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Abstract

Background: Depression affects people’s daily lives and even leads to suicidal behavior. Text-based depression estimation
using natural language processing has emerged as a feasible approach for early mental health screening. However, most existing
reviews often included studies with weak depression labels, which affected the reliability of the results and further limited the
practical application of the automatic depression estimation models.

Objective: This review aimed to evaluate the predictive performance of text-based depression models that used standard labels,
and to identify text resources, text representation, model architecture, annotation source, and reporting quality contributing to
performance heterogeneity.

Methods: Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines, we
systematically searched 4 main databases (PubMed, Scopus, IEEE Xplore, and Web of Science) for studies published between
2014 and 2025. The eligible studies were included: machine learning models were developed based on the text generated by the
participants and used validated scales or clinical diagnoses as depression labels. Pooled effect sizes (r) were calculated using
random-effects meta-analysis with Hartung-Knapp-Sidik-Jonkman correction, and subgroup and meta-regression analyses were
conducted to explore potential moderators.

Results: We scanned 3067 articles and finally filtered 15 models from 11 studies for the meta-analysis. The overall pooled
effect size was 0.605 (95% CI 0.498-0.693), indicating a large strength of association. Subgroup analyses showed that models
using embedding-based text representations achieved higher performance than those using traditional features (r=0.741, 95% CI
0.648-0.812 vs r=0.514, 95% CI 0.385-0.623; P<.001 for subgroup difference), and deep learning architectures outperformed
shallow models (r=0.731, 95% CI 0.660-0.789 vs r=0.486, 95% CI 0.352-0.599; P<.001). Models trained with clinician diagnoses
also outperformed better than those relying on self-report scales (r=0.688, 95% CI 0.554-0.787 vs r=0.500, 95% CI 0.340-0.631;
P=.03). Reporting quality was positively associated with model performance (β=0.085, 95% CI 0.050-0.119; P<.001).
Begg–Mazumdar and Egger tests provided no evidence of small-study effects. Begg–Mazumdar test (Kendall τ=0.17143, P=.37)
and the Egger test (t14=1.13401, 2-tailed P=.28) indicated no evidence of small-study effects.

Conclusions: Text-based depression estimation models trained with standard depression labels demonstrate solid predictive
performance, with embedding features, deep model architectures, and clinician diagnosis labels showing significantly higher
performance. Transparent reporting is also positively associated with model performance. This study highlights the importance
of standard labels, feature representation, and reporting quality for improving model reliability. Unlike prior reviews that included
weak or heterogeneous depression labels, this study offers more clinically reliable and comparable evidence. Moreover, this
review provides clearer methodological guidance for developing more consistent and practically informative text-based depression
screening models.

Trial Registration: PROSPERO CRD420251056902; https://www.crd.york.ac.uk/PROSPERO/view/CRD420251056902
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Introduction

Background
Depression, a type of mental disorder, is clinically characterized
by persistent and significant low mood [1]. Individuals with
severe depression often experience impaired social functioning
and may even exhibit suicidal behaviors [2,3]. Currently, the
diagnosis of depression relies on face-to-face consultation by
psychiatrists and refers to the patients’ self-reports. Although
the clinical diagnosis by psychiatrists is regarded as the gold
standard of depression detection [4], due to the time-constrained
consultations and subjective information in psychiatry [5], the
lack of clinical resources has prevented the gold standard from
being widely used. To alleviate clinical burden, standardized
self-reported scales have been developed based on psychiatrists’
clinical experience [6], and several of them have been
demonstrated to have comparable performance to clinical
diagnosis [7,8]. However, these tools partially address the
shortage of clinical resources; limitations such as subjective
bias and time-consuming assessments remain [9-11]. With the
development of artificial intelligence technologies, the
limitations of traditional depression diagnosis methods facilitate
the emergence of automatic depression estimation (ADE) models
based on various multimodal data sources [12,13].

Among these multimodal data, text-based features have become
a popular target in depression estimation studies [14-17]. Unlike
other features used in ADE models [18-20], text (language)
serves as a natural medium of human communication, conveying
not only semantic content but also affective states [21,22]. The
ability to capture emotional cues from text aligns closely with
the depression diagnostic and may provide references for
estimation [23]. For example, Cariola et al [24] found that
mothers with depression used more first-person singular
pronouns and present-focused words in mother-child dialogues,
possibly reflecting heightened self-focus and introspection.
Another study demonstrated that the ratio of negative to positive
language played a vital role in establishing emotional tone [25].
Additionally, text data can be sourced from various contexts,
including social media posts [26,27], SMS messages [28], chat
logs [17], clinical transcripts [29], and even electronic health
records [30]. Wang et al [27] achieved 91% classification
accuracy based on social media posts, while Liu et al [28]
reported an area under the curve of 76% on SMS messages.
These studies achieved notable performance and supported the
feasibility of text-based ADEs. However, differences in the
reported contents (eg, text sources, model construction and
validation, and depression labels) across studies may lead to
substantial variability in model performance, thereby affecting
the reliability of the results and the further practical application.

