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Abstract

This study uses keyword filtering, a transformer-based algorithm, and inductive content coding to identify and characterize
cannabis adverse experiences as discussed on the social media platform Reddit and reports a total of 1177 self-reported adverse
experiences requiring medical attention.

(J Med Internet Res 2026;28:e82661) doi: 10.2196/82661
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Introduction

Cannabis is one of the most frequently used intoxicating
substances in the United States [1]. Changing policies and
attitudes have increased cannabis use, yet safety profiles for
different cannabis-derived products (CDPs) (eg, products
containing tetrahydrocannabinols, cannabidiol, or cannabinoids
derived from cannabis) are not well understood. Studies have
examined internet and social media data for health concerns
among cannabis users, including for adverse health outcomes
[2-8]. However, no study has specifically characterized the types
of adverse experiences requiring medical attention, as
self-reported online. We aimed to use a transformer-based

algorithm to identify and characterize adverse experiences
self-reported as requiring medical attention (SRRMA) on Reddit.

Methods

For this observational retrospective study, we collected
user-generated posts and comments from 27 subreddits(/r/)
related to cannabis use (Figure 1; Multimedia Appendix 1). A
set of keywords for adverse experiences SRRMA was used for
data mining and manual coding to generate a sample of “signal”
Reddit data (ie, posts about cannabis product adverse
experiences requiring medical attention: hospitalization, or
visiting a health care professional, emergency room, or urgent
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care). This initial sample of SRMMA prelabeled “signal” was joined with data from the full Reddit data corpus.

Figure 1. Summary of the study methodology, including data collection, data processing/filtering, BERT (bidirectional encoder representations from
transformers) analysis, and results (signal data): (1) data collection for cannabis-related subreddits (both posts and comments); (2) keyword filtering
for adverse experience self-reported as requiring medical attention (AE SRRMA)-related signals; (3) separation of sample of “signals” for general
adverse experiences (GAE) self-reported as not requiring medical attention and AE SRRMA; (4) use of BERT topic model (k=5, 10, 15, 20) after data
filtering with a sample of AE SRRMA keywords and labeled AE SRRMA data joined with the unlabeled dataset to analyze the full corpus of Reddit
posts and comments; (5) selection of BERT topic clusters with the highest yield of prelabeled signals for AE SRRMA that were manually annotated to
identify additional AE SRRMA signals (process repeated to achieve higher thematic saturation); newly identified signals were joined with the unlabeled
dataset for the next round of BERT topic modeling; and (6) AE SRRMA signal identification from Reddit posts and comments summarized in this
publication.
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Natural language processing was applied to cluster Reddit posts
and comments for further manual annotation. We used the
bidirectional encoder representations from transformers (BERT)
topic model with the Python (version 3.7) package BERTopic
(version 0.6.0), which is a pretrained, self-supervised
transformer-based algorithm that embeds texts, extracts topics,
and then clusters texts.

BERT was used to cluster groups of nonlabeled data with
SRRMA prelabeled signal data into k topic clusters, where the
value of k is determined according to the dataset size (5≤k≥20).
In each generated cluster, we calculated the percentages of
SRRMA prelabeled signal data in that topic cluster to estimate
how well that cluster was related to our SRRMA prelabeled
data (% of potential SRRMA prelabeled signal data in a cluster
that could be appended to the SRRMA prelabeled dataset =
amount of SRRMA prelabeled training signal data in a
cluster/amount of total data in a cluster). The higher the
percentage, the more likely the uncoded data were related to
our SRRMA prelabeled topic. Cluster selection was determined
based on the highest percentages. The new signals were then
added to our coded signal pool for the next iteration of BERT
modeling: we filtered the uncoded dataset with the keywords
repeatedly, combined the filtered uncoded data with all
prelabeled signal data, and then performed the next iteration of
BERT to find the best clusters to manually annotate for
identifying additional signals. Posts and comments from these
clusters were extracted, and an inductive coding approach was
used to label and characterize cannabis-related adverse
experiences and adverse experiences that met the SRRMA
criteria. Human ethics and consent to participate were not
applicable, as all information was from the public domain and
did not involve user interaction, and any identifiable information
was aggregated and removed from the results.

