doi: 10.1002/hep.30814]
[Medline: 31206715]

11. Xu D, Li R, Shu C, Li Y, Tao R, Chen Y, et al. Association between vessels encapsulating tumor clusters and circulating
tumor cells in hepatocellular carcinoma: clinical evidence and risk model development. Int J Med Sci. 2025;22(12):2944-2955.
[FREE Full text] [doi: 10.7150/ijms.111025] [Medline: 40657396]

12. Wang M, Cao L, Wang Y, Huang H, Tian X, Lei J. The prognostic value of vessels encapsulating tumor clusters (VETC)
in patients with hepatocellular carcinoma: a systematic review and meta-analysis. Clin Transl Oncol. 2024;26(8):2037-2046.
[doi: 10.1007/s12094-024-03427-2] [Medline: 38523240]

13. Xiong S, Wang C, Zhang M, Yang X, Yun J, Liu L. A multi-parametric prognostic model based on clinicopathologic
features: vessels encapsulating tumor clusters and hepatic plates predict overall survival in hepatocellular carcinoma patients.
J Transl Med. 2024;22(1):472. [FREE Full text] [doi: 10.1186/s12967-024-05296-3] [Medline: 38762511]

14. Wu M, Xiao Y, Wang Y, Deng L, Wang X, An T. Establishment of a clinical model based on vessels encapsulating tumour
clusters that could efficiently predict recurrence of patients with hepatocellular carcinoma after curative hepatectomy.
Pathology. 2025;57(3):320-327. [doi: 10.1016/j.pathol.2024.08.014] [Medline: 39668071]

15. Fang J, Xu L, Shang L, Pan C, Ding J, Tang Y, et al. Vessels that encapsulate tumor clusters (VETC) pattern is a predictor
of sorafenib benefit in patients with hepatocellular carcinoma. Hepatology. 2019;70(3):824-839. [doi: 10.1002/hep.30366]
[Medline: 30506570]

16. Zhang P, Ono A, Fujii Y, Hayes CN, Tamura Y, Miura R, et al. The presence of vessels encapsulating tumor clusters is
associated with an immunosuppressive tumor microenvironment in hepatocellular carcinoma. Int J Cancer.
2022;151(12):2278-2290. [doi: 10.1002/ijc.34247] [Medline: 36054900]

17. Wang J, Li X, Tang H, Fang R, Song J, Feng Y, et al. Vessels that encapsulate tumor clusters (VETC) pattern predicts the
efficacy of adjuvant TACE in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023;149(8):4163-4172. [doi:
10.1007/s00432-022-04323-4] [Medline: 36050540]

18. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of hepatocellular
carcinoma. J Hepatol. 2025;82(2):315-374. [doi: 10.1016/j.jhep.2024.08.028] [Medline: 39690085]

19. Wei Y, Huang S, Huang L, Pei W, Zuo Y, Liao H. CT-based radiomics features combined with AFP for predicting vessels
encapsulating tumor clusters and prognosis of hepatocellular carcinoma. J Hepatocell Carcinoma. 2025;12:2069-2081.
[FREE Full text] [doi: 10.2147/JHC.S542092] [Medline: 40969196]

20. Che F, Gao F, Li Q, Ren W, Tang H, Zaina G, et al. Fractal analysis based on Gd-EOB-DTPA-enhanced MRI for prediction
of vessels that encapsulate tumor clusters in patients with hepatocellular carcinoma. Int J Surg. 2025;111(7):4389-4399.
[doi: 10.1097/JS9.0000000000002547] [Medline: 40441719]

21. Xu W, Huang B, Zhang R, Zhong X, Zhou W, Zhuang S, et al. Diagnostic and prognostic ability of contrast-enhanced
unltrasound and biomarkers in hepatocellular carcinoma subtypes. Ultrasound Med Biol. 2024;50(4):617-626. [doi:
10.1016/j.ultrasmedbio.2024.01.007] [Medline: 38281888]

J Med Internet Res 2026 | vol. 28 | e82839 | p. 9https://www.jmir.org/2026/1/e82839
(page number not for citation purposes)

