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Abstract

Background: While artificial intelligence (AI) holds significant promise for health care, excessive trust in these tools may
unintentionally delay patients from seeking professional care, particularly among patients with chronic illnesses. However, the
behavioral dynamics underlying this phenomenon remain poorly understood.

Objective: This study aims to quantify the influence of AI trust on health care delays through integrated survey-based mediation
analysis and real-world research, and to simulate intervention efficacy using agent-based modeling (ABM).

Methods: A cross-sectional online survey was conducted in China from December 2024 to May 2025. Participants were recruited
via convenience sampling on social media (WeChat and QQ) and hospital portals. The survey included a 21-item questionnaire
measuring AI trust (5-point Likert scale), AI usage frequency (6-point scale), chronic disease status (physician-diagnosed, binary),
and self-reported health care delay (binary). Responses with completion time <90 seconds, logical inconsistencies, missing values,
or duplicates were excluded. Analyses included descriptive statistics, multivariable logistic regression (α=.05), mediation analysis
with nonparametric bootstrapping (500 iterations), and moderation testing. Subsequently, an ABM simulated 2460 agents within
a small-world network over 14 days to model behavioral feedback and test 3 interventions: broadcast messaging, behavioral
reward, and network rewiring.

Results: The final sample included 2460 adults (mean age 34.46, SD 11.62 years; n=1345, 54.7% female). Higher AI trust was
associated with increased odds of delays (odds ratio [OR] 1.09, 95% CI 1.00-1.18; P=.04), with usage frequency partially mediating
this relationship (indirect OR 1.24, 95% CI 1.20-1.29; P<.001). Chronic disease status amplified the delay odds (OR 1.42, 95%
CI 1.09-1.86; P=.01). The ABM demonstrated a bidirectional trust erosion loop, with population delay rates declining from 10.6%
to 9.5% as mean AI trust decreased from 1.91 to 1.52. Interventions simulation found broadcast messaging most effective in
reducing delay odds (OR 0.94, 95% CI 0.94-0.95; P<.001), whereas network rewiring increased odds (OR 1.04, 95% CI 1.04-1.05;
P<.001), suggesting a “trust polarization” effect.

Conclusions: This study reveals a nuanced relationship between AI trust and delayed health care–seeking. While trust in AI
enhances engagement, it can also lead to delayed care, particularly among patients with chronic conditions or frequent AI users.
Integrating survey data with ABM highlights how AI trust and delay behaviors can strengthen one another over time. Our findings
indicate that AI health tools should prioritize calibrated decision support rather than full automation to balance autonomy, odds,
and decision quality in digital health. Unlike previous studies that focus solely on static associations, this research emphasizes
the dynamic interactions between AI trust and delay behaviors.
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Introduction

Background
With the rapid development and widespread adoption of
artificial intelligence (AI) in the medical field, AI has emerged
as a pivotal tool across multiple domains, including health
management, disease prediction, and clinical decision support
[1,2]. Its potential to enhance health care efficiency, assist in
disease diagnosis, optimize treatment strategies, and facilitate
personalized health management is substantial [3,4]. However,
this promise is tempered by growing concerns about its
psychosocial and behavioral effects. The prevailing view of AI
as an unequivocal force for good is being challenged by
evidence that human-AI interaction can lead to new cognitive
and behavioral issues [5,6]. In particular, AI’s capacity to
provide health recommendations and interventions based on
extensive data analysis marks a significant breakthrough [7,8].
However, this ability may alter traditional health
decision-making processes. Trust is a key concept for adopting
technology, involving aspects such as performance, process,
and purpose. A growing body of research indicates that while
AI offers convenient access to health-related information,
excessive reliance on these tools may lead to detrimental health
behaviors, such as overreliance on automated suggestions and
disregarding clinical intuition [9-11].

Traditional health decision-making models typically depend on
professional medical judgment and individuals’ self-awareness
of their health status [12]. The advent of AI is reshaping this
framework by providing automated diagnostic recommendations
and personalized health guidance [13]. While such “digital
health advice” can enhance confidence in medical
decision-making in the short term, it may foster excessive
dependence on AI tools over the long term. Patients with chronic
diseases, who require ongoing health management and exhibit
relatively stable symptoms, may be particularly susceptible to
this shift [14]. This population often practices prolonged
self-management, leading to frequent use of digital tools [15].
The relative stability of their conditions can create a sense of
security, in which they may consider AI-generated reassuring

feedback adequate. This dependence on AI could lead to delays
in pursuing health care, as patients with chronic disease tend to
give priority to AI-generated symptom evaluations and treatment
options rather than traditional medical advice [16].
Consequently, they might overlook complex diagnostic and
therapeutic needs that AI cannot fully assess [17]. Moreover,
biases in medical AI can persist throughout its life cycle,
potentially leading to serious repercussions in clinical
decision-making. If these biases are not addressed, they can
result in inaccurate medical judgments and exacerbate existing
health care disparities [18]. While existing research has shed
light on the potential risks of AI reliance in health care, a
comprehensive framework that formally analyzes the complex
relationship between AI trust and health behavior, particularly
in the context of chronic disease, is still lacking. Additionally,
few studies have used computational simulation to assess how
various public health intervention strategies might mitigate this
system-level risk.

This study aims to systematically analyze the interrelationships
among AI trust, AI usage frequency, chronic disease status, and
delayed health care–seeking behavior. The analysis was
conducted through a cross-sectional online survey from
December 2024 to May 2025. We propose that AI trust and
frequency of use jointly contribute to the odds of delayed
medical care through a behavioral feedback mechanism,
particularly pronounced among patients with chronic conditions.
High levels of AI trust may inadvertently lead individuals to
postpone health care–seeking by increasing usage frequency,
highlighting a complex interaction between trust and behavior.
To investigate these dynamic interdependencies, we use an
agent-based modeling (ABM) framework to simulate the
trust-behavior feedback over time. By embedding individuals
within social networks and allowing trust and delay behaviors
to evolve together, the ABM enables us to examine how
microlevel decisions accumulate into population-level odds.
This includes issues such as collective delays or systemic trust
collapse, which are often difficult to capture using conventional
cross-sectional data. A schematic overview of the study design
is provided in Figure 1.
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Figure 1. Schematic overview of the study design and methodology. Based on online questionnaires, the analysis framework includes mediation analysis
to explore the relationship between artificial intelligence (AI) trust, usage frequency, and delayed health care–seeking behavior. Additionally, agent-based
modeling was used to model the dynamic feedback loops over a 14-day period, incorporating 3 intervention strategies: broadcast, reward, and rewire.
These strategies aimed to evaluate how the interventions affected trust and delay behavior within the population. Image created in Biorender by WL
[19].