Results

We collected 1,795,478 Reddit posts/comments. After BERT
and coding, 1177 posts/comments comprising 1542
user-generated mentions of SRRMA adverse experiences for
cannabis products were detected between July 2017 and
December 2022 (Table 1). Coders (TKM, MN, MZ) achieved
a high intercoder reliability score (κ=0.90). From the 27
subreddits, the top 10 SRRMA adverse experiences were
vomiting (284/1542, 18.42%), nausea (171/1542, 11.09%),
panic attack (122/1542, 7.91%), abdominal/stomach pain
(96/1542, 6.23%), concern over elevated heart rate (92/1542,
5.97%), anxiety (60/1542, 3.89%), chest pain (53/1542, 3.44%),
general complaints of sickness (31/1542, 2.01%), symptoms
attributed to Cannabinoid Hyperemesis Syndrome (30/1542,
1.95%), and paranoia (30/1542, 1.95%). Additionally, 108
(9.18%) SRRMAs mentioned a CDP but not a specific adverse
experience. SRRMA adverse experiences included users
self-reporting seeking medical attention with visits/admissions
to hospitals (533/1177, 45.28%), emergency rooms (569/1177,
48.34%), health care professionals (70/1177, 5.95%), and urgent
care (5/1177, 0.43%).

For cannabis product use characteristics with an SRRMA, most
(988/1177, 83.94%) were inhalation (eg, inhaler, joint, vape)
followed by ingestion (59/1177, 5.01%; eg, edibles) products.
For users reporting intent of use (ie, post and comment), 94.65%
(1114/1177) were adult use (ie, recreational), followed by 3.57%
(42/1177) therapeutic (ie, for health benefit), 1.02% (12/1177)
unknown, 0.42% (5/1177) medical (ie, from a medical
dispensary), and 0.34% (4/1177) unintentional use. A subset of
users reported co-use with other substances, specifically tobacco
and nicotine products (n=7), prescription medications (eg,
alprazolam, antidepressants, n=22), illicit drugs (eg, lysergic
acid diethylamide, cocaine, n=5), and dual use with other
cannabinoids (eg, general tetrahydrocannabinol use, cannabidiol,
delta 8, n=12).

Table 1. Characteristics of adverse experiences self-reported as requiring medical attention, posted online on Reddit between July 2017 and December
2022.

Adverse Experiences Self-Reported as Requiring Medical Attention (AE SRRMA)aPost and comment
type/intent of use

Proportion of platform AE
SRRMA posts (N=1177),
n (%)

Urgent care
(n=5), n

Emergency room
visit (n=569), n

Health care professional
visit (n=70), n

Hospitalization
(n=533), n

5 (0.42)0401Medical

1114 (94.65)553066513Recreational

42 (3.57)023415Therapeutic

4 (0.34)0400Unintended

12 (1.02)0804Unknown

aAE SRRMA indicates that a cannabis user sought medical care because of a concern that their symptom or symptoms were serious or potentially
life-threatening. Intent of use categories included medical (user mentions acquiring a product from a medical dispensary); recreational (user mentions
using a cannabis product, price, or acquisition, in the context of a recreational or social event or circumstance); therapeutic (user mentions using a
cannabis product for medical reasons); unknown (could not be determined based on data that was available); and unintended (user mentions using a
cannabis-derived product accidentally or unintentionally).
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Discussion

We identified 1177 Reddit user-generated posts that described
CDP SRMMA adverse experiences. Results are similar to those
of a study analyzing 28,630 cannabis exposures/cases reported
to state poison control centers from 2017 to 2019 that found
CDP concentrates, vaporized liquids, and edibles documented
with “moderate or greater” medical outcomes (ie, effects usually
requiring a form of medical treatment) [9]. Studies using
transformer-based and large language models also found similar
reports of adverse experiences by Reddit users but only coded
for generalized adverse health outcomes [7] or only reviewed
a single subreddit (r/delta8) [8,9]. Our study builds on the
methodology of these prior studies by using a transformer-based
algorithm “seeded” with prelabeled signal data to find additional
unlabeled data—an approach similar to a few-shot learning
approach but without formal model training.

Study limitations include terms not inclusive of all cannabis
safety-related experiences and lack of cross-validation of users’
self-reports (eg, lack of validation with clinical data). Further,
social media data are not representative of all cannabis use
behavior, and what cannabis products may have led to adverse
experiences (eg, contaminated/adulterated products or products
not from licensed dispensaries) were unclear (eg, we observed
more Reddit discussions on adult-use cannabis [ie, recreational]
than on medical cannabis use, which may limit generalizability).
Though exploratory, study results may be used in conjunction
with other cannabis-related adverse experience surveillance
data (eg, National Poison Data System and FDA MedWatch
[6]) and can provide important context to adverse experiences
that result in medical attention for purposes of helping
consumers and clinicians better understand potential cannabis
risks.
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