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Abstract
Background: Electrocardiogram (ECG) data constitutes one of the most widely available biosignal data in clinical and
research settings, providing critical insights into cardiovascular diseases as well as broader health conditions. Advancements
in deep learning demonstrate high performance in diverse ECG classification tasks, ranging from arrhythmia detection to risk
prediction for various diseases. However, the widespread adoption of deep learning for ECG analysis faces significant barriers,
including the heterogeneity of file formats, restricted access to pretrained model weights, and complex technical workflows for
out-of-domain users.
Objective: This study aims to address major bottlenecks in ECG-based deep learning by introducing ExChanGeAI, an
open-source, web-based platform designed to offer an integrated, user-friendly platform for ECG data analysis. Our objective
is to streamline the entire workflow—from initial data ingestion (regardless of device or format) and intuitive visualization
to privacy-preserving model training and task-specific fine-tuning—making advanced ECG deep learning accessible for both
clinical researchers and practitioners without machine learning (ML) expertise.
Methods: ExChanGeAI incorporates robust preprocessing modules for various ECG file types, a set of interactive visualiza-
tion tools for exploratory data analysis, and multiple state-of-the-art deep learning architectures for ECGs. Users can choose
to train models from scratch or fine-tune pretrained models using their own datasets, while all computations are performed
locally to ensure data privacy. The platform is adaptable for deployment on personal computers as well as scalable to high-per-
formance computing infrastructures. We demonstrate the platform’s performance on several clinically relevant classification
tasks across 3 external and heterogeneous validation datasets, including a newly curated test set from routine care, evaluating
both model generalizability and resource efficiency.
Results: Our experiments show that de novo training with user-provided, task-specific data can outperform a leading
foundation model, while requiring substantially fewer parameters and computational resources. The platform enables users
to empirically determine the most suitable model for their specific tasks, based on systematic validations, while lowering
technical barriers for out-of-domain experts and promoting open research.
Conclusions: ExChanGeAI provides a comprehensive, privacy-aware platform that democratizes access to ECG analysis and
model training. By simplifying complex workflows, ExChanGeAI empowers out-of-domain researchers to use state-of-the-art
ML on diverse datasets, democratizing the access to ML in the field of ECG data. The platform is available as open-source
code under the Massachusetts Institute of Technology (MIT) license.
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Introduction
Background
Deep learning methods applied to Electrocardiogram (ECG)
analyses have demonstrated their potential as practice-chang-
ing diagnostic tools, providing critical insights into heart-rela-
ted diseases [1-3]. While the push for newer technologies
and improved performance metrics is essential, ensuring
these advancements are accessible for general use is
equally important. Tools like ChatGPT (OpenAI) have
demonstrated the potential for a broad and easy applica-
tion of artificial intelligence (AI), allowing users to lever-
age sophisticated technologies without in-depth expertise.
Clinician-researchers who seek to apply machine learning
(ML) to assess its potential benefits should have access to
solutions that facilitate exploration and application without
requiring extensive technical knowledge from data handling
to data analysis. To address these challenges, there is a
need for a comprehensive, end-to-end platform that integra-
tes currently fragmented technical steps like ECG-specific
data handling, preprocessing, data visualization, and model
training, including transfer learning that requires cumbersome
manual scripting. This would enable a seamless workflow
from data loading to model deployment and would not only
empower researchers to apply and train or fine-tune deep
learning models for ECG analysis without programming but
also facilitate reproducibility. Moreover, existing pretrained
models for ECG data may not disclose model weights, which
presents significant challenges (refer to “Related Work”
below). While open weights empower users to use and adapt
the model, they also promote reproducibility and transparency
[4,5].

Additionally, the broad use of medical data is crucial for
the advancement of personalized and specialized medicine
but inhibits some immediate risks, such as data breaches [6].
As datasets continue to grow and come from diverse sources,
ensuring data security becomes increasingly complex. To
address this challenge, specialized decentralized learning
techniques, such as federated learning or swarm learning,
allow valuable insights to be gained without directly sharing
sensitive data [7]. Furthermore, establishing uniform data
standards can simplify data handling, reduce technical
barriers related to varying data formats, and eliminate the
need for programming, thereby making advanced analytics
accessible to a broader range of users.

In this work, we introduce a novel open-source end-to-
end platform for 12-lead ECGs called ExChanGeAI that
streamlines essential steps of ECG analysis: (1) data loading
and preprocessing of multiple input formats, (2) manual
and computer-aided analysis of ECG waveform data, (3)
one-click fine-tuning of classification models, allowing users
to train and customize ML models with no prior expertise,
(4) the trained models use the cross-platform industry-stand-
ard Open Neural Network Exchange (ONNX), enabling
deployment in every instance of ExChanGeAI and facilitating
the exchange of custom models across different instances, and
(5) prediction of diseases with and without using pretrained

models. Model sharing is supported via an integrated and
adaptable WebDav file server called Model ExChanGe. The
platform is built upon the principle of open-source code
and open-weights, offering full transparency and control,
empowering users to contribute to the advancement of ECG
analysis models.
Related Work
Multiple studies and reviews have addressed ECG classifica-
tion and have shown that fine-tuning and transfer learning
improve classification results [8-10]. A study has reported
improved model accuracy by fine-tuning networks trained
on diverse datasets, demonstrating enhanced performance
transitioning to smaller datasets [11]. However, the used data
and pretrained models were not shared. Another study used
transfer learning with convolutional neural networks (CNNs)
for atrial fibrillation classification, pretraining on large public
datasets and fine-tuning on smaller sets, achieving perform-
ance gains [9]. While code was available, pretrained models
were not shared, and usability remains a significant barrier.
Multiple reviews have summarized ECG analysis pipelines
and deep learning methods, such as detailed essential
pipeline steps [12] and reviews of techniques like CNNs
and recurrent neural networks for arrhythmia classification
[13]. The SelfONN model [14] showed competitive perform-
ance in general ECG classification on PTB-XL (Physikalisch-
Technischen Bundesanstalt-extra large [National Metrology
Institute of Germany]) but lacked resource sharing. Various
types of autoencoders, including low-rank attention [15],
long short-term memory [16], adversarial [17], and denois-
ing [18] approaches, have been explored for feature extrac-
tion, anomaly detection, and noise handling. The low-rank
attention autoencoder reported high accuracy on 2 datasets
by focusing on spatial features. ECG-NET, based on long
short-term memory, proclaimed high accuracy for arrhythmia
classification on a single database in beat-based validation.
An adversarial autoencoder with a temporal CNN published
superior scores of anomaly detection for 2 datasets. The
attention-based denoising autoencoder improved noisy ECG
signal reconstruction. However, limitations across these
studies include dataset dependence, restricted generalizability,
lack of publicly available pretrained models and code, and
validation variability.