Objective
This study not only addresses a theoretical gap in understanding
the impact of AI on delayed health care–seeking but also offers
a fresh perspective on optimizing the design of AI-based health
tools. A key challenge in future medical applications of AI will
be achieving the right balance between fostering user trust and
ensuring accuracy and timeliness in health care–seeking. We
aim to provide theoretical support for designing AI-driven health
interventions. Additionally, we seek to inform more effective
public health strategies, ensuring that technological
advancements promote rather than hinder appropriate health
care decisions.

Methods

Survey Design and Data Collection
This study was conducted in 2 integrated phases: a
cross-sectional survey and an ABM simulation. To ensure
comprehensive and transparent reporting, the methods are
reported following the Journal Article Reporting Standards
guidelines under relevant subheadings [20,21]. A cross-sectional
online survey was conducted between December 1, 2024, and
May 20, 2025. The 21-item questionnaire was conducted in
Mandarin Chinese and developed based on a systematic
literature review and focus-group discussions. It underwent
refinement through 2 rounds of expert review by 4 specialists
in public health and AI, and was finalized after a pilot test

involving 5 target participants. The full survey questionnaire
(English translation) is provided in Multimedia Appendix 1.

Eligible participants were adults aged 18-75 years who had
resided in mainland China for the past 12 months and were able
to read Chinese. The age range was selected to include the
digitally engaged adult population while excluding minors and
the very old people, who may exhibit different health-seeking
patterns. The 12-month residency criterion ensured consistent
exposure to the local health care, minimizing confounding from
recent immigration or transient populations. The survey was
disseminated via WeChat (Tencent) and QQ (Tencent), and the
patient-education portals of collaborating hospitals using
convenience sampling. Participants accessed the questionnaire
after reading an electronic informed consent form and selecting
“Agree.” All items were mandatory, and skip logic was applied
to minimize irrelevant questions. Responses were transmitted
over HTTPS and encrypted at rest on the institution’s private
server, accessible only to authorized investigators.

To ensure the validity and interpretability of the logistic
regression and mediation models, which require complete-case
data, we performed rigorous data cleaning. Questionnaires
completed in under 90 seconds, or those containing logical
inconsistencies, missing values, or duplicate entries (only the
first complete entry was retained), were excluded. Given the
limited amount of missing data and the potential risk of
introducing bias through imputation, listwise deletion was
considered the most appropriate and conservative approach. To
examine the mechanism of missingness, we conducted Little’s
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missing completely at random (MCAR) test using the mice
package in R software (versions 4.2.3; R Foundation for
Statistical Computing). Descriptive statistics were used to
summarize the data (frequencies, percentages, means, and SDs),
and multivariable logistic regression was conducted to examine
the association between AI usage frequency and delayed health
care–seeking behavior. Likert-type scales ranging from 1 to 5
(or 0 to 5 for AI usage and trust items) were used to assess
frequency, trust level, and willingness to recommend.

Chronic disease was defined as any physician-diagnosed
condition lasting 6 months or longer, including chronic allergic
rhinitis, asthma, hypertension, diabetes, chronic skin diseases,
etc. The variables included demographic characteristics (eg,
age, sex, and occupation), AI usage behaviors (eg, frequency
and exposure), trust perceptions, and health care–seeking
outcomes.

Self-reported health care delay was assessed using a single
binary item specifically targeting AI-influenced delay behaviors.
Participants were asked: “Has advice provided by ChatGPT
ever caused you to postpone or cancel seeking medical care?”
with response options 0=no and 1=yes. This measure captures
intentional delay or avoidance of health care that participants
attributed directly to ChatGPT’s recommendations, rather than
delays caused by logistical or accessibility barriers. This
operationalization aligns with behavioral delay frameworks
used in prior studies and reflects clinically meaningful patterns
of health care–seeking behavior.

Ethical Considerations
The study protocol was approved by the Institutional Review
Board of Xiangya Third Hospital, Central South University
(approval number 2025255). All procedures complied with the
Declaration of Helsinki and the Personal Information Protection
Law of China. Electronic informed consent was obtained from
all participants. After reading a digital information sheet that
outlined the study’s purpose, procedures, risks, benefits, and
their rights (including voluntary participation and withdrawal),
participants indicated their agreement by selecting “Agree”
before proceeding to the questionnaire. All collected data were
deidentified. No personally identifiable information (eg, name,
ID number, and contact details) was stored with the response
data. Data were transmitted securely via HTTPS and stored in
encrypted form on a private, access-controlled institutional
server. Results are reported in aggregate to prevent any
possibility of individual identification. Participants did not
receive any financial or material compensation for their
involvement in this study. The manuscript and its supplementary
materials do not contain any images, videos, or textual data that
could lead to the identification of an individual participant.
Therefore, specific consent for the publication of identifiable
information was not applicable.

Key Predictors of Delayed Care: Logistic Regression
Analysis
We used logistic regression models to evaluate key predictors
of delayed health care–seeking behavior. Initially, univariate
logistic analyses were conducted to estimate the association
between each candidate variable and the outcome, with results

reported as odds ratios (ORs) accompanied by 95% CIs.
Variables demonstrating potential significance were
subsequently included in a series of hierarchical multivariate
models (models 1-4). These models progressively incorporated
individual characteristics, intervention exposure, AI usage
patterns, and social influence to assess their independent
contributions to delay behavior. This approach allowed us to
identify the relative importance of each factor in influencing
health care–seeking delays.

The data collection period encompassed the public release of
DeepSeek, a major large language model in China, which
occurred in early 2025 [22]. This event represented a significant
shock to public awareness toward AI. To test the robustness of
our core findings against this potential confounding effect, we
performed a stratified analysis by dividing the sample into pre-
and post-DeepSeek release subgroups. The cutoff date was set
to February 1, 2025, allowing a sufficient time frame for the
model’s public impact to materialize within our survey window.
We then reran the univariate logistic analyses within each
subgroup to assess the consistency of the associations between
AI trust, usage frequency, and health care delays.