The quality of training data is critical to model performance,
and the difference in text sources affects the performance of the
ADE models [31]. The datasets of existing studies could be

broadly categorized into two types: (1) public datasets, such as
the Distress Analysis Interview Corpus – Wizard-of-Oz
(DAIC-WOZ) [32], the Audio/Visual Emotion Challenge 2014
dataset [33], the Extended Audio-Transcript Depression Corpus
[34], and the Chinese Multimodal Depression Corpus [35],
which are collected under standardized protocols and provide
a unified benchmark for comparing algorithm performance. For
example, text-only models trained on DAIC-WOZ have shown
gradual improvements in recent years [36,37]. The others belong
to (2) self-constructed datasets, which are more diverse
compared to public datasets in collection, and are usually used
for exploring model feasibility in specific populations or
contexts rather than comparing model algorithms. They include
transcripts of clinical interviews or therapeutic dialogues,
personal essays, diaries, questionnaires, etc. (see the previous
paragraph for details). These datasets tend to better reflect
natural language use in real-world contexts, which enhances
the practical application ability of the ADE models [38]. For
example, Cheng et al [39] analyzed social media (Weibo [Sina
Corporation]) texts to predict depression and found that
linguistic and cultural factors can affect the model performance.
While Dogrucu et al [40] used text data via smartphones for
developing Moodable, an Android-based depression sensing
application developed at Worcester Polytechnic Institute, and
validated this application for depression estimation. Overall,
these examples illustrated the importance of self-constructed
datasets, while the differences in text sources and contexts may
contribute to heterogeneity in model performance.

After determining the dataset, model construction and validation
are the core stages of ADE studies. Previous studies mainly
relied on statistical methods to manually extract linguistic
features. Rude et al [41] noted that individuals with depression
frequently used negations and first-person singular pronouns,
while another research examined the frequency of affective
words such as “anger” or “sadness” to derive participants’
emotion [42]. However, with the rapid development of natural
language processing (NLP), embedding-based representations
(eg, Word2Vec [43], Global Vector [44]) and pretrained models
(eg, BERT [Bidirectional Encoder Representations from
Transformers] [45], GPT [46]) have enhanced the semantic
modeling capacity of ADE models. Niu et al [47] applied graph
attention networks to capture hierarchical contextual semantics,
and some studies used BERT to encode transcribed speech into
context-aware sentence embeddings [48,49]. In model
architecture, traditional shallow models, such as support vector
machines, random forests, and decision trees, were commonly
used in previous works [50], while deep learning models have
also performed well in the ADE tasks recently [51-53]. Dinkel
et al [51] built a multitask model based on a bidirectional gated
recurrent unit, achieving an F1-score of 0.84 on DAIC-WOZ.
Martinez et al [52] further improved classification performance
using RoBERTa. Furthermore, the validation strategies also
vary: while single-holdout testing is commonly used when
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datasets are large [54-56], small-sample medical texts often use
repeated bootstrapping [57] or k-fold cross-validation [30,58]
to ensure robustness. Overall, differences in feature
representation, model architecture, and validation strategies all
contribute to potential differences in model performance and
generalization.

Another potential factor affecting the model performance is the
quality of depression labels. Clinical diagnosis by certified
psychiatrists is widely considered the gold standard of
depression [1,59]. However, clinical diagnosis is costly and
subject to the experience of the psychiatrists [60]. As a
substitute, many text-based ADE studies used standardized
self-report depression scales. Common scales include the Patient
Health Questionnaire, 8 or 9 items (PHQ-8 or 9) [61], Beck
Depression Inventory-II (BDI-II) [62], Zung Self-Rating
Depression Scale (SDS) [63], 21-item Depression, Anxiety, and
Stress Scale (DASS-21) [64], and Center for Epidemiological
Studies Depression Scale (CES-D) [65]. The ADE tasks can be
equal to predicting the self-reported scores. For example, Li et
al [66] achieved an F1-score of 78.3% on the DAIC-WOZ
dataset using PHQ-8, and another study reported a classification
accuracy of 69% using PHQ-9 labels [67]. However, structured
scales demonstrate good reliability and validity, but their use
is often limited by ethical constraints and annotation costs.
Consequently, many studies resort to weak depression labels,
such as keyword matching [68,69], sentiment analysis tools
[70], or self-declared depressive status from social media [71].
These approaches facilitate large-scale data collection and
exploration, but there may be deviations in the reliability and
validity of practical applications. For example, keyword-based
labels may ignore semantic context [72], and sentiment analysis
tools may confuse sadness with clinical depression [73].
Therefore, increasing emphasis has been placed on adopting
gold-standard labels for model training and validation
[16,31,74]. In this study, we included only those studies that
use either clinical diagnosis or the PHQ-9 scale as depression
labels: Other scales, such as BDI-II and CES-D, though
commonly used for screening, differ in target populations and
sensitivity, which may impair cross-study comparability [75].
The potential impact of annotation source on model performance
is examined in our Results section.