In a recent study leveraging the gold-standard PTB-XL
[19,20] dataset, the performance characteristics of multiple
deep learning models were evaluated across a spectrum
of training-data sizes [21]. Notable findings indicated that
the InceptionTime and XceptionTime architectures [22,23]
exhibited particularly compelling performances. Specifically,
InceptionTime demonstrated superior efficacy when trained
with smaller datasets, whereas XceptionTime surpassed
all other models in performance as training dataset size
increased. This suggests a potential trade-off between model
complexity and data requirements for optimal diagnostic
accuracy in this domain. Due to the demonstrated strength in
low- and high-data scenarios, these leading architectures for
ECG analysis are highly relevant for evaluation and inclusion
in the platform, particularly in contexts where training data
availability may vary, such as in medical contexts.
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There have also been several claimed foundation models
in the field of ECG classification [24]. To the best of our
knowledge, these, however, are trained on a singular database
[25] and are yet undisclosed or have closed-source code
and weights [26,27] in general. In one case, the published
weights are different from the original model of the paper
due to privacy concerns [28]. A request to publish another
trained model has been declined due to intellectual prop-
erty and legal concerns [29]. They are trained with techni-
ques, such as contrastive and masked learning. This allows
for unsupervised training, but restricts the learning to the
latent space. For downstream tasks, such as classification,
fine-tuning is required. The publications report high scores
for classification; however, additional tasks are not available
in the published model. While these models mark signifi-
cant progress in the field, they often grapple with issues,
such as overfitting to specific datasets, limited scalability, or
insufficient handling of the variability and quality complica-
tions intrinsic to diverse ECG datasets.

Despite advances in ECG analysis and deep learning, the
current workflows remain complex, requiring manual data
transformation, preprocessing, and the use of separate tools
for the visualization and analysis of ECGs, as well as for
training and fine-tuning deep learning models. This fragmen-
tation multiplies technical burdens, hinders reproducibility,
and acts as a major barrier for widespread clinical adoption.
Some frameworks exist to reduce the boilerplate of ML, such
as the graphical tool Orange (University of Ljubljana) [30].
It does not require code, yet the workflow has to be set
up manually per drag-and-drop, and it does not include any
of the ECG analysis tools, such as QRS detection. In the
case of AutoML tools, such as GAMA (General Automated
Machine learning Assistant; originally developed by Pieter
Gijsbers and Joaquin Vanschoren at the Eindhoven Univer-
sity of Technology) [31], it still remains code-centric. Data
ingestion, for both methods, is not available out-of-the-box,
such as for Digital Imaging and Communication in Medicine
(DICOM), even ignoring the sampling rate, lead order,

and other inconsistencies across datasets. Both tools remain
unsuitable for end-to-end ECG analysis and training of ML
models without substantial ML or data scientist expertise.
Our work directly addresses this gap with ExChanGeAI, an
integrated, accessible, and containerized end-to-end platform.
This platform facilitates the visualization, transformation,
prediction, and fine-tuning of deep learning models specif-
ically for ECG data. It can leverage pretrained models,
and it supports a broad range of formats and preprocess-
ing steps, ensuring usability across different clinical and
research settings. ExChanGeAI serves as a valuable resource
for researchers, enabling efficient training and fine-tuning of
deep learning models while preserving data privacy. This
enhances both the accessibility and utility of advanced ECG
analysis.

Methods
Overview
This section introduces the ExChanGeAI platform, a fully
containerized, interoperable, and standardized end-to-end
platform for ECG analysis, diagnosis prediction, and model
fine-tuning. It is designed for nonexpert users, enabling
advanced AI-enabled workflows in a unified interface without
requiring specialized technical expertise. The open-source
code is freely available under the MIT license [32].
ExChanGeAI Platform
ExChanGeAI is a containerized web application providing
an integrated suite of AI-enabled ECG analysis tools for
researchers and clinicians. The platform merges human
expert analysis capabilities and AI predictions in a unified,
interactive end-to-end platform (refer to Figure 1). The
functionalities include (1) signal analysis, (2) model-based
prediction, (3) model exchange and repository, and (4)
semiautomated training and fine-tuning.

Figure 1. Overview of the capabilities of the end-to-end platform ExChanGeAI and its three main distinct parts: (1) Analysis, (2) The Artificial
Intelligence Ecosystem, and (3) Interoperability. AI: artificial intelligence; ML: machine learning; ONNX: Open Neural Network Exchange.

The platform is open-source, using the standardized ONNX
model format and additionally supports and encourages the
open-weights practice of ML models [4]. The platform
consists of multiple views with different foci. The analysis
view integrates the visualization of waveforms of raw signals,
QRS complexes, and events (fiducial points), computed
transparently by Neurokit2 [33]. Additionally, precise R-peak
alignment and median beat transformations are supported
through the integration of the recently published ECG-prepro-
cessing package, Rlign [34]. These data transformations can