Mediation Analysis: Indirect Effect of AI Trust via
Usage Frequency
To examine whether AI trust influences delay behavior
indirectly through AI usage frequency, we conducted mediation
analysis using 2 approaches. First, following the traditional
Baron and Kenny framework with the Sobel test, we estimated
path a (the association between AI trust and usage frequency)
via linear regression, and paths b and c’ (the associations of
usage frequency and AI trust with delay behavior) via
multivariable logistic regression. The significance of the indirect
effect (a × b) was assessed using the Sobel z test. Second, to
obtain robust CIs and significance estimates, we performed
nonparametric bootstrap resampling (n=500). In each iteration,
we reestimated paths a and b, calculated the product a × b, and
derived the empirical distribution of the indirect effect. The
95% bootstrap CI and P value were computed accordingly. All
models were adjusted for age, gender, and chronic disease status.

Moderation by AI Recommendation Exposure:
Stratified and Interaction Models
To further examine whether the level of AI recommendation
exposure moderates the relationship between AI trust and
delayed health care–seeking behavior, we conducted stratified
logistic regression and interaction modeling. Participants were
divided into low and high exposure groups based on their
reported frequency of receiving AI recommendations (≤2 vs
>2). Separate multivariable logistic regression models were
fitted for each group, adjusting for age, gender, chronic disease
status, and AI usage frequency. ORs and 95% CIs were reported
to assess effect heterogeneity across exposure levels.

Additionally, we introduced an interaction term between AI
trust and recommendation exposure into the full model. The
interaction coefficient was used to calculate the interaction OR
and the corresponding 95% CI. Predicted probability curves
were plotted to visualize how the relationship between AI trust
and delay behavior varies by exposure group, providing insights
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into the moderating effect of AI recommendation exposure on
health care–seeking behavior.

Moderation by Recommendation Willingness:
Stratified Trust-Delay Associations
To evaluate whether individuals’ willingness to recommend AI
tools moderates the relationship between AI trust and delayed
medical care, we conducted stratified logistic regressions and
interaction analysis. Participants were grouped based on their
scores (1-5) regarding the likelihood of recommending AI: those
scoring ≤2 were classified as the “low recommendation
intensity” group, and those scoring ≥3 as the “high
recommendation intensity” group. Multivariable logistic
regression models were fitted within each stratum, adjusting
for age, gender, chronic disease status, and AI usage frequency.
ORs and 95% CIs were calculated for AI trust in each group.

Subsequently, a full model including an interaction term between
AI trust and recommendation intensity was constructed. We
estimated the interaction effect (OR, 95% CI, and P value) and
generated a prediction grid with standardized covariates to
visualize the predicted probability of delayed care across AI
trust levels in each group. Interaction plots were created to
illustrate potential effect modification, enhancing our
understanding of how willingness to recommend AI tools
influences the relationship between AI trust and health
care–seeking behavior.

Scenario-Based Modeling: Joint Effects of AI Behavior
Factors on Delay
To theoretically evaluate the potential impact of various
intervention strategies on delayed health care–seeking behavior,
we conducted a scenario-based simulation analysis using logistic
regression. A multivariable logistic model was initially
constructed with AI trust, frequency of use, and chronic disease
status as predictors. ORs, 95% CIs, and P values were reported
for each explanatory variable.

Based on this model, the following six intervention scenarios
were simulated: (1) baseline (trust=3, frequency=3, no chronic
disease); (2) increased AI trust (set to 5); (3) increased frequency
of AI use (set to 5); (4) chronic disease status switched to “yes”;
(5) combined trust + frequency increase; and (6) combined trust
+ frequency + chronic disease. For each scenario, predicted
probabilities of delay were computed across all individuals and
averaged to reflect group-level effects.

The results were visualized using a bar plot displaying the mean
predicted probability of delay under each strategy. Annotations
highlighted the ORs and significance levels of the 3 key
predictors, facilitating an intuitive understanding of their relative
contributions to delay behavior. This comprehensive approach
allowed us to identify the most effective interventions for
reducing delays in health care–seeking.

ABM: Broadcast, Reward, Rewire
To evaluate the impact of different intervention mechanisms
on delayed health care–seeking behavior, we used an ABM
framework. ABM is a computational simulation approach
particularly suited for studying complex systems, where
population-level outcomes emerge from the interactions of

autonomous, diverse individuals (“agents”) operating within a
defined environment and set of rules [23-25]. This method is
particularly appropriate for our research question for 3 main
reasons. First, AI trust is not a static trait; it is a dynamic belief
influenced by personal experience and social factors, which
ABM is designed to capture. Second, the decision to delay care
involves weighing personal trust against the behaviors of peers,
a scenario well modeled by embedding agents within a social
network where attitudes and actions spread [26,27]. Third, ABM
allows us to test the “trust-delay” feedback loop, a causal chain
that cannot be directly identified from our cross-sectional survey
data but can be explored through simulation [28].

To improve the transparency and reproducibility, the ABM
model is described following the overview, design concepts,
and details (ODD) protocol [29]. The purpose of the simulation
was to examine how AI trust, peer influence, and intervention
strategies jointly shape delayed health care–seeking behavior
over time. Each agent represented 1 survey respondent and was
initialized using the individual’s empirical AI trust (1-5), AI
usage frequency (1-5), and chronic disease status. Agents were
embedded in a Watts-Strogatz small-world social network
(n=2460; average degree=4; rewiring probability=0.2), which
captures realistic social clustering and intermittent long-distance
ties. The simulation progressed in daily cycles for 14 days,
during which agents first computed a probability of delay using
a logistic model derived from the survey data, then made a
probabilistic delay decision, and subsequently updated their
trust and usage behaviors according to personal outcomes, peer
context, and intervention conditions. A total of 100 repetitions
were performed for each scenario.

The model incorporated key design concepts of agent-based
systems. Interaction occurred exclusively through local network
neighbors; both average neighbor trust and neighbor delay
behaviors influenced an individual’s own updates. Stochasticity
was present in network initialization, delay decisions, and
trial-level replications. Agents adapted their trust and usage
frequency over time, increasing them when surrounded by
high-trust peers or after not delaying care, and decreasing them
when neighbors frequently delayed or after personally delaying
care. No explicit learning mechanism was included; behavioral
dynamics emerged entirely from rule-based adaptation. Model
outputs consisted of daily population-level delay rates and
comparative effects of intervention strategies relative to baseline.