In recent years, several systematic reviews have investigated
NLP-based depression estimation. Mao et al [31] provided a
multimodal overview covering facial expression, speech, and
text models, highlighting the lack of model transparency and
limited practical application as critical challenges. Some reviews
focus on specific methods. For example, Yao et al [16]
summarized depression-related studies using social media text
and found that machine learning (ML) and statistical analysis
methods were more prevalent. Tahir et al [76] provided a
comprehensive review of ML and deep learning approaches for
ADE tasks based on social media data. Nanggala et al [77]
conducted a systematic review of the performance of the
transformer structure in ADE tasks and noted the competitive
advantages of the text modalities. Many studies have examined
the use of social media text for depression estimation, analyzing
feature design and training strategies [16,78]. While these
previous works provided valuable insights into this field, 2

major limitations remain: First, most reviews concentrate on
specific text sources (eg, social media and public datasets),
which may not generalize well to practical applications [79].
Second, annotation sources are often overlooked, and weak
depression labels, such as self-declared or keyword matching,
are often confused without discussing the impact of their
differences from standard labels on model performance [72].
Therefore, this study uses label quality as a core inclusion
criterion. We systematically assessed performance and sources
of heterogeneity in text-based ADE models.

Research Aims and Structure
This review aims to evaluate the performance of text-based
depression estimation models that use standard labels and to
identify the potential moderators that may account for
performance differences. We specifically analyzed variations
in text sources, model architectures, validation strategies,
annotation standards, as well as the quality of study reporting,
to examine their potential influence on depression predictive
performance. The structure of this review is as follows: the
Introduction section outlines the background and research aims,
the Methods section presents the study selection criteria, data
extraction, and meta-analysis protocol, the Results section
presents the outcomes of the meta-analysis, and the Discussion
and Conclusion section interprets the findings and provides
implications for future research and practical applications.

Methods

Study Design
This systematic review followed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analysis)
2020 and the PRISMA-S (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses literature search
extension) for reporting literature searches guidelines [80]
(Multimedia Appendix 1). We also registered our review on
PROSPERO (CRD20251056902). There were no deviations
from the registered protocol.

Information Sources and Search Strategy
To include as many studies of text-based ADE as possible at
the beginning, we systematically searched 4 datasets: Scopus,
IEEE Xplore, Web of Science, and PubMed. The search strategy
followed the PRISMA-S reporting extension [81] and was
developed based on common model architectures, text features,
and outcome formats used in ADE research. The search strategy
included combinations of the following terms: (“depression”
OR “depressive” OR “clinical depression” OR “major depressive
disorder” OR “MDD”) AND (“assessment” OR “measur*” OR
“diagnos*” OR “predict*” OR “estimat*”) AND (“automated”
OR “automatic” OR “AI” OR “machine learning” OR “deep
learning” OR “large language model” OR “natural language
processing” OR “NLP”) AND (“text” OR “linguistic analys*”
OR “sentiment analys*” OR “semantic analys*” OR “lexical
feature*” OR “transcribed speech” OR “written” OR “textual*”).
The initial search was conducted on February 24, 2025, covering
studies published from January 2014 onward, and was updated
on December 3, 2025. Full database-specific search strings are
provided in Multimedia Appendix 2. Additional eligible studies
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were identified by manually searching the reference lists of the
included studies and previous reviews.

Eligibility Criteria
We included studies that fulfill the following four criteria: (1)
used texts to investigate depression, (2) used ML to establish
an ADE model, (3) reported the data collection process and the
depression label sources, and (4) reported the metrics of the
model for effect size calculation. Our exclusion criteria are the
studies that (1) did not use the standard depression label (details
in paragraph 5 of the introduction); (2) were not written in
English; (3) published before 2024 and having fewer citations
than years of publish were excluded (eg, articles published in
2021 with 3 citations, or articles published in 2019 with 5
citations would be included) [31], to ensure that full-text
screening focused on studies that had been acknowledged and
referenced within the field; and (4) were developed exclusively
on public datasets, as these models often iterate rapidly, which
could introduce potential bias.

Data Collection Process
Two independent researchers (SZ and JZ) excluded duplicates
from the relevant studies retrieved, then screened and selected
the relevant studies by inclusion and exclusion criteria.
Disagreements were solved through discussion with a third
author (CZ) when necessary. The relevant studies were evaluated
through title and abstract screening. Thereafter, the remaining
studies were screened through full texts to identify those for
further analysis. Studies were managed using EndNote and
Microsoft Excel. No automation tools were used.

Data Items
Two researchers (SZ and JZ) independently coded the included
studies in Microsoft Excel. The following information was
extracted from each article: (1) study characteristics (first author
and publication year), (2) annotation source (clinician diagnosis
and self-report scales [PHQ-9]), (3) population characteristics
(sample size and positive rate), (4) modeling strategy (text
sources [eg, interviews, social media, writing tasks, and diaries],
text representation [eg, RoBERTa, transformer, TF-IDF, LIWC,
and Empath], model architecture [deep learning vs shallow ML]
and validation strategies [eg, cross-validation, hold-out, and
external validation]), and (5) predictor values [sensitivity,
specificity, F1-score or data used to impute these values].
Furthermore, for studies that used different algorithms based
on the same text dataset, only the model with the highest
F1-score was included in the meta-analysis. If a study reported
results based on different text sources (eg, clinical transcripts
vs written documents), the best-performing model from each
dataset was included separately. For multimodal studies, only
the performance metrics from the text modality were included.