be exported in different formats for further research. The
platform focuses on resting 12-lead ECGs, displayed in a 2x6
grid in mV scale, and integrates general spatial transforma-
tions, including zooming with synchronized adaptation across
all leads. This signal view has been designed in collaboration
with cardiologists for their everyday use. For visualizing QRS
complexes and events, lead II is conventionally applied. The
prediction view uses selected models to predict diagnoses
and other targets—such as QTc—based on raw signal data,
offering a table with predicted diagnosis probabilities (or
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arbitrary keys), highlighted with a clear color-coding scheme.
Dataset distributions, confusion matrices, and class-wise
receiver operating characteristic curves can be computed
on the platform itself, including suggested thresholds for
class-specific Fmax scores. This enables researchers to
optimize the threshold for each specific dataset and the health
care providers’ requested strategy. These differ gradually
and can focus on either specificity or sensitivity, depending
on the classification targets. Models are provided within
the platform using an integrated and interchangeable file
server, which enables the crucial aspect of model sharing
(see section “Interoperability and Model Sharing”). Currently,
we provide multiple models for four targets: (1) diagnostic
superclasses, (2) anterior and inferior myocardial infarction
(MI), (3) diverse bundle branch blocks, and (4) revasculariza-
tion need (refer to section “Results”). Researchers can also
train specialist models based on their own labeled data. The
training and fine-tuning require no prior knowledge of ML.
Currently, only 12-lead ECG data with corresponding labels
are required. The backend is engineered for high performance
and scalability using asynchronous views, multithreading,
and full compute unified device architecture GPU (graphics
processing unit) support, including multi-GPU data-parallel
training for large-scale fine-tuning.

Data Loading and Preprocessing
ExChanGeAI is designed to handle the variability of
real-world ECG data. It supports various ECG input
formats, across all possible sampling rates, CSV files
(.csv), NumPy arrays (.npy, .npz), DICOM-stored Waveform-
Sequences (.dcm), MATLAB (MathWorks) formatted data
(.mat), general DAT files (.dat), and XML files (.xml).
Major research and clinical ECG standards (PhysioNet -
DAT, UK Biobank - XML) are supported. For ExChanGeAI,
all data are normalized by resampling frequency signals to
a configurable unified frequency target (defaulting to 100
Hz) using the Fast Fourier Transform, as previous work
has shown that the sampling rate does not notably decrease
the performance of ML models, but reduces computational
overhead manifold [35-38]. This parameter is fully config-
urable, allowing users to adjust the sampling rate in a
local deployment to match specific requirements. Signals not
conforming to the standardized format (12-lead, 10-second
waveform) are adjusted via expansion or cropping, and all
scales are automatically standardized to millivolt (mV) with a
1000 analog-to-digital converter units gain, if necessary (refer
to Figure 2).

Figure 2. Flowchart of the preprocessing applied to any electrocardiogram data while being loaded into the application, independent of the file
format. ADC: analog-to-digital converter.

Interoperability and Model Sharing
The platform enables training of new models in a secure
and privacy-preserving manner. Still, as seen with many
publications in the medical domain, pretrained models are
not made public [26,29] or depend on external libraries and
require specific versions [28]. To promote the open and
interoperable ML standard, this work adopts the ONNX as
the primary used format. Therefore, our platform is compati-
ble with all ONNX models, honoring the current operation
set (Opset 20 and below), and PyTorch models, if the given
model structure is provided alongside. The models are not
specified with any special requirements, except for a dynamic
batch size export. With the use of ONNX, this work aims
to ensure that the trained model is widely accessible and
interoperable. Therefore, a model sharing interface, called
Model ExChanGe, is integrated into the platform, where
curated pretrained models are automatically synced and made
available for prediction as well as fine-tuning. Additional
models can be published into the repository, or your own
WebDav instance can be set up.

By default, ExChanGeAI provides 3 baseline model
architectures—each as pretrained and untrained models. This

includes the XceptionTime [23], InceptionTime [22], and
the PhysioNet/CinC Challenge 2021 12-lead second-best
model, DSAIL SNU (Data Science & Artificial Intelligence
Laboratory Seoul National University [19,39,40])—the best
model did not provide weights. Additional models can be
incorporated by uploading them into the platform or using
the default model exchange file server. We incorporate all
evaluated models to extend the research community with
open-source and pretrained model weights.

The adoption of the ONNX industry-standard model
format ensures that ExChanGeAI is not limited to a propri-
etary ecosystem. Models trained or fine-tuned with ExChan-
GeAI can be seamlessly imported, shared, or deployed across
different institutions and environments, whether in research
settings or clinical contexts. This plug-and-play capabil-
ity allows users to leverage pretrained models, contribute
their own, or integrate compatible architectures developed
externally, with zero code changes and minimal configura-
tion. As a result, the platform not only accelerates collabora-
tion but also supports sustainable, evolving workflows as new
models and data become available.
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Fine-Tuning Platform
ExChanGeAI provides an interactive user interface for
fine-tuning with user-supplied data, abstracting all low-level
ML steps, and facilitating the exchange of prediction models
among researchers. To ensure broad compatibility with
various models and platforms, we natively support PyTorch
and developed a custom parser for ONNX models to adapt
the computation graph where applicable. ExChanGeAI is
built upon PyTorch [41], which facilitates on-device training
and leverages the ONNX framework during inference.
ONNX’s custom training runtime does not support all
PyTorch operators with corresponding gradient implementa-
tions, such as functions like ReduceMin and diverse Pooling
Operators (Opset≤18). While defining custom operators may
solve this, it requires detailed implementation knowledge
for each unknown operator, creating a significant barrier for
practical applications. To overcome these limitations, we use

onnx2torch to convert our uniquely parsed ONNX models
into PyTorch models. This conversion enhances compatibil-
ity, allowing training across different ONNX Opset versions
and using the extensive feature set of PyTorch. Crucially,
our parser automatically adapts the classification head to the
new number of classification targets. These conversion steps
are computed independently for each fine-tuning process and
are entirely transparent to the user, without requiring any
programming knowledge (refer to Figure 3). We provide two
distinct training methods, including fine-tuning the classi-
fication heads, where the majority of the model weights
are frozen, or training the entire model. Both methods use
pretrained weights if a pretrained model is selected. The
freezing of weights is handled automatically in the back-
ground, only allowing modification of the unfrozen weights
or those belonging to the classification head.

Figure 3. Overview of the semiautomatic fine-tuning process in the backend of ExChanGeAI. ECG: electrocardiogram; ONNX: Open Neural
Network Exchange.