Detailed implementation followed ODD guidelines [29]. At
initialization, agents with an empirically predicted baseline
delay probability above 0.20 were assigned a 1-point reduction
in trust and usage frequency to represent structural vulnerability.
During each daily update, delaying care reduced trust by 0.2
and usage frequency by 0.3, whereas not delaying increased
trust by 0.1; all values were bounded between 1 and 5. A total
of 3 intervention strategies were embedded into this baseline
framework. In the broadcast condition, trust was reduced daily
by a small fixed penalty to reflect exposure to trust-eroding
messages. The reward condition increased trust and usage
frequency for agents who consistently sought timely care, with
rewards provided every 2 days. In the rewiring condition,
network edges were periodically redirected toward the
highest-trust agents to model opinion leader amplification. All
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intervention rules were implemented on top of the core
behavioral update mechanism. Finally, 1-way sensitivity
analyses were conducted by varying initial trust levels (means
of 2.5, 3.0, and 3.5), broadcast penalty intensities (0.05-0.20
per day), reward magnitudes (0.03-0.10), and rewiring
frequencies (intervals of 2-10 days). Each parameter set was
simulated in 100 trials, and the resulting delay trajectories were
compared to assess model robustness.

Results

Demographic Characteristics, AI Use, and Health
Decision Outcomes
Of 2785 initial submissions, 325 (11.7%) responses were
excluded based on prespecified criteria (completion time <90
seconds, logical inconsistencies, duplicate entries, or missing
values in key variables). Specifically, 136 (4.9%) exclusions
from the initial sample were due to missing values. Little’s

MCAR test indicated that the data were MCAR (χ2
14=12.87;

P=.54), supporting the use of complete-case analysis.
Consequently, a total of 2460 valid responses were retained,
predominantly female (n=1345, 54.7%), with an average age

of 34.46 (SD 11.62) years. Occupations included students
(n=825, 33.5%), technology workers (n=715, 29.1%), other
professions (n=640, 26%), and health care personnel (n=280,
11.4%). A significant majority (n=2215, 90%) reported being
aware of generative AI tools, and 62% (n=1525) had previously
used AI for health advice. Regarding the frequency of AI-based
advice use, 38% (n=935) of participants never used it, while
16.2% (n=398) used it weekly (1-2 times) and 15.7% (n=385)
monthly. Trust in AI-generated advice varied, with 38% (n=935)
never using it, and the remaining participants distributed across
differing trust levels (Table 1).

In terms of health care decision outcomes, 11.6% (285/2460)
of participants deferred or canceled health care due to AI advice,
while 18.9% (465/2460) changed their health care decisions
based on it. Additionally, 16.9% (415/2460) adopted alternative
therapies following AI recommendations. The primary source
of health information was physicians (1203/2460, 48.9%),
followed by search engines (465/2460, 18.9%) and generative
AI tools (375/2460, 15.2%). Perceived influence of online
discussions varied, with 19.7% (485/2460) considering it very
likely to impact their decisions. Lastly, 30.1% (740/2460) of
participants reported having a chronic disease (Table 2).
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Table 1. Demographic characteristics and artificial intelligence (AI) use (n=2460).

ValuesVariable

Sex, n (%)

1345 (54.7)Female

1115 (45.3)Male

34.46 (1.62)Age (years), mean (SD)

Occupation category, n (%)

825 (33.5)Students

715 (29.1)Technology workers

640 (26)Other

280 (11.4)Health care personnel

Awareness of generative-AI tools, n (%)

2215 (90)Yes

245 (10)No

Previous use of AI for health advice, n (%)

1525 (62)Yes

935 (38)No

Frequency of AI-based advice use, n (%)

935 (38)Never

398 (16.2)Weekly 1-2 times

385 (15.7)Monthly

308 (12.5)Weekly 3-4 times

293 (11.9)Occasional

141 (5.7)Almost daily

Trust in AI-generated advice, n (%)

320 (13)1 (“none”)

290 (11.8)2

280 (11.4)3

345 (14)4

290 (11.8)5 (“high”)

935 (38)0 (“never used”)
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Table 2. Health decision outcomes and contextual factors (n=2460).

Value, n (%)Variable

Deferred or cancelled health care due to AIa advice

285 (11.6)Yes

2175 (88.4)No

Changed health care decision due to AI advice

465 (18.9)Yes

1995 (81.1)No

Adopted alternative therapy due to AI advice

415 (16.9)Yes

2045 (83.1)No

Primary source of health information

1203 (48.9)Physician

465 (18.9)Search engines

375 (15.2)Generative AI tools

255 (10.3)Family or friends

85 (3.5)Government or traditional media

77 (3.1)Social networking

Perceived influence of online discussions

485 (19.7)Very likely

835 (33.9)Likely

775 (31.5)Uncertain

265 (10.8)Unlikely

100 (4.1)Very unlikely

Presence of chronic disease

740 (30.1)Yes

1720 (69.9)No

aAI: artificial intelligence.

AI Trust and Usage Frequency Are Key Predictors of
Delay
In the univariate logistic regression, higher AI trust was
positively associated with delayed health care–seeking behavior,
with an OR of 1.27 (95% CI 1.19-1.36; P<.001; Figure 2A).
Similarly, the frequency of AI use also showed a significant
positive correlation with delay (OR 1.41, 95% CI 1.18-1.69;
P<.001; Figure 2A). Although not statistically significant, trends
were observed in the effects of receiving AI recommendations
(OR 0.95, 95% CI 0.81-1.11) and actively recommending AI
(OR 0.92, 95% CI 0.781.09; Figure 2A), both suggesting a
potential reduction in delay. In the fully adjusted model (model
4), AI trust remained a significant predictor (OR 1.09, 95% CI
1.00-1.18; P=.04; Figure 2B). Frequency of AI use exhibited
the strongest association with delay (OR 1.39, 95% CI 1.14-1.68;
P<.001; Figure 2B), indicating that more frequent users had
higher odds of postponing medical visits. Additionally, chronic
disease status demonstrated a persistent positive association
with delay (OR 1.43, 95% CI 1.10-1.88; P=.009; Figure 2B).

Detailed analyses for univariate and multivariate logistic
regression can be found in Tables S1 and S2 in Multimedia
Appendix 2.