Shui et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://e-cmh.org/journal/view.php?doi=10.3350/cmh.2024.0824
http://dx.doi.org/10.3350/cmh.2024.0824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39722614&dopt=Abstract
https://onlinelibrary.wiley.com/doi/10.3322/caac.21708
http://dx.doi.org/10.3322/caac.21708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35020204&dopt=Abstract
https://europepmc.org/abstract/MED/38322198
http://dx.doi.org/10.21037/hbsn-22-579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38322198&dopt=Abstract
https://europepmc.org/abstract/MED/35463303
http://dx.doi.org/10.3389/fonc.2022.831996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35463303&dopt=Abstract
http://dx.doi.org/10.1002/hep.29762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29281854&dopt=Abstract
https://europepmc.org/abstract/MED/38234405
https://europepmc.org/abstract/MED/38234405
http://dx.doi.org/10.3389/fonc.2023.1323534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38234405&dopt=Abstract
http://dx.doi.org/10.1002/hep.27760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25711742&dopt=Abstract
http://dx.doi.org/10.1016/j.jhepr.2023.100792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37456680&dopt=Abstract
http://dx.doi.org/10.1002/hep.30814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31206715&dopt=Abstract
https://www.medsci.org/v22p2944.htm
http://dx.doi.org/10.7150/ijms.111025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40657396&dopt=Abstract
http://dx.doi.org/10.1007/s12094-024-03427-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38523240&dopt=Abstract
https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05296-3
http://dx.doi.org/10.1186/s12967-024-05296-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38762511&dopt=Abstract
http://dx.doi.org/10.1016/j.pathol.2024.08.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39668071&dopt=Abstract
http://dx.doi.org/10.1002/hep.30366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30506570&dopt=Abstract
http://dx.doi.org/10.1002/ijc.34247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36054900&dopt=Abstract
http://dx.doi.org/10.1007/s00432-022-04323-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36050540&dopt=Abstract
http://dx.doi.org/10.1016/j.jhep.2024.08.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39690085&dopt=Abstract
https://doi.org/10.2147/JHC.S542092
http://dx.doi.org/10.2147/JHC.S542092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40969196&dopt=Abstract
http://dx.doi.org/10.1097/JS9.0000000000002547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40441719&dopt=Abstract
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.01.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38281888&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


22. Li C, Wen Y, Xie J, Chen Q, Dang Y, Zhang H, et al. Preoperative prediction of VETC in hepatocellular carcinoma using
non-Gaussian diffusion-weighted imaging at high b values: a pilot study. Front Oncol. 2023;13:1167209. [FREE Full text]
[doi: 10.3389/fonc.2023.1167209] [Medline: 37305565]

23. Wang M, Cao L, Wang Y, Huang H, Cao S, Tian X, et al. Prediction of vessels encapsulating tumor clusters pattern and
prognosis of hepatocellular carcinoma based on preoperative gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid
magnetic resonance imaging. J Gastrointest Surg. 2024;28(4):442-450. [doi: 10.1016/j.gassur.2024.02.004] [Medline:
38583894]

24. Qu Q, Liu Z, Lu M, Xu L, Zhang J, Liu M, et al. Preoperative gadoxetic acid-enhanced MRI features for evaluation of
vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma: creating nomograms for risk
assessment. J Magn Reson Imaging. 2024;60(3):1094-1110. [doi: 10.1002/jmri.29187] [Medline: 38116997]

25. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, the PRISMA-DTA Group, et al. Preferred reporting
items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA.
2018;319(4):388-396. [FREE Full text] [doi: 10.1001/jama.2017.19163] [Medline: 29362800]

26. Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, et al. PRISMA-S Group. PRISMA-S: an
extension to the PRISMA statement for reporting literature searches in systematic reviews. J Med Libr Assoc.
2021;109(2):174-200. [FREE Full text] [doi: 10.5195/jmla.2021.962] [Medline: 34285662]

27. Chen H, Dong H, He R, Gu M, Zhao X, Song K, et al. Optimizing predictions: improved performance of preoperative
gadobenate-enhanced MRI hepatobiliary phase features in predicting vessels encapsulating tumor clusters in hepatocellular
carcinoma-a multicenter study. Abdom Radiol (NY). 2024;49(10):3412-3426. [doi: 10.1007/s00261-024-04283-y] [Medline:
38713432]

28. Li M, Zhang G, Li J, Ren Y, Jin X, Ke Q, et al. Intravoxel incoherent motion improves the accuracy of preoperative
prediction of vessels encapsulating tumor clusters in hepatocellular carcinoma. J Hepatocell Carcinoma. 2025;12:1177-1190.
[FREE Full text] [doi: 10.2147/JHC.S519223] [Medline: 40524872]