The training and fine-tuning process uses by default the
AdamW optimizer [42], due to its better generalizability
and convergence than the default Adam optimizer [43], and
the ExponentialLR learning rate scheduler (γ=0.9). Adaptive
optimization algorithms tend to be more robust, have faster
convergence, and therefore improve resource usage [44].
Other optimizers, such as variants of Adam and stochastic
gradient descent, are available as alternatives. Initially, a
learning rate finder is executed to automatically determine
the optimal initial learning rate based on the provided model
and data. It has been shown that this method improves
the convergence speed and reliability [45]. Furthermore, the
loaded data is automatically split into stratified training/evalu-
ation sets with an 80/20% distribution. We limit the training
process to a default maximum of 50 epochs and incorporate
checkpointing for models with the lowest weighted validation
loss, alongside early stopping. Advanced settings, such as
other optimizers, batch size, number of epochs, maximum
initial learning rate, and gamma can be adapted via the
user interface, if required. The best model, in addition to
training and evaluation statistics, is exported and downloa-
ded after completion. To ensure comprehensive reporting
and documentation, the exported statements include (1) the
number of samples, (2) distribution and corresponding labels,
(3) the used base model, (4) the training and evaluation

loss per epoch, and (5) the corresponding F1-scores on the
evaluation set.
Evaluation
To thoroughly assess the reliability and performance of
ExChanGeAI's training process, we conduct a series of
scenario-based tests. The training and prediction capabilities
are one of the key features of this work and are therefore
mainly evaluated via training and fine-tuning of classification
models on various tasks and tests on internal and external
datasets using the ExChanGeAI platform, where possible.
This benchmarking is crucial for validating the platform’s
core value proposition (1) to empower users, even with-
out ML expertise, and (2) to rapidly develop and deploy
accurate prediction models for ECG analysis. Demonstrating
robust performance across diverse datasets reinforces the
platform’s usability and reliability, ultimately building trust
and accelerating adoption among clinicians and researchers.
Datasets
To train and fine-tune deep learning models, we use multiple
targets and use the large open-access gold standard PTB-
XL dataset [20]. In order to demonstrate model training
under data-scarce conditions, the provided stratified fold 9
is used for training and fold 10 for intradataset testing. Age
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and sex, while technically predictable from ECG signals,
are generally of limited clinical relevance in the context
of model development, as these attributes are readily and
reliably obtained through direct patient observation rather
than requiring inferential prediction from ECG data.

The comparison includes a wide-ranging spectrum of
ischemic heart diseases, structural heart diseases, and
conduction abnormalities: (1) broad diagnostic categories,
including MI, ST/T changes, conduction disturbances, and
hypertrophy, (2) specific comparisons, such as anterior MI
vs inferior MI, and diverse types of bundle branch blocks,
including complete left (CLBBB), complete right (CRBBB),
and incomplete left (ILBBB). The label distribution of
PTB-XL is outlined in the Multimedia Appendix 1. A
comparison baseline XceptionTime model is trained on the
folds 1‐8 of PTB-XL for all targets to outline the training
performance under data-rich conditions. We also compare our
baseline model against the benchmark scores of Inception-
Time from the PTB-XL benchmark paper [46]. To facili-
tate a direct comparison of the platform’s one-click training
capabilities with the benchmark paper, we additionally trained
an InceptionTime model on folds 1‐8 of PTB-XL, focusing
on the superclasses.

To analyze the applicability of models across sites, we
evaluate all models on interdatasets based on Yang et al
[47,48], MIMIC-IV-ECG (Medical Information Mart for
Intensive Care IV Electrocardiogram) [49], and Emergency
Department Münster (EDMS) [38], which is an entirely new
dataset from our hospital site. This helps to gauge the model’s
generalizability across different ECG recordings. The latter
two datasets demonstrate a relatively balanced distribution
with respect to age and sex, whereas the former dataset is

predominantly male and represents the smallest sample size
among the 3 test sets (Multimedia Appendix 2). We selected
these datasets to ensure both clinical relevance and diversity
in our evaluation. EDMS is a newly collected internal dataset
derived from routine clinical care, providing contemporary,
real-world ECG data. MIMIC-IV ECG represents one of
the largest publicly available routine care datasets, enabling
robust large-scale analyses. PTB-XL serves as the gold
standard for annotated ECG data, offering high-quality expert
labels, while the Yang et al dataset provides a similarly
gold-standard resource from an entirely different geographical
region, allowing us to assess model generalizability across
populations. To prevent patient leakage, only one record per
patient was kept in PTB-XL before the stratified split.

Some classes present slight variations, such as MIMIC
and EDMS, which do not have descriptive ECG statements
but general ICD-10 (International Classification of Disea-
ses, 10th Revision) codes, which are not necessarily based
solely on the given ECG. We extract the signals with the
corresponding fitting maps and merged superclasses. The
corresponding ICD-10 codes, or included statements, are
given for each map (refer to Table 1). This includes changes
such as that bundle branch blocks (BBBs) are only enco-
ded and divided into left- and right-BBB. We evaluate
the prediction performance accordingly, counting complete-
and incomplete-RBBB as the superclass RBBB. Physionet
classes, from the pretrained models, are mapped to the BBB
and superclasses where applicable, as no MI classes are
included. For MIMIC and EDMS, in instances of multiple
ECGs of the same patient, only the first record was used to
negate any multiple patient testing.