In addition, we assessed the reporting quality of each included
study using the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis) tool [82]. TRIPOD was adapted to be more specific
to NLP studies: The modifications were based on previously
published research of NLP studies [83,84]. Two independent
researchers (SZ and JZ) independently assessed each study

based on TRIPOD items; disagreements were resolved through
a third author (CZ).

Effect Measures
For each study, the sensitivity, specificity, and sample sizes
were used to calculate the effect size (ES). Specifically, the
odds ratio (OR) was first computed by sensitivity and specificity,
followed by a log transformation to obtain log (OR) [85]. The
SE of log (OR) was then calculated based on the sensitivity,
specificity, and sample size. Log (OR) and SE (log OR) were
converted into ES by using Comprehensive Meta-Analysis
(version 4; Biostat Inc). To direct comparison of model
performance across studies, Pearson correlation coefficient (r),
transformed via Fisher z for analysis and subsequently
back-transformed for interpretation, was selected as the ES
indicator [86]. Furthermore, the Pearson correlation coefficient
contributes to a general understanding of the relationship
between text-based models’ predictions and true labels. Values
of r around 0.1, 0.3, and 0.5 are generally interpreted as
indicating small, moderate, and large effect sizes, respectively.
These thresholds have been widely applied in psychological
and behavioral research, including prior reviews of depression
prediction models [78,87].

Data Synthesis and Analysis
Meta-analysis was initially performed using Comprehensive
Meta-Analysis (version 4; Biostat Inc). Between-study
heterogeneity was assessed using the chi-square Q statistic,
which tests the null hypothesis of homogeneity [88]. The extent
of heterogeneity was further described using the inconsistency

index (I2), along with the between-study variance (τ²) and its
SD (τ) [89]. In addition, 95% prediction intervals were reported
to reflect the expected range of effects in future studies [90].
We adopted the random-effects model to assess the
heterogeneity among studies and estimate the pooled effect size
from each study. Given the limited number of included studies,
the Hartung-Knapp-Sidik-Jonkman (HKSJ) method was applied
to adjust the SEs [91]. Because CMA 4.0 does not implement
the HKSJ procedure, we reestimated the pooled effects using
the Meta package in R (version 4.3.2), and the 95% CI values
reported in the main text were derived from the HKSJ-adjusted
models.

To explore potential sources of heterogeneity, we performed a
moderator analysis with a random effects model [92]. According
to the extracted information from each study, four predefined
groups were included: (1) text representation (embedding-based
vs traditional features), (2) annotation source (clinician diagnosis
vs self-reported scale), (3) model architecture (deep vs shallow),
and (4) text source (documentation vs transcribed speech). For
each subgroup, pooled ES (r) were estimated under a
random-effects model, and between-group differences were
assessed using the Q-test for heterogeneity. In addition,
univariate meta-regression analyses were conducted to examine
the potential moderating effects of 3 continuous covariates:
reporting quality (TRIPOD score), sample size
(log-transformed), and positive rate. Each covariate was
analyzed separately with a random-effects model, and an analog

R2 indicated its explanatory power for study variance. Finally,
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we performed a sensitivity analysis using the leave-one-out
method to assess the influence of each study on the overall
results. We also conducted a cumulative meta-analysis to explore
whether more recent studies have contributed to increased
consistency.

Small-Study Effects
We assessed potential small-study effects, including the
possibility of publication bias, by visually inspecting a funnel
plot of the SE Fisher z [93]. Statistical evaluation of funnel plot
asymmetry was conducted using the Begg–Mazumdar rank
correlation test and the Egger regression test, with a P value
<.05 indicating significant small-study effects [94]. In addition,
we applied the Duval and Tweedie trim-and-fill procedure to
explore the potential impact of missing studies on the pooled
effect size [95].

Quality and Certainty Assessment
The methodological risk of bias of each included study was
independently assessed by 2 authors (SZ and CZ) across five

domains relevant to text-based ML research: (1) participant
selection, (2) outcome labeling, (3) text acquisition and
preprocessing, (4) model development and validation, and (5)
reporting completeness. Each domain was rated as “low risk,”
“unclear risk,” or “high risk” and an overall judgment was
derived accordingly. The certainty of evidence for the primary
pooled effect was evaluated using the GRADE (Grading of
Recommendations Assessment, Development and Evaluation)
framework [96], considering risk of bias, inconsistency,
indirectness, imprecision, and publication bias.

Results

Study Selection Process
The flow diagram of studies screening and selection is presented
in Figure 1. The initial database search was conducted on
February 24, 2025, and was updated on December 3, 2025.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram of studies included in this review.

A total of 3067 records were identified through database
searching, including Web of Science (n=960), PubMed (n=305),
Scopus (n=1150), and IEEE Xplore (n=652). After removing
1052 duplicates and 68 low-citation records, 1947 records
remained for title and abstract screening, together with 5
additional records identified through manual citation tracking.