To address potential confounding from a major AI market event,
we stratified the analysis by the DeepSeek release period. The
results confirmed the robustness of our primary findings. The
association between AI usage frequency and delayed health
care–seeking remained nearly identical in both direction and
magnitude in the pre- and postrelease periods (prerelease: OR
1.41, 95% CI 1.17-1.70; P<.001; postrelease: OR 1.41, 95% CI
1.27-1.56; P<.001). For AI trust, while the positive association
was slightly attenuated and not statistically significant in the
prerelease period (OR 1.05, 95% CI 0.89-1.25; P=.56), it was
significant in the postrelease period (OR 1.10, 95% CI 1.00-1.21;
P=.046). This suggests that the fundamental behavioral
mechanism linking AI trust and usage to delay is robust. The
DeepSeek release may have slightly amplified the measurable
effect of AI trust, possibly due to increased public reliance on
AI tools. Detailed results of this stratified analysis are available
in Table S3 in Multimedia Appendix 2.
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Figure 2. Association between artificial intelligence (AI) trust, usage frequency, and delayed health care–seeking behavior. (A) Univariate logistic
regression and (B) fully adjusted multivariable model evaluating key predictors of delayed health care–seeking behavior.

AI Trust Influences Delay via Frequency: Evidence of
Mediation
We further evaluated the indirect effect of AI trust on delayed
health care–seeking through AI usage frequency, supporting a
partial mediation model. In the linear regression analysis, AI
trust significantly predicted usage frequency (path a: β=.5754;
P<.001). In the multivariable logistic model, usage frequency

was also significantly associated with delay (path b: OR 1.40,
95% CI 1.28-1.55; P<.001). The product term (indirect effect
a × b) was calculated to be 0.1949, and the Sobel test yielded
a significant result (P<.001), indicating a statistically robust
mediation path (Table 3). To further validate these findings, a
nonparametric bootstrap analysis with 500 replications was
conducted. The mean indirect effect was found to be 0.2152
(OR 1.24, 95% CI 1.20-1.29), with a bootstrap P value of <.001.
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This confirms that AI trust contributes to delay behavior partly
through increased frequency of AI usage. The direct effect of
AI trust on delay remained statistically significant after adjusting
for the mediator (path c’: OR 1.09, 95% CI 1.00-1.18; P=.04),

supporting the conclusion of a partial mediation model (Table
3). A diagram illustrating this mediation relationship can be
found in Figure 3.

Table 3. Mediation effect of artificial intelligence (AI) trust on health care delay behavior.

P value (Sobel)P valueSEOR (95% CI)β (log ORa)Path

N/A<.0010.014N/Ab.5754a (AI trust-AI frequency)

N/A<.0010.04551.4031 (1.28-1.53).3387b (AI frequency-delay)

<.001N/A0.0266N/A.1949a × b (indirect)

N/AN/AN/A1.2806 (1.20-1.37).2473c (AI trust-delay, total effect)

N/A.040.04231.0887 (1.0-1.18).085c’ (AI trust-delay, direct effect)

aOR: odds ratio.
bN/A: not applicable.

Figure 3. Mediation model demonstrating how artificial intelligence (AI) trust influences delayed health care–seeking through increased frequency of
AI usage. Path a shows the significant effect of AI trust on usage frequency, while path b indicates the association between usage frequency and delay.
The indirect effect (a × b) and direct effect (c’) are also represented, highlighting the statistical significance of the mediation pathway. Image created
in Biorender by WL [30]. OR: odds ratio.

No Significant Moderation by Recommendation
Exposure Level
In the stratified analysis by recommendation exposure, AI trust
was significantly associated with delayed health care–seeking
in the high exposure group (OR 1.11, 95% CI 1.01-1.23; P=.03),
but not in the low exposure group (OR 1.04, 95% CI 0.88-1.22;
P=.67). Notably, frequency of AI use was consistently associated

with delay across both groups (low: OR 1.47, 95% CI 1.24-1.73;
P<.001; high: OR 1.38, 95% CI 1.24-1.53; P<.001), suggesting
a stable effect regardless of exposure level (Table 4). In the full
model with interaction terms, the AI trust × recommendation
exposure interaction was not statistically significant (interaction
OR 0.97, 95% CI 0.83-1.14; P=.75; Figure 4A; detailed stratified
analyses can be found in Table S4 in Multimedia Appendix 2).
As shown in the predicted probability plot, the slopes of AI trust
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on delay were similar between groups, with overlapping CIs,
supporting the absence of a significant interaction (Figure 4A).

In summary, although AI trust showed a stronger association
with health care delay in the high exposure group, the overall

model did not indicate a statistically significant moderation
effect. This suggests that while recommendation exposure may
influence the magnitude of the trust-delay relationship, it does
not alter its fundamental nature.

Table 4. Stratified analysis by recommendation exposure for the artificial intelligence (AI) trust-health care delay associations.

P valueORa (95% CI)Outcome and variable

Low recommendation exposure

<.0011.04 (0.88-1.22)Trust in AI

.671.47 (1.24-1.73)Frequency of AI use

<.0010.80 (0.47-1.37)Chronic disease (yes)

.421.01 (0.99-1.04)Age

.161.35 (0.84-2.19)Gender (male)

High recommendation exposure

.211.11 (1.01-1.23)Trust in AI

<.0011.38 (1.24-1.53)Frequency of AI use

.031.78 (1.30-2.44)Chronic disease (yes)

<.0011.00 (0.99-1.01)Age

<.0011.17 (0.87-1.58)Gender (male)

aOR: odds ratio.
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Figure 4. Stratified logistic regression and interaction modeling between artificial intelligence (AI) trust and recommendation exposure. Moderating
effect of (A) AI recommendation exposure and (B) recommendation intensity on health care–seeking behavior. OR: odds ratio.

Limited Moderation by Recommendation Willingness
Intensity
When stratified by willingness to recommend AI tools, AI trust
was significantly associated with higher odds of health care
delay in the low-intensity group (OR 1.16, 95% CI 1.00-1.34;
P=.047), but not in the high-intensity group (OR 1.06, 95% CI
0.96-1.17; P=.27). Frequency of AI use remained a significant

predictor of delay across both strata (low: OR 1.35, 95% CI
1.15-1.57; P<.001; high: OR 1.43, 95% CI 1.28-1.60; P<.001;
Table 5). In the interaction model, the interaction term between
AI trust and recommendation intensity was not statistically
significant (interaction OR 1.13, 95% CI 0.93-1.38; P=.23;
Figure 4B; detailed stratified analyses can be found in Table
S5 in Multimedia Appendix 2). The interaction plot showed
that the predicted probability of delaying care decreased with
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increasing AI trust in both groups, with overlapping CIs,
indicating no significant moderation effect (Figure 4B).