Table 1. Matched superclass and bundle branch block statements of PhysioNet 2021 and Emergency Department Münster to PTB-XL (Physikalisch-
Technischen Bundesanstalt-extra large [National Metrology Institute of Germany]) classes.
Classes Superclasses Bundle branch blocks
PTB-XLa CDb STTCc CLBBBd CRBBBe IRBBB

f

PhysioNet
2021

BBBg, CLBBB|LBBBh, CRBBB|RBBBi, IRBBB, IAVBj, LAnFBk,
NSIVCBl

TAbm, TInvn,
LQTo

CLBBB|LBBB CRBBB|RBBB IRBBB

EDMSp —q LBBB RBBB
aPhysikalisch-Technischen Bundesanstalt-extra large.
bCD: conduction disturbance.
cSTTC: ST/T Changes.
dCLBBB: complete left bundle branch block.
eCRBBB: complete right bundle branch block.
fIRBBB: incomplete right bundle branch block.
gBBB: bundle branch block.
hLBBB: left bundle branch block.
iRBBB: right bundle branch block.
j IAVB: first-degree atrioventricular block.
kLAnFB: left anterior fascicular block.
lNSIVCB: nonspecific intraventricular conduction disorder.
mTab: T wave abnormal.
nTInv: T wave inversion.
oLQT: prolonged QT interval.
pEDMS: Emergency Department Münster.
qNot available.
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Table 2 shows a comprehensive overview of all extracted
targets, the number of samples, and mapped ICD-10 codes
across the different external test datasets. Most datasets are
uncurated and reflect real-world implications, in contrast to
semicurated datasets, such as PTB-XL. There may be bad
quality data, as well as discrepancies between ICD-10 codes
and mapped classes. The codes may be based on other
electronic health data than the ECG, and differences may
occur due to indifference between suspected and confirmed
diagnoses. Label noise, which is only present in MIMIC
and EDMS, may lead to underestimation of classification
performance [50]. This, however, allows us to compare the
models across real-world data, showing possible impact on

clinical care. An additional case study with a manually
annotated gold standard is evaluated on the internal EDMS
dataset. To demonstrate the advanced classification task
of revascularization (“does the patient require revasculariza-
tion?”), which is not available in PTB-XL, the models are
trained and fine-tuned using the new EDMS dataset. The
labels of revascularization are case-based if the patient has
been treated with a revascularization. It consists of 240
positive and negative cases each, whereas negative cases are
only a stratified subset of the complete annotated dataset. An
additional stratified subset (20%) of these data points is kept
as testing data.

Table 2. External test datasets and their class distribution across all categories, their mapping from diagnostic statements or ICD-10 (International
Classification of Diseases, 10th Revision) codes to PTB-XL (Physikalisch-Technischen Bundesanstalt-extra large [National Metrology Institute of
Germany] classes, and the data format, including sampling rate, analog-to-digital converter gain, and additional annotations.
Publication, notes, and target Classes
Yang and Feng [48]
500 Hz based on dataset labels
Superclasses • HYPa (HEHb): 647

• CDc (IAVBd, IIAVB1e, IIIAVBf, BBBg, LAFBh, NICD):i 1974
Bundle branch blocks • CLBBB:j 43

• CRBBB:k 328
• IRBBB:l 1051

MIMIC-IV-ECGm

500 Hz with 200 adu/mV gain based on ICD-10n codes
Superclasses • HYP (I11, I51.7): 500

• MIo (I21, I22): 500
• CD (I44): 500

Myocardial infarcts • AMIp (I21.0): 500
• IMIq (I21.1): 500

Bundle branch blocks (variation) • LBBBr (I44.7): 500
• RBBBs (I45.1): 500

EDMSt

100 Hz based on ICD-10n codes
Superclasses • HYP (I11, I51.7): 149

• MI (I21, I22): 302
• CD (I44): 255

Myocardial infarcts • AMI (I21.0): 51
• IMI (I21.1): 43

Bundle branch blocks (variation) • LBBB (I44.7): 73
• RBBB (I45.1): 48

500 Hz annotated through cardiologists
Revascularization (20% test subset) • Yes: 48

• No: 48
aHYP: hypertrophy.
bHEH: heart enlargement and hypertrophy.
cCD: conduction disturbance.
dIAVB: first-degree atrioventricular block.
eIIAVB: second-degree atrioventricular block.
fIIIAVB: third-degree atrioventricular block.
gBBB: bundle branch block.
hLAFB: left anterior fascicular block.
iNICD: nonspecific intraventricular conduction disturbance.
jCLBBB: complete left bundle branch block.
kCRBBB: complete right bundle branch block.
lIRBBB: incomplete right bundle branch block.
 

JOURNAL OF MEDICAL INTERNET RESEARCH Bickmann et al

https://www.jmir.org/2026/1/e81116 J Med Internet Res 2026 | vol. 28 | e81116 | p. 7
(page number not for citation purposes)

https://www.jmir.org/2026/1/e81116


 
mMIMIC-IV-ECG: Medical Information Mart for Intensive Care IV Electrocardiogram.
nICD-10: International Classification of Diseases, 10th Revision.
oMI: myocardial infarction.
pAMI: anterior myocardial infarction.
qIMI: inferior myocardial infarction.
rLBBB: left bundle branch block.
sRBBB: right bundle branch block.
tEDMS: Emergency Department Münster.

Model Selection
We use the best-performing models based on the aforemen-
tioned previous research [21]. The study has shown that the
InceptionTime performs well with less data in comparison to
XceptionTime, but its performance lags behind when larger
datasets are used. Therefore, we train a baseline model on
XceptionTime, as its capability exceeds InceptionTime due to
the large amount of data available for the baseline model. In
comparison to the InceptionTime and XceptionTime models,
we evaluate the DSAIL SNU PhysioNet 2021 model [39,40,
51], the PhysioNet 2021 competition leader with available
weights, and the only available foundation model, ECG-
FM (Electrocardiogram Foundation Model) [28]. We aim
to assess the effectiveness and improvements gained using
ExChanGeAI’s training and fine-tuning capabilities and the
possible use of pretrained models, especially in resource-con-
strained environments with very few data points.
Preprocessing and Training
We evaluated the various architectures using two training
strategies: (1) fine-tuning only the classification head and
(2) training all layers. Trainings were conducted using the
default settings of ExChanGeAI (commit number 4d862c04)
to maintain consistency and integrity.

Xception and InceptionTime models are trained de novo
(from random initialization) using non-normalized ECG
data, which has been internally validated to achieve higher
performance. ECG-FM and DSAIL SNU are pretrained
models on PhysioNet 2021 labels, which were then fine-tuned
for each classification target on PTB-XL fold 9 to demon-
strate fine-tuning capabilities. In a special case, to showcase
the capability of cross-task transfer learning, a pretrained
XceptionTime model (superclasses with PTB-XL folds 1‐8)
was separately fine-tuned on the revascularization task.