Among them, 1501 records were excluded because they were
not relevant to text-based depression estimation, including that
the model inputs were not text data and no quantitative results
were reported. The remaining 451 records were included in the
full-text screening, and 11 studies that were inaccessible or
retracted were first excluded. Next, we excluded studies that

J Med Internet Res 2026 | vol. 28 | e82686 | p. 5https://www.jmir.org/2026/1/e82686
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


used nonstandard depression labels (n=253), studies based on
public datasets (n=127), and studies lacking sufficient
information to compute effect sizes (n=49). Finally, 11 studies
[17,24,26,67,97-103] were included in the meta-analysis.

Characteristics of Included Studies
A total of 11 studies were included in the final meta-analysis
[17,24,26,67,97-103], contributing 15 independent text-based

depression estimation models. A summary of included studies
and model characteristics is presented in Table 1, and the
detailed data extraction table is provided in Multimedia
Appendix 3. The sample size ranged from 77 to 749 participants,
with a median of 110. Positive rates (proportion of participants
labeled as depressed) varied substantially across studies, ranging
from 9.2% to 77.9%, reflecting differences in population
selection and depression labeling strategies.

Table 1. Summary of study and model characteristics included in the meta-analysis (n=15).

SpecificitySensitivityText

source 
Model archi-
tecture 

Annotation
source 

Text representa-
tion 

TRIPOD Positive rate Sample

sizea
Author (year)

0.680.94Documenta-
tion

DeepClinician di-
agnosis

Traditional fea-
tures

170.243366Geraci et al
(2017) [97]

0.770.57Documenta-
tion

ShallowSelf-report
scale

Traditional fea-
tures

130.0921749Ricard et al
(2018) [26]

0.630.93Documenta-
tion

ShallowSelf-report
scale

Traditional fea-
tures

120.3395162Tlachac et al
(2020) [98]

0.860.33Documenta-
tion

ShallowSelf-report
scale

Traditional fea-
tures

110.4110Zhao et al
(2021) [67]

0.530.81Documenta-
tion

ShallowSelf-report
scale

Traditional fea-
tures

110.614114Zhao et al
(2021) [67]

0.860.51Documenta-
tion

ShallowSelf-report
scale

Traditional fea-
tures

110.463341Zhao et al
(2021) [67]

0.970.7Tran-
scribed
speech

ShallowClinician di-
agnosis

Traditional fea-
tures

160.5166Shin et al
(2022) [99]

0.660.68Tran-
scribed
speech

ShallowClinician di-
agnosis

Traditional fea-
tures

90.514140Cariola et al
(2022) [24]

0.850.83Tran-
scribed
speech

DeepClinician di-
agnosis

Embedding-based150.580Munthuli et al
(2023) [100]

0.930.88Tran-
scribed
speech

DeepClinician di-
agnosis

Embedding-based150.580Munthuli et al
(2023) [100]

0.830.9Tran-
scribed
speech

DeepClinician di-
agnosis

Embedding-based150.580Munthuli et al
(2023) [100]

0.740.79Documenta-
tion

ShallowSelf-report
scale

Traditional fea-
tures

130.60288Tlachac et al
(2023) [101]

0.250.96Tran-
scribed
speech

ShallowClinician di-
agnosis

Traditional fea-
tures

170.77977Jihoon et al
(2024) [102]

0.7610.929Documenta-
tion

DeepSelf-report
scale

Embedding-based140.17191Shin et al
(2024) [17]

0.9330.955Tran-
scribed
speech

DeepClinical diag-
nosis

Embedding-based190.55100Xu et al (2025)
[103]

aValidation strategies include k-fold cross-validation, leave-one-out, and nested validation.

 Sample size refers to the total number of participants included
in each model.

 Positive rate refers to the proportion of participants labeled as
depressed.

 TRIPOD score was based on a modified 27-item checklist
adapted for NLP-based studies.

 Text representations include traditional features (eg, Lexical,
TF-IDF, LWIC, and Emotional Dictionary) and
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embedding-based features (eg, BERT, Word2Vec, and
RoBERTa).

 Annotation source indicates whether the depression label was
derived from clinician diagnosis or self-report scales (Patient
Health Questionnaire-9, PHQ-9).

 Model architecture refers to shallow learning (eg, SVM,
Logistic Regression, and Random Forests) versus deep learning
(eg, GRU, BERT, Transformers).

 Text sources were classified as documentation (eg, Writing,
Social media, and Messages) or transcribed speech (eg, Clinical
Interviews and Psychological Conversations).

Regarding some characteristics of the modeling, 8 (53.3%)
models used clinician diagnosis as depression labels, and the
remaining 7 (46.7%) models relied on self-report scales such
as the PHQ-9. In total, 10 (66.7%) models used traditional
features to text representation, such as TF-IDF, LIWC, or
emotional dictionaries, while 5 (33.3%) models used
embedding-based techniques, including BERT and Word2Vec.
9 (60%) models used shallow learning models (eg, SVM,
random forest, and logistic regression), and the remaining 6
(40%) models adopted deep learning architectures (eg, GRU
and BERT-based classifiers). Text sources were classified as
either documentation (n=8, 53.3%) or transcribed speech (n=7,
46.7%), the latter often derived from clinical interviews or
therapeutic dialogues. Validation strategies also varied: 11
models implemented some form of k-fold cross-validation,
while others applied nested or leave-group-out cross-validation.