29. Chu T, Zhao C, Zhang J, Duan K, Li M, Zhang T, et al. Application of a convolutional neural network for multitask learning
to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma.
Ann Surg Oncol. 2022;29(11):6774-6783. [FREE Full text] [doi: 10.1245/s10434-022-12000-6] [Medline: 35754067]

30. Chen F, Du M, Qi X, Bian L, Wu D, Zhang S, et al. Nomogram estimating vessels encapsulating tumor clusters in
hepatocellular carcinoma from preoperative gadoxetate disodium-enhanced MRI. J Magn Reson Imaging.
2023;57(6):1893-1905. [doi: 10.1002/jmri.28488] [Medline: 36259347]

31. Chen H, He R, Gu M, Zhao X, Song K, Zou W, et al. Nomogram prediction of vessels encapsulating tumor clusters in
small hepatocellular carcinoma ≤3 cm based on enhanced magnetic resonance imaging. World J Gastrointest Oncol.
2024;16(5):1808-1820. [FREE Full text] [doi: 10.4251/wjgo.v16.i5.1808] [Medline: 38764811]

32. Fan Y, Yu Y, Wang X, Hu M, Du M, Guo L, et al. Texture analysis based on Gd-EOB-DTPA-enhanced MRI for identifying
vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma. J Hepatocell Carcinoma. 2021;8:349-359.
[FREE Full text] [doi: 10.2147/JHC.S293755] [Medline: 33981636]

33. Zhang C, Zhong H, Zhao F, Ma Z, Dai Z, Pang G. Preoperatively predicting vessels encapsulating tumor clusters in
hepatocellular carcinoma: machine learning model based on contrast-enhanced computed tomography. World J Gastrointest
Oncol. 2024;16(3):857-874. [FREE Full text] [doi: 10.4251/wjgo.v16.i3.857] [Medline: 38577448]

34. Fan Y, Yu Y, Hu M, Wang X, Du M, Guo L, et al. Imaging features based on Gd-EOB-DTPA-enhanced MRI for predicting
vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma. Br J Radiol. 2021;94(1119):20200950.
[FREE Full text] [doi: 10.1259/bjr.20200950] [Medline: 33417489]

35. Yu Y, Cao L, Shen B, Du M, Gu W, Gu C, et al. Deep learning radiopathomics models based on contrast-enhanced MRI
and pathologic imaging for predicting vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma.
Radiol Imaging Cancer. 2025;7(2):e240213. [doi: 10.1148/rycan.240213] [Medline: 40084948]

36. Wang F, Numata K, Funaoka A, Liu X, Kumamoto T, Takeda K, et al. Establishment of nomogram prediction model of
contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for vessels encapsulating tumor clusters pattern of
hepatocellular carcinoma. Biosci Trends. 2024;18(3):277-288. [FREE Full text] [doi: 10.5582/bst.2024.01112] [Medline:
38866488]

37. Ding Q, Deng X, Huang J, Zhang R, Liu T, Wang J, et al. Application value of enhanced CT imaging features in predicting
vessels encapsulating tumor clusters (VETC) positivity in hepatocellular carcinoma. Curr Med Imaging.
2025;21:e15734056361565. [doi: 10.2174/0115734056361565250530050624] [Medline: 40511650]

38. Zhang J, Liu M, Qu Q, Lu M, Liu Z, Yan Z, et al. Radiomics analysis of gadoxetic acid-enhanced MRI for evaluating
vessels encapsulating tumour clusters in hepatocellular carcinoma. Front Oncol. 2024;14:1422119. [FREE Full text] [doi:
10.3389/fonc.2024.1422119] [Medline: 39193385]

39. Feng Z, Li H, Zhao H, Jiang Y, Liu Q, Chen Q, et al. Preoperative CT for characterization of aggressive
macrotrabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma. Radiology.
2021;300(1):219-229. [doi: 10.1148/radiol.2021203614] [Medline: 33973839]

J Med Internet Res 2026 | vol. 28 | e82839 | p. 10https://www.jmir.org/2026/1/e82839
(page number not for citation purposes)