The ECG-FM foundation model’s training data details
are unknown, though it is based on PhysioNet 2021 (which
includes PTB-XL), limiting the validity of intradataset
evaluation. The “physionet_finetuned” model differs from
published results due to inaccessible weights and requires
500 Hz, 5-second z score normalized inputs. The training of
ECG-FM was implemented with custom training code due
to dependency complexities. It requires a custom library,
which is only compatible with the end-of-life version of
Python 3.9 (Python Software Foundation). Additionally, an
ONNX export is not possible with these custom functions,
impeding the usage of interoperable standards and therefore
the deployment into the platform. The PyTorch implementa-
tion, as an alternative, could not be used due to the outda-
ted and unsupported versions of major libraries, resulting in

dependency conflicts. The results of ECG-FM are therefore
achieved outside the platform, yet are given for comparative
purposes. DSAIL SNU was adapted for ONNX export and
initialized with the unavailable coinput features (age and sex)
using the default values and their required missing feature
flags as specified in its corresponding publication, alongside
the used minimum-maximum normalization in pretraining.

All ECG recordings were processed at the sampling
rate required by each model. For ECG-FM, recordings that
are natively 500 Hz (PTB-XL, Yang et al , MIMIC-IV-ECG)
were used unchanged, while recordings available only at
100  Hz (EDMS) were up-sampled to 500  Hz via a Fast
Fourier Transform to match the model’s input requirement.
DSAIL SNU, XceptionTime, and InceptionTime require a
10-second ECG sampled at 100 Hz. Consequently, any
500 Hz recordings (PTB-XL, Yang et al, MIMIC-IV-ECG)
were down-sampled to 100 Hz using the platform’s interoper-
able data-loading pipeline, and recordings only available at
100  Hz (EDMS) were left unchanged.
Performance Metrics
To evaluate model performance, we use the F1-score for
overall assessment and calculate the average and median for
central tendency across datasets. Predictions are derived by
selecting the class with the highest probability. We use the
F1-score rather than area under the curve because clinical
relevance often requires accurate classification at a single
operating threshold— outlining the critical balance between
precision and recall—whereas area under the curve summari-
zes performance across all possible thresholds and may not
reflect the real-world consequences of specific predictions.
Additionally, we focus on the weighted F1-score to account
for the class imbalance commonly seen in medical datasets,
ensuring that minority classes are appropriately represented
in the evaluation. Macro F1, accuracy, precision, recall, Brier
score, and expected calibration error top-label, and classwise
(macro and weighted), with bootstrapped 95% CIs, as well
as per class metrics, confusion matrices, and 2-sided paired
t tests for external datasets, are given in the Multimedia
Appendix 3. For F1-score evaluation, classes not present
in the PhysioNet labels were removed. To reflect realistic
out-of-distribution prediction, the comparison did not remove
false positives. Robustness, indicated by lower IQR and
coefficient of variation (CV) values, suggests consistency
across datasets. Computational scaling is analyzed using the
number of parameters, floating-point operations per second
(FLOPs), training, and inference timings. For all architectures
on the ExChanGeAI platform, estimated timings are reported
as the mean with SD, evaluated using a run of 1500 ECGs
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from the MIMIC database, based on the superclass subset and
the respective models.

These comprehensive evaluations enable us to determine
how well models within ExChanGeAI perform under varied
conditions, providing insights into their practical application
in diverse real-world scenarios. Through this extensive testing
framework, we confirm ExChanGeAI’s robustness, adaptabil-
ity, and reliability for ECG analysis across multiple data-
sets, diagnostic statements, and applicability for different use
cases.
Ethical Considerations
Collection and analysis of the EDMS dataset were approved
by the responsible medical ethics committee (Ärztekammer
Westfalen-Lippe, approval EDMS: no. 2022‐494 f-S) under
a waiver of informed consent in accordance with state law
for health data privacy (§6 Abs. 2 Gesundheitsdatenschutz-
gesetz Nordrhein Westfalen (Health Data Protection Act of
North Rhine-Westphalia)). The creation and analysis of the
MIMIC-IV-ECG dataset were reviewed by the Institutional
Review Boards of Beth Israel Deaconess Medical Center and
the Massachusetts Institute of Technology, which waived the
requirement for individual patient consent because the project
did not impact clinical care and all protected health informa-
tion was deidentified. The Yang et al dataset was approved by
the Medical Ethics Committee of Chinese People's Libera-
tion Army General Hospital (approval no S2019-318-03)
under informed consent from the participants. The PTB-XL
dataset is publicly available under a waiver of the Institutional

Ethics Committee (approval no PTB-2020‐1), complying
with Health Insurance Portability and Accountability Act
(HIPAA) standards. All waivers allow secondary analysis
with given approvals under the respective data regulation and
privacy protection standards.

Results
The central goal of ExChanGeAI is to make model selec-
tion and empirical comparison tractable, reproducible, and
accessible within a single, seamless platform. Therefore, the
interface is visually structured into different foci, such as
data analysis (refer to Figure 4). The analysis view provides
interactive visualization of individual ECG files. Users can
select to view ECG data based on multiple views - raw
time series, QRS complexes, fiducial point annotation, Rlign
median beats, and Rlign time-aligned ECG. When visualizing
QRS complexes, the interface displays overlaid waveforms,
potentially highlighting morphological features. For raw time
series visualization, the platform presents the standard 12-lead
ECG signals as separate plots, allowing for detailed inspec-
tion of each lead’s waveform. The fine-tuning view displays
options for model selection, training method, and custom
model naming. A bar chart visualization summarizes the
distribution of labels within the loaded dataset, presenting
counts for categories, such as “CLBBB,” “IRBBB,” and
“CRBBB” as shown in Figure 5. Numerical dataset charac-
teristics, including the total number of imported ECGs and
labels, are presented as well.

Figure 4. Overview of the ExChanGeAI web interface, showing the “Analyse” page with a sample electrocardiogram in QRS-waveforms. ECG:
electrocardiogram.
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Figure 5. Overview of the ExChanGeAI web interface, showing the “Finetune” page, showing the default necessary parameters, and the data
distribution across labels of an example bundle-branch-block dataset. ECG: electrocardiogram.