In summary, while AI trust appears to be more strongly
associated with the odds of health care delay in the low-intensity

group, recommendation intensity did not significantly moderate
this association statistically. Its influence may reflect subtle
variation in effect size rather than a true interaction.

Table 5. Stratified analysis by recommendation intensity for the artificial intelligence (AI) trust-health care delay associations.

P valueORa (95% CI)Outcome and variable

Low recommendation intensity

.0471.16 (1.00-1.34)Trust in AI

<.0011.35 (1.15-1.57)Frequency of AI use

.091.53 (0.94-2.48)Chronic disease (yes)

.751.00 (0.98-1.02)Age

.791.07 (0.68-1.68)Gender (male)

High recommendation intensity

.271.06 (0.95-1.17)Trust in AI

<.0011.43 (1.28-1.60)Frequency of AI use

.041.41 (1.02-1.95)Chronic disease (yes)

.711.00 (0.99-1.02)Age

.091.30 (0.96-1.77)Gender (male)

aOR: odds ratio.

Scenario Simulations Reveal Combined Risk of AI
Trust, Frequency, and Chronic Disease
In the multivariable logistic regression analysis, all 3 key
predictors—AI trust, frequency of use, and chronic disease
status—were significantly associated with health care delay.

Specifically, each unit increase in AI trust was linked to 9%
higher odds of delay (OR 1.09, 95% CI 1.00-1.18; P=.04).
Frequency of AI use demonstrated an even stronger association
(OR 1.40, 95% CI 1.28-1.53; P<.001), and chronic disease status
significantly increased the odds of delay as well (OR 1.42, 95%
CI 1.09-1.86; P=.01; Table 6).

Table 6. Multivariable logistic regression analysis for the associations between key predictors and health care delay.

P valueORa (95% CI)Variable

.041.09 (1.00-1.18)Trust in AIb

<.0011.40 (1.28-1.53)Frequency of AI use

.011.42 (1.08-1.86)Chronic disease (yes)

aOR: odds ratio.
bAI: artificial intelligence.

Scenario simulations indicated that, compared to a baseline of
moderate trust and usage without a chronic condition (predicted
probability=11.6%), increasing either AI trust (13.97%) or
frequency (25.2%) alone raised the likelihood of delayed health
care. The effect was most pronounced with frequency increases.
When chronic illness was present alone, the predicted delay
probability rose to 14.1%. Combining high trust and high
frequency led to a delay probability of 30.5%, and when all 3
factors—high trust, high frequency, and chronic illness—were
present, the probability escalated to 35.8%. These findings
suggest that while increased trust and usage may enhance
engagement with AI, they may paradoxically elevate the odds
of behavioral delay due to potential overreliance or false
reassurance. Therefore, intervention strategies should carefully

balance cognitive trust with medical decision accuracy to
mitigate potential adverse outcomes.

Agent-Based Simulation Reveals Bidirectional
Feedback Between Trust and Delay
Simulation results demonstrated a consistent decline in the
overall rate of health care delay, decreasing from 10.6% on day
1 to 9.5% by day 14 (Figure 5A). This trend reflects behavioral
feedback, where agents who experienced delays reduced their
AI usage frequency, ultimately lowering delay probabilities at
the population level. Concurrently, the mean AI trust score
declined steadily from approximately 1.95 to 1.49 over the
14-day period (Figure 5B). This indicates a natural erosion of
trust in the absence of external reinforcement, suggesting a
feedback loop where behavioral delays contribute to progressive
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trust deterioration. When stratifying agents by their predicted
baseline delay probability, both high-risk and low-risk groups
exhibited declining trust; however, the high-risk group
experienced a steeper decline (from 2.55 to 1.74) compared to
the low-risk group (from 1.84 to 1.53; Figure 5C). This suggests

that high-risk individuals may fall into a “high expectation-high
disappointment” loop, accelerating trust collapse and reinforcing
delay behavior. Detailed analyses for ABM can be found in
Table S6 in Multimedia Appendix 2.

Figure 5. Agent-based modeling for the bidirectional feedback between artificial intelligence (AI) trust and delay behavior over a 14-day simulation
period. (A) The overall rate of delayed health care. (B) The mean AI trust score. (C) AI trust score for the high-risk and low-risk groups.

Overall, these simulations demonstrate the reciprocal feedback
between trust and behavior, with individual heterogeneity
compounding over time. The findings highlight the potential
need for risk-stratified interventions or strategies designed to
counteract trust erosion to prevent systemic trust breakdown.

Strategy Comparison: Broadcast Is the Most Effective,
While Rewire May Backfire
Across 100 simulation trials, we examined the temporal effects
of 4 intervention strategies on delay behavior. The broadcast

strategy resulted in the most significant reduction in delay rates,
reaching approximately 9.7% by day 14 (Figure 6). The reward
strategy showed a moderate effect, with a slight downward trend
compared to the baseline (Figure 6). In contrast, the rewire
strategy led to an upward trend in delay rates after day 7,
ultimately surpassing the baseline group, which suggests a
potential amplification of trust polarization (Figure 6).

Figure 6. Comparison of 4 intervention strategies on delay behavior using artificial intelligence simulations. Strategies include baseline, broadcast
messaging, behavioral reward, and network rewiring.

Logistic regression further quantified these effects (Table 7).
Compared to the baseline, the broadcast strategy significantly
reduced the odds of delay (OR 0.94, 95% CI 0.94-0.95; P<.001).
The reward strategy indicated a slight increase in the odds of

delay (OR 1.01, 95% CI 1.01-1.02; P<.001), while the rewire
strategy demonstrated the most substantial increase in odds (OR
1.04, 95% CI 1.04-1.05; P<.001), indicating that this approach
may exacerbate delay behavior under certain conditions. In
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summary, the broadcast strategy emerged as the most effective
in reducing delay behavior within the current simulation

framework, highlighting the potential advantages of proactive
information signaling and group-level risk awareness alerts.

Table 7. Logistic regression analysis for the intervention strategies on health care delay.

P valueORa (95% CI)Strategy

<.0010.94 (0.94-0.95)Broadcast

<.0011.01 (1.01-1.02)Reward

<.0011.04 (1.04-1.05)Rewire

aOR: odds ratio.