Shui et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/37305565
http://dx.doi.org/10.3389/fonc.2023.1167209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37305565&dopt=Abstract
http://dx.doi.org/10.1016/j.gassur.2024.02.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38583894&dopt=Abstract
http://dx.doi.org/10.1002/jmri.29187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38116997&dopt=Abstract
https://boris-portal.unibe.ch/handle/20.500.12422/158031
http://dx.doi.org/10.1001/jama.2017.19163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29362800&dopt=Abstract
https://europepmc.org/abstract/MED/34285662
http://dx.doi.org/10.5195/jmla.2021.962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34285662&dopt=Abstract
http://dx.doi.org/10.1007/s00261-024-04283-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38713432&dopt=Abstract
https://doi.org/10.2147/JHC.S519223
http://dx.doi.org/10.2147/JHC.S519223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40524872&dopt=Abstract
https://europepmc.org/abstract/MED/35754067
http://dx.doi.org/10.1245/s10434-022-12000-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35754067&dopt=Abstract
http://dx.doi.org/10.1002/jmri.28488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36259347&dopt=Abstract
https://www.wjgnet.com/1948-5204/full/v16/i5/1808.htm
http://dx.doi.org/10.4251/wjgo.v16.i5.1808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38764811&dopt=Abstract
https://europepmc.org/abstract/MED/33981636
http://dx.doi.org/10.2147/JHC.S293755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33981636&dopt=Abstract
https://www.wjgnet.com/1948-5204/full/v16/i3/857.htm
http://dx.doi.org/10.4251/wjgo.v16.i3.857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38577448&dopt=Abstract
https://europepmc.org/abstract/MED/33417489
http://dx.doi.org/10.1259/bjr.20200950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33417489&dopt=Abstract
http://dx.doi.org/10.1148/rycan.240213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40084948&dopt=Abstract
https://dx.doi.org/10.5582/bst.2024.01112
http://dx.doi.org/10.5582/bst.2024.01112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38866488&dopt=Abstract
http://dx.doi.org/10.2174/0115734056361565250530050624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40511650&dopt=Abstract
https://doi.org/10.3389/fonc.2024.1422119
http://dx.doi.org/10.3389/fonc.2024.1422119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39193385&dopt=Abstract
http://dx.doi.org/10.1148/radiol.2021203614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33973839&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


40. Yu Y, Liang X, Hou G, Chen X, Hou W, Hou H, et al. Spectral computed tomography parameters for predicting vessels
encapsulating tumor clusters (VETC) pattern in hepatocellular carcinoma: a pilot study. Quant Imaging Med Surg.
2025;15(4):3285-3297. [FREE Full text] [doi: 10.21037/qims-24-2077] [Medline: 40235763]

41. Matsuda K, Ueno A, Tsuzaki J, Kurebayashi Y, Masugi Y, Yamazaki K, et al. Vessels encapsulating tumor clusters contribute
to the intratumor heterogeneity of HCC on Gd-EOB-DTPA-enhanced MRI. Hepatol Commun. 2025;9(1):e0593. [FREE
Full text] [doi: 10.1097/HC9.0000000000000593] [Medline: 39670871]

42. Yang J, Dong X, Jin S, Wang S, Wang Y, Zhang L, et al. Radiomics model of dynamic contrast-enhanced mri for evaluating
vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma. Acad Radiol.
2025;32(1):146-156. [FREE Full text] [doi: 10.1016/j.acra.2024.07.007] [Medline: 39025700]

43. Pan J, Huang H, Zhang S, Zhu Y, Zhang Y, Wang M, et al. Intraindividual comparison of CT and MRI for predicting
vessels encapsulating tumor clusters in hepatocellular carcinoma. Eur Radiol. 2025;35(1):61-72. [doi:
10.1007/s00330-024-10944-9] [Medline: 38992109]

44. Chernyak V. Editorial for "Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels
encapsulating tumor clusters and prognosis in hepatocellular carcinoma". J Magn Reson Imaging. 2024;59(1):120-121.
[doi: 10.1002/jmri.28775] [Medline: 37165916]

45. Li Z, Song W, Zhang J, Li Q, Song Z, Ren X, et al. Identification of vessels encapsulating tumor clusters in solitary
hepatocellular carcinoma via imaging biomarkers in preoperative contrast-enhanced magnetic resonance imaging. Quant
Imaging Med Surg. 2024;14(12):8586-8600. [FREE Full text] [doi: 10.21037/qims-24-315] [Medline: 39698687]

46. Yu Y, Fan Y, Wang X, Zhu M, Hu M, Shi C, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating
tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Eur Radiol. 2022;32(2):959-970. [doi:
10.1007/s00330-021-08250-9] [Medline: 34480625]