Table 3 shows the weighted F1-scores of the Xception-,
InceptionTime, DSAIL SNU, and ECG-FM architectures
across the different classification targets on the test datasets.
The tables are organized such that columns represent different
models, while rows represent various classification tasks and
datasets. Specifically, each row corresponds to a particular

classification task evaluated across different test sets (PTB-
XL, Yang et al, MIMIC-IV, and EDMS). The most com-
prehensively de novo–trained model XceptionTime serves
as a reference (Training PTB-XL folds 1-8) for assessing
performance scaling with increased data availability.

Table 3. Performance evaluation of various models on electrocardiogram classification tasks across the test datasets.
Model XceptionTimeab InceptionTimeab DSAIL SNUac ECG-FMd

Training folds
(1-8)

Training folds (9) Fine-tune Pretrained
PhysioNet
2021

Pretrained
PhysioNet 2021

Fine-tune

Training PTB-
XLe folds

1-8 9 9 9 —f — 9

Trained layers All All All Head — — Head
Superclasses
  PTB-XL 0.792 0.686g 0.651 0.536h 0.038h 0.174h 0.690i,h

  Yang et al 0.335 0.647i 0.064 0.585g 0.402 0.491 0.173
  MIMIC-IVj 0.371 0.374i 0.358g 0.323 0.055 0.192 0.355
  EDMSk 0.432 0.387i 0.379g 0.331 0.039 0.333 0.216
Myocardial infarcts
  PTB-XL 0.938 0.853g 0.902i 0.685h — — 0.685h

  MIMIC-IV 0.753 0.734i 0.726g 0.566 — — 0.403
  EDMS 0.566 0.484 0.584i 0.343 — — 0.532g

Bundle branch blocks
  PTB-XL 0.911 0.912i 0.891g 0.832h 0.000h 0.016h 0.790h

  Yang et al 0.730 0.101 0.792i 0.496 0.007 0.089 0.617g

  MIMIC-IV 0.825 0.820i 0.819g 0.333 0.000 0.028 0.087
  EDMS 0.739 0.827i 0.732g 0.622 0.000 0.118 0.248
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Model XceptionTimeab InceptionTimeab DSAIL SNUac ECG-FMd

Revascularization
  EDMS 0.750l 0.688i 0.645g 0.635 — — 0.603
Weighted F1 (interdataset only; excluding PTB-XL)
Mean (SD)↑ 0.611 (0.188) 0.562g (0.243) 0.567i (0.251) 0.470 (0.137) — — 0.359 (0.193)
Median (IQR)↑ 0.73

(0.432-0.750)
0.647i

(0.387-0.734)
0.645g

(0.379-0.732)
0.496
(0.333-0.585)

— — 0.355
(0.216-0.532)

CVm↓ 0.308 0.433g 0.443 0.290i — — 0.538
aTrained via ExChanGeAI.
bDe novo training.
cDSAIL SNU: Data Science & Artificial Intelligence Laboratory Seoul National University
dECG-FM: Electrocardiogram Foundation Model; used custom code for the training platform.
ePTB-XL: Physikalisch-Technischen Bundesanstalt-extra large.
fNot applicable.
gSecond best model in this category.
hThese models were pre-trained on datasets including PTB-XL; results on this specific target should be interpreted as in-distribution evaluations.
iBest model in this category.
jMIMIC-IV: Medical Information Mart for Intensive Care IV.
kEDMS: Emergency Department Münster.
lTransfer learning based on reference XceptionTime (superclasses with folds 1‐8).
mCV: coefficient of variation.

For illustration, the first row presents superclass classifica-
tion scores on the PTB-XL test dataset, whereas the refer-
ence XceptionTime (trained on PTB-XL folds 1‐8) achieves
a weighted F1-score of 0.792, and XceptionTime, trained
on fold 9 only, reaches 0.686. As an example for MI,
the InceptionTime model achieves the second-best F1-score
across both inter-datasets (0.726 on MIMIC-IV and 0.584 on
EDMS), while XceptionTime achieves a slightly higher score
on the former (0.734), and ECG-FM on the latter (0.532). The
last rows show the aggregated statistics, showing Xcep-
tion and InceptionTime have the best average and median
F1-scores, outlining the top overall performing models, while
DSAIL SNU shows the best IQR and CV values, exhibiting
the most robust scores across external datasets. As anticipa-
ted, increasing the amount of training data leads to improved
performance. Importantly, ExChanGeAI is able to handle
this scalability, achieving better outcomes as more data
are incorporated (see reference model “XceptionTime” in
Table 3). For example, on the PTB-XL dataset, test per-
formance on the superclasses and myocardial infarct targets
improves substantially—by 15.4% and 9.96% respectively—
when XceptionTime is trained on folds 1‐8 compared to
training only on fold 9.

XceptionTime and InceptionTime, representing architec-
tures trained de novo on PTB-XL, meaning with random
initialization and without any prior training at all, often
achieved the highest results across classification tasks. In
contrast, the pretrained models, DSAIL SNU and ECG-FM,
exhibited a more nuanced performance profile in our limited
data setting. Initially, both models demonstrated suboptimal
classification accuracy, especially on datasets outside of their
pretraining domain (PhysioNet 2021). Fine-tuning them on
a single PTB-XL fold for each classification target led to
significant improvements for both DSAIL SNU and ECG-
FM. However, they were outperformed by the de novo

InceptionTime (8 out of 9 targets) and XceptionTime models
(7 out of 9) within our evaluation. Still, fine-tuned DSAIL
SNU exhibited the best robustness (lowest IQR and CV),
suggesting stable results across disparate external cohorts
despite lower mean and median F1-scores. This increase
in intradataset performance does not always translate to
interdataset performance, as expected, due to overfitting to
the dataset distribution. Overall, XceptionTime and Inception-
Time trained from scratch showed the highest average and
median F1-scores across all evaluated classification tasks.