To validate the robustness of the simulation across varying
intervention configurations, we performed sensitivity analyses
on 4 key parameters: initial trust level, broadcast penalty
intensity, reward magnitude, and rewiring frequency. When
varying the initial trust level (2.5, 3.0, and 3.5), higher values
led to significantly increased rates of health care delay over
time, suggesting that excessive trust may backfire despite its
general benefits (Figure S1A in Multimedia Appendix 3). For
broadcast penalty intensity, tested at values of 0.05, 0.1, and
0.2, the delay trajectories remained nearly identical, indicating
minimal impact of penalty strength on intervention stability
(Figure S1B in Multimedia Appendix 3). Similarly, altering the
reward magnitude (0.03, 0.05, and 0.10) produced overlapping
delay curves, demonstrating the strategy’s robustness and
absence of nonlinear effects (Figure S1C in Multimedia
Appendix 3). In the case of rewiring frequency (2, 5, and 10
days), more frequent rewiring only slightly reduced early-stage
delays, with long-term outcomes remaining consistent across
intervals (Figure S1D in Multimedia Appendix 3). Overall,
these results confirm that the simulation framework is stable,
with behavioral outcomes staying similar across a range of
parameters, highlighting the broader relevance and effectiveness
of the modeled interventions.

Discussion

Principal Findings
This study is the first to systematically investigate the joint
influence of AI trust, AI usage frequency, and chronic disease
status on predicting delayed health care–seeking from the
perspective of a behavior-trust feedback mechanism in China.
Our findings demonstrate that both AI trust and usage frequency
are significant predictors of health care delay. Importantly, AI
trust not only indirectly elevates the odds of delay through
increased usage frequency but also exerts a significant direct
association when controlling for usage frequency, indicating a
partial mediation pathway. Of note, individuals with chronic
conditions inherently exhibit a predisposition toward delayed
care. These odds are further exacerbated by the combined effects
of high AI trust and frequent AI use. These results expand the
current understanding of delayed health care behaviors. They
emphasize the complex and dynamic interplay between
technological trust and health-related decision-making.
Additionally, they highlight that enhanced trust in AI may
inadvertently contribute to adverse behavioral outcomes among
patients with chronic diseases.

To investigate the psychological mechanisms underlying the
“AI trust-frequent AI use-health care delay” pathway, we
propose that cognitive bias and overreliance are key driving
factors [31,32]. On one hand, patients with chronic conditions
often experience stable and slowly progressing symptoms. They
are more likely to view AI’s reassuring suggestions as indicators
of safety. As a result, they may underestimate the seriousness
of their own symptoms. This sense of “false reassurance” is
particularly pronounced among individuals with high levels of
trust in AI [33]. Previous studies have shown that excessive
trust in health AI recommendations can result in users neglecting
bodily warning signs, ultimately leading to delays in health
care–seeking [5]. On the other hand, frequent AI usage does
not necessarily reflect higher health literacy. It also does not
always indicate better self-management capacity [34]. Instead,
it may suggest a psychological tendency to avoid traditional
health care services. This tendency is especially common when
medical care is expensive, time-consuming, or perceived as
untrustworthy [35]. This form of “instrumental dependence”
may drive individuals to rely on AI as a substitute source of
advice when experiencing discomfort, instead of seeking timely
professional care [36]. Therefore, this study emphasizes that
the behavioral consequences of AI trust and usage frequency
should not be interpreted simply as empowerment. Instead, it
is important to explore the underlying psychological and
behavioral mechanisms. This is essential for accurately assessing
the true impact of technological interventions on health care
behavior.

Although we further investigated the moderating effects of AI
recommendation exposure and recommendation willingness on
the “AI trust-health care delay” pathway, the interaction terms
were not statistically significant. This indicates that these factors
have a limited influence on the primary effect pathway.
Subgroup analyses revealed some trend-level differences; for
instance, individuals with higher recommendation willingness
showed a slight reduction in delay behavior [37], but these
effects did not achieve statistical significance. We speculate
that a nonlinear threshold effect may be present. Once
recommendation exposure reaches a certain frequency, its
impact may plateau. This could result in a failure to further
enhance trust or promote behavioral change. Another possibility
is that the effectiveness of recommendations is highly context
dependent. They may exert influence primarily when users
experience high health anxiety, evident symptoms, or a strong
sense of urgency [38,39]. Additionally, AI trust may be
inherently unstable among individuals, easily influenced by
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emotional states, prior experiences, or public opinion [40]. These
factors may further diminish the practical effectiveness of
recommendations. While recommendation behaviors have the
potential for positive influence, their underlying mechanisms
appear more complex [41]. They may not adequately address
the fundamental contradiction between AI trust and health care
delay. Therefore, future interventions should not concentrate
solely on increasing recommendation frequency or willingness.
Instead, it is crucial to address system-level design issues. This
includes enhancing decision transparency and improving users’
perceived control over health-related choices. Additionally,
developing prompting strategies that better align with users’
psychological models is essential. Such improvements are
essential for facilitating meaningful and lasting behavioral
change.

Scenario-based simulations further confirmed that the
combination of high AI trust, frequent AI usage, and chronic
disease status results in the greatest odds of delayed health
care–seeking. This finding underscores the behavioral risks
inherent in the trust feedback mechanism. Using behavioral
decision theories, particularly the dual-process model, helps
illuminate the psychological underpinnings of this phenomenon
[42]. In high-trust situations, individuals tend to rely more on
the intuitive system for decision-making, leading to quick,
automatic judgments rather than thorough risk evaluations [43].
This “intuitive trust” is especially evident among patients with
chronic illnesses, who often feel a sense of safety due to the
relatively stable nature of their symptoms. When coupled with
high trust in and frequent reliance on AI, these individuals are
more likely to accept AI-generated suggestions without critically
assessing their health status or seeking professional medical
advice [44]. This can create a “false reassurance” effect,
significantly heightening the risk of delayed health care. These
findings serve as a cautionary note for the future design of
AI-based health tools. Simply pursuing user trust is insufficient;
it is essential to strike a balance between fostering trust and
maintaining risk awareness. Both clinical practitioners and AI
developers need to consider how to enhance user experience
while mitigating the unintended consequences of overreliance
[45]. Future AI systems should be designed to promote rational
judgment, especially among high-risk groups with chronic
conditions. Incorporating interactive features that provide
calibrated risk reminders may be necessary to prevent the
unconscious shift from trust to delayed health care behavior.