The reporting quality (mean 13.9, SD 2.8; range 9-19) of all
included models was assessed using an adapted 21-item
TRIPOD checklist for NLP-based predictive modeling. Detailed
scoring criteria and individual scores are provided in Multimedia
Appendix 4.

Results of Meta-Analysis
A random-effects model was applied to synthesize the effect
sizes of 15 text-based depression estimation models extracted
from 11 eligible studies [17,24,26,67,97-103]. In studies
reporting multiple models, each model was derived from a
distinct text dataset with nonoverlapping participant samples
and was therefore treated as a point estimate [104]. The pooled
effect size (r) was 0.605 (95% CI 0.498-0.693) [87], indicating
an overall high predictive ability in models using standard
depression labels (Figure 2). Substantial between-model
heterogeneity was observed (Q=99.02, P<.001; I²=85.9%). The
estimated between-study variance was τ²=0.062 (τ=0.249). The
95% prediction interval ranged from 0.140 to 0.851, indicating
considerable variability in the magnitude of effects expected
across future studies. The forest plot revealed that each model
achieved significant correlations (P<.05), the effect sizes varied
across models (ranging from 0.292 to 0.776), further supporting
the observed heterogeneity. The HKSJ-adjusted forest plot
generated in R is provided in Multimedia Appendix 5. This
variation highlights the influence of study-level characteristics
such as model architecture, annotation source, and text
representation on model performance, which were further
analyzed in subsequent moderator and meta-regression analyses.

Figure 2. Forest plot presenting the pooled effect size (correlation r) of machine-learning models for text-based depression estimation trained with
gold-standard labels [17,24,26,67,97-103]. For studies appearing more than once in the forest plot (eg, Zhao et al, 2021 [67]; Munthuli et al, 2023 [100]),
indicate models trained and evaluated on independent text datasets derived from nonoverlapping participant samples.

Results of Subgroup Analysis for Moderators
Subgroup analyses were conducted to examine the moderating
effects of text representation, annotation source, model

architecture, and text source (Table 2). Significant moderation
effects were observed for text representation (Q=16.47, P<.001)
and model architecture (Q=22.60, P<.001). Models using
embedding-based features yielded higher performance (r=0.741,
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95% CI 0.648-0.812) compared with those using traditional
features (r=0.514, 95% CI 0.385-0.623). Deep learning
architectures also outperformed shallow models (r=0.731, 95%
CI 0.660-0.789 vs r=0.486, 95% CI 0.352-0.599). Annotation
source showed a statistically significant moderation effect
(Q=5.00, P=.03), with models using clinician diagnoses
achieving higher pooled performance (r=0.688, 95% CI

0.554-0.787) than those using self-report scales (r=0.500, 95%
CI 0.340-0.631). Text source did not reach statistical
significance (Q=3.00, P=.08), although models using transcribed
speech tended to outperform those using documentation (r=0.687
vs 0.529). Forest plots of these subgroup analyses are presented
in Figure 3, and HKSJ-adjusted subgroup plots generated in R
are provided in Multimedia Appendix 5.

Table 2. Subgroup analyses examining the influence of text representation, annotation source, model architecture, and text source on model performance
in text-based depression estimation.

P valueQ-value (df)Point estimation (95% CI)Models, n (%)Moderators

<.00116.472 (1)—a15 (100)Text representation

<.001—a0.741 (0.648-0.812)5 (33.3)Embedding-based

<.001—*0.514 (0.385-0.623)10 (66.7)Traditional features

.034.996 (1)—a15 (100)Annotation source

<.001—a0.688 (0.554-0.787)8 (53.3)Clinician diagnosis

<.001—a0.500 (0.340-0.631)7 (46.7)Self-report scale

<.00122.595 (1)—a15 (100)Model architecture

<.001—a0.731 (0.660-0.789)6 (40)Deep

<.001—a0.486 (0.352-0.599)9 (60)Shallow

.083.003 (1)—a15 (100)Text source

<.001—a0.529 (0.381-0.650)8 (53.3)Documentation

<.001—a0.687 (0.521-0.803)7 (46.7)Transcribed speech

aNot applicable.
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Figure 3. Forest plots of subgroup analyses by (A) text representation, (B) annotation source, (C) model architecture, and (D) text source generated
using CMA4.0 [17, 24, 26, 67, 97, 98, 99, 100, 101, 102, 103]. High-resolution versions of all subgroup forest plots are provided in Multimedia Appendix
5.

Univariable meta-regression analysis was used to test 3
continuous moderators: TRIPOD score, the positive rates, and
the log-transformed sample size (log n). All meta-regressions
were conducted using Fisher z-transformed correlation
coefficients under a random-effects model. As shown in Table
3, only the TRIPOD score was significantly associated with
model performance (β=0.085, 95% CI 0.050-0.119; P<.001),

indicating a positive association between reporting quality and
effect size. This model explained 71% of the between-study
variance (R² analog=0.71). In contrast, neither the positive rate
(β=–0.027, 95% CI –0.830 to 0.884; P=.95) nor the sample size
(β=–0.012, 95% CI –0.214 to 0.190; P=.91) showed significant
associations with effect size. Corresponding regression plots
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are included in Multimedia Appendix 6 (CMA-based) and Multimedia Appendix 5 (HKSJ-adjusted).