47. Guan R, Lin W, Zou J, Mei J, Wen Y, Lu L, et al. Development and validation of a novel nomogram for predicting vessels
that encapsulate tumor cluster in hepatocellular carcinoma. Cancer Control. 2022;29:10732748221102820. [FREE Full
text] [doi: 10.1177/10732748221102820] [Medline: 35609265]

48. Yang J, Dong X, Wang F, Jin S, Zhang B, Zhang H, et al. A deep learning model based on MRI for prediction of vessels
encapsulating tumour clusters and prognosis in hepatocellular carcinoma. Abdom Radiol (NY). 2024;49(4):1074-1083.
[doi: 10.1007/s00261-023-04141-3] [Medline: 38175256]

49. Xu W, Zhang H, Zhang R, Zhong X, Li X, Zhou W, et al. Deep learning model based on contrast-enhanced ultrasound for
predicting vessels encapsulating tumor clusters in hepatocellular carcinoma. Eur Radiol. 2025;35(2):989-1000. [doi:
10.1007/s00330-024-10985-0] [Medline: 39066894]

50. Meng X, Qu X, Guo Y, Qi X, Bian L, Wu D, et al. Validation of proposed imaging criteria for estimating vessels encapsulating
tumor clusters in hepatocellular carcinoma at CT and gadoxetic acid-enhanced MRI. Eur J Radiol. 2025;183:111936. [doi:
10.1016/j.ejrad.2025.111936] [Medline: 39848126]

51. Wang Y, Wang M, Cao L, Huang H, Cao S, Tian X, et al. A nomogram for preoperative prediction of vessels encapsulating
tumor clusters (VETC) pattern and prognosis of hepatocellular carcinoma. Am J Surg. 2024;234:172-178. [doi:
10.1016/j.amjsurg.2024.05.004] [Medline: 38755026]

52. Ruan L, Yu J, Lu X, Numata K, Zhang D, Liu X, et al. A nomogram based on features of ultrasonography and
contrast-enhanced CT to predict vessels encapsulating tumor clusters pattern of hepatocellular carcinoma. Ultrasound Med
Biol. 2024;50(12):1919-1929. [doi: 10.1016/j.ultrasmedbio.2024.08.020] [Medline: 39289116]

53. Rhee H, Park YN, Choi J. Advances in understanding hepatocellular carcinoma vasculature: implications for diagnosis,
prognostication, and treatment. Korean J Radiol. 2024;25(10):887-901. [FREE Full text] [doi: 10.3348/kjr.2024.0307]
[Medline: 39344546]

54. Wang M, Wang Y, Shen Y, Cao L, Yan R, Lei J. Role of vessels encapsulating tumor clusters patterns in hepatocellular
carcinoma: a literature review. Eur J Gastroenterol Hepatol. 2025. [doi: 10.1097/MEG.0000000000003032] [Medline:
40631491]

55. Lu M, Wang C, Zhuo Y, Gou J, Li Y, Li J, et al. Preoperative prediction power of radiomics and non-radiomics methods
based on MRI for early recurrence in hepatocellular carcinoma: a systemic review and meta-analysis. Abdom Radiol (NY).
2024;49(10):3397-3411. [doi: 10.1007/s00261-024-04356-y] [Medline: 38704783]

56. Wang B, Jiang B, Liu D, Zhu R. Early predictive accuracy of machine learning for hemorrhagic transformation in acute
ischemic stroke: systematic review and meta-analysis. J Med Internet Res. 2025;27:e71654. [FREE Full text] [doi:
10.2196/71654] [Medline: 40408765]

57. Qi Y, Yang S, Li J, Xing H, Su Q, Wang S, et al. Development and validation of a nomogram to predict impacted ureteral
stones via machine learning. Minerva Urol Nephrol. 2024;76(6):736-747. [FREE Full text] [doi:
10.23736/S2724-6051.24.05856-7] [Medline: 39093225]

58. Wu C, Zhu S, Wang Q, Xu Y, Mo X, Xu W, et al. Development, validation, and visualization of a novel nomogram to
predict depression risk in patients with stroke. J Affect Disord. 2024;365:351-358. [doi: 10.1016/j.jad.2024.08.105] [Medline:
39173927]

J Med Internet Res 2026 | vol. 28 | e82839 | p. 11https://www.jmir.org/2026/1/e82839
(page number not for citation purposes)