Our ABM offered a dynamic and systems-level understanding
of how AI trust and delay behavior coevolve over time. Unlike
traditional regression models that provide static snapshots [23],
ABM captures how small differences in initial trust and exposure
can compound through individual learning and social influence.
Over a 14-day simulation period, we observed a steady decline
in both trust and health care–seeking behavior, indicating a
reciprocal erosion loop: delayed health care leads to
dissatisfaction or unmet expectations, which in turn diminishes
trust and further health care delay [46]. Importantly, agents
stratified by predicted baseline odds (above vs below 20%)
showed divergent trust trajectories. High-risk individuals began
with higher trust but experienced a sharper decline—suggesting
a “high expectation-high disappointment” loop. This highlights

how perceived safety in chronic illness, when coupled with
excessive AI reliance, may paradoxically lead to trust collapse
and amplified delay behavior. Such patterns would be difficult
to detect using empirical data alone, underlining the value of
simulation modeling in behavioral health research. Beyond
reproducing observed behaviors, ABM also allowed us to
simulate system-wide interventions and uncover nonlinear
responses to trust regulation strategies. Of the 3 mechanisms
tested, broadcast messaging consistently reduced delay by
maintaining population-level risk awareness. In contrast,
network rewiring unexpectedly increased delay, likely due to
the formation of echo chambers among high-trust individuals,
a phenomenon we term “trust polarization” [47]. This emergent
property demonstrates that even well-intentioned peer-based
reinforcement may backfire under certain trust dynamics.
Overall, these simulations underscore the importance of viewing
AI trust not merely as an individual attribute, but as a collective
behavioral variable that evolves across time, context, and
networks [48]. While the ABM provides valuable insights into
potential system dynamics and the comparative theoretical
performance of different strategies, these findings serve as a
proof of concept. Their real-world effectiveness and causal
impact must be rigorously tested in future randomized controlled
trials or natural experiments.

Simulation-based evaluations of 3 intervention strategies
indicate that broadcast messaging is the most effective for
reducing delayed health care behavior. This suggests that public
health interventions delivering wide-reaching, consistent risk
reminders may be the most cost-effective approach [49].
Conversely, the reward-based strategy was less effective, likely
due to insufficient incentives or limited reach, which hindered
meaningful behavior change at the population level [50].
Unexpectedly, the network rewiring strategy not only failed to
reduce delays but exacerbated them. We hypothesize that this
may result from the formation of information echo chambers
among high-trust individuals [51]. In these tightly connected
groups, AI trust can become mutually reinforced, amplifying
the “AI trust-health care delay” pathway and leading to what
we term trust polarization. These findings underscore the need
to prioritize intervention strategies that broadly disseminate risk
information and continuously enhance risk awareness. Future
health interventions should focus on scalable and sustainable
communication mechanisms rather than relying on individual
“opinion leaders” or short-term incentives. This approach
provides valuable insights into integrating AI and health
behavior, while also offering empirical evidence to inform public
health policy development.

Limitations
Despite proposing a novel “trust-behavior” feedback mechanism
and validating various intervention strategies through simulation,
this study has several limitations. First, the cross-sectional and
observational nature of our survey data precludes definitive
causal inference. While we controlled for several demographic
and health factors, the potential for omitted variable bias
remains. Unmeasured confounders, such as general health
literacy and prior negative experiences with the health care
system, could independently influence both AI trust and the
propensity to delay care. To establish causality, future research
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should use randomized controlled trials that investigate
participants’ trust in AI. This approach would enable more
conclusive mediation and moderation analyses and would
represent a critical continuation of our future research efforts.
Second, measurements of AI trust and usage frequency were
based on self-reported data. This approach may introduce recall
bias, social desirability effects, or subjective judgment.
Consequently, these factors could potentially affect the accuracy
of the findings. Although we introduced a group-based
behavioral simulation model to address the static nature of
cross-sectional data, this model simplifies the complex dynamics
of trust evolution in real-world contexts. Future research could
incorporate reinforcement learning or dynamic trust modeling
approaches to better capture human cognitive and behavioral
trajectories [52]. Third, the generalizability of our findings may
be limited by the specific sociotechnical context of China. Our
recruitment relied on dominant Chinese digital platforms
(WeChat and QQ). The observed relationships between AI trust,
usage, and health care delays are likely influenced by China’s
unique health care system, technology ecosystem, and cultural
norms. Therefore, caution is warranted when extending these
results to other countries with different health care policies,
technology adoption patterns, and cultural attitudes toward AI
in medicine. Fourth, our recruitment via social media and
hospital portals, while enabling broad access, prevents precise
quantification of response rates from each channel. Although
we estimate that most responses came from WeChat and QQ,
with a smaller proportion from hospital portals, the anonymous
nature of the survey precluded channel-specific stratification.
Additionally, this approach likely oversampled individuals who
are more digitally literate or proactively engaged with health
care information. This may limit the generalizability of our
findings to populations with limited digital access or lower
health literacy. Fifth, the questionnaire did not collect data on

rural or urban residence or socioeconomic status, limiting our
ability to examine these potential sociodemographic influences
on the trust-delay pathway. Future studies would benefit from
incorporating these variables. Sixth, our sample contained a
slightly higher proportion of female participants (1345/2460,
54.7%), which may influence generalizability. However, we
adjusted for gender in all analyses and found no evidence of
significant effect modification. Finally, we advocate for the
development of AI health tools with stratified trust management
functions [53]. Such systems should provide tailored risk alerts
for high-risk patients with chronic conditions, promoting rational
trust for genuine health empowerment rather than fostering
passive dependence.

Conclusions
This study identifies a nuanced relationship between AI trust
and delayed health care–seeking behavior. While trust in AI
tools can enhance user engagement, it may also be associated
with delayed health care, particularly among individuals with
chronic conditions or higher levels of AI use. By integrating
survey data with ABM, our study moves beyond static
associations and illustrates how AI trust and delay behaviors
may interact and reinforce one another over time. This dynamic
perspective highlights how individual-level trust processes can
accumulate into system-level patterns, including trust
polarization and collective delay. Our findings suggest that the
design of AI health tools should prioritize calibrated decision
support rather than full automation. Encouraging a balanced
interaction between user autonomy and technological assistance
may help mitigate delay-related risks and improve decision
quality in digital health contexts. Beyond individual-level tool
design, these insights may also inform population-level
strategies for trust governance and risk communication in
AI-driven health care systems.
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