Table 3. Univariable meta-regression assessing reporting quality (TRIPOD), positive rate, and sample size as moderators of model performance.

P valueR²SEβ (95% CI)NModerators

<.0010.710.0180.085 (0.050-0.119)15TRIPODa NLPb

.95<0.20.437–0.027 (–0.830 to 0.884)15Positive Rate

.91<0.20.103–0.012 (–0.214-0.190)15Log n

aTRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis.
bNLP: natural language processing.

Risk of Bias and Certainty Assessment
Risk-of-bias assessment showed that most included models
demonstrated low methodological concerns. Of the 15 models,
7 were rated as low risk, 6 as unclear risk, and 2 as high risk,
with the latter typically related to concerns in outcome
measurement or reporting (Multimedia Appendix 7). The overall
certainty of evidence for the primary pooled effect was rated as
moderate under the GRADE framework. This rating was driven
mainly by the substantial heterogeneity observed across models,
while concerns regarding imprecision and publication bias were
minimal. Detailed domain ratings and justification for GRADE

decisions are provided in Supplementary Table S4 (Multimedia
Appendix 7).

Sensitivity Analysis and Cumulative Analysis
Leave-one-out analysis indicated that the pooled effect size
remained stable across all iterations (r=0.605, 95% CI
0.498-0.693), suggesting that no single study had a
disproportionate impact on the overall result (Figure 4).
Cumulative meta-analysis showed that the effect estimates
gradually stabilized over time, indicating consistency across
publication years (Figure 5).

Figure 4. Leave-one-out sensitivity analysis [17,24,26,67,97-103].
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Figure 5. Cumulative meta-analysis [17,24,26,67,97-103].

Small-Study Effects
The funnel plot (Figure 6) showed a generally symmetrical
distribution of effect sizes. Both the Begg–Mazumdar test
(Kendall τ=0.17143, P=.37) and the Egger regression test

(t14=1.13401, 2-tailed P=.28) were nonsignificant, indicating
no evidence of small-study effects. The trim-and-fill procedure
did not impute any additional studies, and the adjusted pooled
effect was identical to the original estimate.

Figure 6. Funnel plot.
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Discussion

Principal Findings
This study evaluated the performance of text-based depression
estimation models that were trained and validated using standard
depression labels. Our findings indicate that text-based ADE
models demonstrate promising predictive performance. A
previous review study mentioned the importance of a uniform
standard label when evaluating the consistency of model
performance across studies [78]. In this study, we focused on
the studies using clinical diagnoses or PHQ-9 and excluded
weak depression labels datasets (eg, keyword matching and
self-declared), thereby enhancing the clinical reliability of the
results [72,73]. These findings support the potential of text,
especially that in transcribed speech and personal
documentation, as informative signals for depression detection
[23-25]. Nonetheless, the high between-study heterogeneity
implies the differences in study-level characteristics, including
modeling approaches, corpus sources, and reporting quality.

For the text representation and model architecture, the results
of subgroup analyses showed that models using
embedding-based text representations achieved higher
performance than those using traditional features, and deep
learning architectures outperformed shallow models. Consistent
results have been reported on commonly used public
benchmarks [105,106]. On the DAIC-WOZ dataset, the
high-performing models often use embedding-based
representation and deep model architecture [37,107]. This result
aligns with the development of context-aware models like BERT
[45] and GPT [46], which have superior semantic representation
capabilities. A previous review study on emotion detection also
reported similar conclusions [22]. However, the traditional
linguistic features remain critical in the field of ADEs [16].
Linguistic features can be extracted from depressive texts by
topic modeling techniques [108], which provide insights into
underlying cognitive and emotional states and contribute to
clinical understanding [109,110]. Overall, embedding-based
and deep model architectures are superior in prediction
performance, and the traditional features and shallow models
remain valuable for enhancing interpretability and depression
understanding.

For the annotation sources, the results of subgroup analyses
indicated that models trained with clinician diagnoses also
outperformed better than those relying on self-report scales.
This supported the view expressed by Mao et al [31] that
self-reported measures may not align with clinical diagnoses,
potentially leading to inconsistency in model performance.
Another study also highlighted the heterogeneity of depression
estimation caused by subjectivity [111]. In addition, the results
indicate that while models trained with clinically validated
scales like PHQ-9 remain usable, their performance is generally
lower than models trained with clinician diagnoses. For the text
sources, models using transcribed speech were slightly higher
than those using personal documentation, but this difference
did not reach a statistically meaningful level. This may reflect
the more information and affective cues embedded in spoken
language [38], but some studies have pointed out that there are

also noises such as stop words that are not directly related to
emotion [112,113]. Overall, these results suggest that the
annotation source demonstrated a determinative impact on model
performance, with clinician diagnoses outperforming PHQ-9,
whereas the text source showed only directional effects. We
suggest constructing the ADE models based on the gold standard
and natural environment-related text data. However, when
clinician diagnoses are unavailable, validated self-report scales
represent feasible alternatives.