Shui et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://doi.org/10.21037/qims-24-2077
http://dx.doi.org/10.21037/qims-24-2077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40235763&dopt=Abstract
https://doi.org/10.1097/HC9.0000000000000593
https://doi.org/10.1097/HC9.0000000000000593
http://dx.doi.org/10.1097/HC9.0000000000000593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39670871&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1076-6332(24)00438-0
http://dx.doi.org/10.1016/j.acra.2024.07.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39025700&dopt=Abstract
http://dx.doi.org/10.1007/s00330-024-10944-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38992109&dopt=Abstract
http://dx.doi.org/10.1002/jmri.28775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37165916&dopt=Abstract
https://doi.org/10.21037/qims-24-315
http://dx.doi.org/10.21037/qims-24-315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39698687&dopt=Abstract
http://dx.doi.org/10.1007/s00330-021-08250-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34480625&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/10732748221102820?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
https://journals.sagepub.com/doi/10.1177/10732748221102820?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/10732748221102820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35609265&dopt=Abstract
http://dx.doi.org/10.1007/s00261-023-04141-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38175256&dopt=Abstract
http://dx.doi.org/10.1007/s00330-024-10985-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39066894&dopt=Abstract
http://dx.doi.org/10.1016/j.ejrad.2025.111936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39848126&dopt=Abstract
http://dx.doi.org/10.1016/j.amjsurg.2024.05.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38755026&dopt=Abstract
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.08.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39289116&dopt=Abstract
https://www.kjronline.org/DOIx.php?id=10.3348/kjr.2024.0307
http://dx.doi.org/10.3348/kjr.2024.0307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39344546&dopt=Abstract
http://dx.doi.org/10.1097/MEG.0000000000003032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40631491&dopt=Abstract
http://dx.doi.org/10.1007/s00261-024-04356-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38704783&dopt=Abstract
https://www.jmir.org/2025//e71654/
http://dx.doi.org/10.2196/71654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40408765&dopt=Abstract
https://www.minervamedica.it/index2.t?show=R19Y2024N06A0736
http://dx.doi.org/10.23736/S2724-6051.24.05856-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39093225&dopt=Abstract
http://dx.doi.org/10.1016/j.jad.2024.08.105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39173927&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


59. Bertens LCM, Moons KGM, Rutten FH, van Mourik Y, Hoes AW, Reitsma JB. A nomogram was developed to enhance
the use of multinomial logistic regression modeling in diagnostic research. J Clin Epidemiol. 2016;71:51-57. [doi:
10.1016/j.jclinepi.2015.10.016] [Medline: 26577433]

60. Nwanosike EM, Conway BR, Merchant HA, Hasan SS. Potential applications and performance of machine learning
techniques and algorithms in clinical practice: a systematic review. Int J Med Inform. 2022;159:104679. [doi:
10.1016/j.ijmedinf.2021.104679] [Medline: 34990939]

61. Amann J, Blasimme A, Vayena E, Frey D, Madai VI, Precise4Q consortium. Explainability for artificial intelligence in
healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1):310. [FREE Full text] [doi:
10.1186/s12911-020-01332-6] [Medline: 33256715]

62. Qi X, Wang S, Fang C, Jia J, Lin L, Yuan T. Machine learning and SHAP value interpretation for predicting comorbidity
of cardiovascular disease and cancer with dietary antioxidants. Redox Biol. 2025;79:103470. [FREE Full text] [doi:
10.1016/j.redox.2024.103470] [Medline: 39700695]

63. Li D, Lu H, Wu J, Chen H, Shen M, Tong B, et al. Development of machine learning models for predicting depressive
symptoms in knee osteoarthritis patients. Sci Rep. 2024;14(1):28603. [FREE Full text] [doi: 10.1038/s41598-024-79601-x]
[Medline: 39562701]

64. Zhou T, Cheng Q, Lu H, Li Q, Zhang X, Qiu S. Deep learning methods for medical image fusion: a review. Comput Biol
Med. 2023;160:106959. [doi: 10.1016/j.compbiomed.2023.106959] [Medline: 37141652]

65. Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262-e273.
[doi: 10.1016/S1470-2045(19)30149-4] [Medline: 31044724]

Abbreviations
DOR: diagnostic odds ratio
HCC: hepatocellular carcinoma
LR–: negative likelihood ratio
LR+: positive likelihood ratio
MRI: magnetic resonance imaging
PRISMA: Preferred Reporting Items for a Systematic Review and Meta-Analysis
ROC AUC: area under the receiver operating characteristic curve
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