It is worth noting that there is a significant positive correlation
between the model report quality (TRIPOD score) and the model
performance. This indicates that studies with higher report
quality exhibit better performance in the ADE model. The
TRIPOD checklist has been previously adopted in other
automatic estimation domains [114,115]. This result further
emphasized the necessity for comprehensive reporting of
study-level characteristics, including modeling approaches and
corpus sources, to enhance reliability and validity in ADE
models [82]. In contrast, sample size and positive rates were
not significantly associated with model performance. It is
consistent with the previous review studies’ results [76,78],
suggesting that in the ADE tasks, the data quality, annotation,
and methodological transparency may be more crucial than the
quantity of the samples. This finding underscores the importance
of rigorous methodological reporting for ADE studies.

Taken together, the findings of this meta-analysis highlight
several methodological and reporting considerations that are
relevant for the development and evaluation of text-based ADEs.
Specifically, models using embedding-based features and deep
architectures are superior in predictive performance, suggesting
that future studies could prioritize richer text representations
combined with more sophisticated model architectures. Adopting
standardized depression labels, particularly clinician diagnoses
or widely validated scales, may further facilitate comparability
across studies. Notably, we found that there is a significant
positive correlation between the TRIPOD score and the model
performance. This indicates that improving adherence to
established reporting guidelines could enhance the transparency
and reproducibility of ADE models. The overall certainty of
evidence was rated as moderate using the GRADE approach,
reflecting acceptable confidence in the pooled findings despite
substantial between-study heterogeneity.

Strengths and Limitations
The primary strength of this review lies in its strict focus on
text-based ADE models trained and validated using standard
depression labels. By excluding studies based on weak or
inconsistent annotation sources, such as keyword matching or
self-declared labels, we reduced label-related heterogeneity and
improved the clinical interpretability of the synthesized findings.
In addition, this meta-analysis systematically examined multiple
methodological sources of heterogeneity, including text
representation, model architecture, annotation source, and
reporting quality, using a unified analytical framework
combining subgroup analyses and meta-regression.

Nevertheless, this study also has some limitations. First, our
inclusion criteria strictly require the use of standard depression
labels. Although this enhanced the reliability of the labels, it
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also reduced the number of eligible studies (57.5% of the
literature was excluded in the full-text assessment). Some of
the latest studies were also not included, including large
language models [116] and the prompt learning strategy [36].
Studies on conversational agents with NLP-based automatic
depression detection were also not included [117]. Second,
although the Egger test indicated no significant publication bias,
the exclusion of non-English and low-visibility studies raises
the possibility of study omission. Future work may cautiously
broaden the inclusion scope to better capture emerging
methodological trends, including hybrid approaches that
integrate text with other modalities, with the aim of improving
the practical applicability of ADE models.

Implications
The results of this review indicate that multiple methodological
factors, including text source, text representation, model
architecture, annotation source, and reporting quality, influence
the performance of text-based depression estimation models.
These findings not only provide methodological guidance for
future text-based ADE research but also offer important insights
into the sources of variation observed in existing studies. To
our knowledge, this study is among the first systematic reviews
to explicitly restrict inclusion to models trained and validated
using standard depression labels. Previous systematic reviews
in this field have largely focused on aspects such as model
architecture or the use of social media data, with little systematic
attention given to the impact of depression label quality. The
inclusion of weak depression labels in prior research may have
affected the reliability of reported results and further limited
their practical applicability. By treating standard depression
labels as a core inclusion criterion, this review demonstrates
that annotation source is one of the key determinants of model

performance. This observation suggests that performance
differences across studies may reflect variations in labeling
standards and reporting quality, rather than differences in
intrinsic model capability alone. More broadly, the present
findings support a shift in text-based ADE research toward
evaluation frameworks that emphasize label rigor, transparent
reporting, and methodological consistency, thereby enabling
more meaningful comparison across studies and ultimately
facilitating the clinical translation of ADE models.

Conclusions
In summary, this systematic review and meta-analysis surveyed
the last decade of text-based ADE using standard depression
labels. The overall pooled effect size (r=0.605) suggests that
ADE models perform well and have the potential for practical
application. However, substantial heterogeneity across studies
was observed. Models using embedding-based features and
deep architectures generally achieved superior performance,
whereas the influence of annotation source and text source was
comparatively limited. Models trained with clinical diagnoses
and transcribed speech tended to outperform those using
self-report scales and documentation, though the difference was
not statistically significant. Moreover, reporting quality, as
assessed by TRIPOD, was positively associated with
performance, highlighting the need for transparent reporting.
Future studies should consider richer text representations,
standardized labels, integration with other modalities, and
transparent reporting to enhance the reliability and practical
applicability of ADE models. In our future work, we will also
aim to capture emerging approaches and cautiously broaden the
inclusion scope, thereby providing a more comprehensive view
of the ADE field.
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