The InceptionTime model trained on folds 1‐8, as reported
in the PTB-XL benchmark paper [46], achieves a macro
F1-score of 0.7495. In comparison, our reference Xception-
Time model attains a macro F1-score of 0.768, while a
comparable training (not in Table 3) of InceptionTime
achieves 0.7707. These results demonstrate that ExChan-
GeAI’s training capabilities not only match but also sur-
pass established benchmark baselines, all without reliance
on additional resources. Additionally, the platform’s flexible
workflow enables rapid prototyping for novel tasks, such
as revascularization prediction (absent in PTB-XL), trained
and evaluated using the new EDMS dataset. Here, transfer
learning, based upon the reference XceptionTime (0.750),
increased the F1-score by 9% relative to de novo Xception-
Time (0.688).

Additionally, it has to be noted that the foundation
model ECG-FM is the largest with over 90 million parame-
ters, followed by DSAIL SNU (2M), Xception (401K), and
InceptionTime (457K). In terms of computational complexity,
ECG-FM is the most demanding (14 GFLOPS), followed
in descending order by Inception-(460 MFLOPS), Xception-
Time (256 MFLOPS), and DSAIL SNU (89 MFLOPS). The
inference timings on a 6-core Zen4 CPU correspond to mean
27 (SD 33.78) ms (XceptionTime), mean 26 (SD 36.56)
ms (InceptionTime), and mean 29.5 (SD 13.9) ms (DSAIL)
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using the ExChanGeAI platform. Training with 1500 training
samples is estimated with mean 13180 (SD 44) ms per epoch
and 8.79 ms per sample (XceptionTime), mean 19520 (SD
153) ms per epoch and 13.01 ms per sample (InceptionTime),
and mean 10210 (SD 34) ms per epoch and 6.80 ms per
sample (DSAIL). Comparing the classification performance
against the computational complexity, XceptionTime and
InceptionTime stand out as the top performers. All models
trained on the PTB-XL dataset are available in Multimedia
Appendix 4.

Discussion
Overview
Our evaluation of ExChanGeAI on established architectures
reveals several key insights into model selection, particu-
larly in data-constrained scenarios. The end-to-end platform
streamlines both training and fine-tuning, yielding robust
performance metrics across diverse ECG classification tasks.
Comparison With Prior Work
Our evaluation shows training on limited data and cross-data-
set testing exposes inherent generalization gaps and varia-
bility in performance—a major difference compared to the
often overoptimistic intradataset results seen in the litera-
ture. Consequently, the near-perfect accuracy metrics—in
intratest set and simple tasks, such as tachy- and bradycar-
dia prediction [28]—are not reproducible when models are
evaluated on external, independent datasets. However, when
models are evaluated using intradataset testing and ample
training data are available, achieving high scores becomes
more feasible and reproducible on external datasets (see the
baseline XceptionTime model in the Multimedia Appendix
3). As expected and in line with previous findings [52,53],
all models exhibited performance drops on external data-
sets. Yet, as an important factor, the end-to-end platform
training surpasses the established benchmark InceptionTime
model, outlining the competitive training performance of the
platform without requiring expert knowledge.
Principal Findings
XceptionTime models were particularly notable for their
parameter efficiency and competitive accuracy, reaffirming
their architectural strength. Notably, learning from scratch
proved to be a strong alternative to transfer learning, as
de novo XceptionTime and InceptionTime models often
outperformed fine-tuned pretrained models despite having
fewer parameters. However, performance variability was
observed across different classification tasks and datasets, as
expected, indicating a sensitivity to dataset-specific scaling
and parameter optimization within specific model architec-
tures. Pretrained models, while anticipated to leverage their
extensive prior knowledge, presented a mixed picture in
our data-limited scenarios: while fine-tuning improved their
performance, they generally did not consistently surpass the
de novo trained XceptionTime and InceptionTime mod-
els. However, the pretrained model did exhibit enhanced
robustness against performance degradation across external

datasets in most cases, compared to de novo trained models.
Among all, DSAIL SNU demonstrated the lowest perform-
ance variance, underscoring its robustness.

Limitations
First, while pretrained models offer potential advantages,
their benefits are not guaranteed in data-constrained
scenarios. Training from scratch within ExChanGeAI
frequently yielded top results. This underscores the criti-
cal importance of empirical validation and careful model
selection tailored to each dataset and use case. Second, the
inherent influence of model architecture on performance,
coupled with the relative consistency of the subsequent
training process across architectures, underscores the value
of an end-to-end platform that simplifies exploration and
deployment of diverse, yet effective, models. Third, while the
evaluation was conducted using data-constrained scenarios,
rigorous validation across diverse external datasets and the
baseline comparison model also outlines the advantage of
more training samples; however, these may be difficult to
obtain in a clinical setting. Fourth, while the given models
can be trained outside the platform, with even more custom-
ization, the usage of ExChanGeAI reduces many technical
burdens, facilitating faster deployment as it eliminates the
need for code for data ingestion, preprocessing, training, and
evaluation for new models. Fifth, all evaluations have been
conducted with a 100 Hz sampling rate by default, which,
according to multiple research papers, does not notably
decrease the classification performance. However, downsam-
pling may lead to a loss of high-frequency clinical details,
such as fragmentation and notches. Researchers should be
aware that this loss of fidelity may be critical for specific
pathologies not covered in the current classification tasks,
though the platform allows for higher sampling rates if
required. Sixth, defining “revascularization” by treatment
status serves as a proxy for actionable clinical need. While
this implies that the label incorporates medical decision-mak-
ing alongside pathology, predicting this outcome remains a
clinically vital advancement for identifying patients requir-
ing urgent intervention. Seventh, while the platform supports
seamless deployment of ONNX-compatible architectures, we
acknowledge that integrating foundation models with external
dependencies or specific libraries (eg, ECG-FM) currently
requires execution via external scripts rather than the
native end-to-end platform. Eighth, the DSAIL SNU model
replaces missing age/sex with default values and missing
flag indicators, exactly as it was pretrained. If demographic
data were available, its performance may improve beyond the
results reported here. Finally, we contributed to the evaluation
of the novel revascularization task using a stratified 20%
hold-out subset of our EDMS cohort. Consequently, these
new results can serve as an internal validation only, and the
generalizability to external cohorts cannot be guaranteed.

Future Work
While acknowledging potential limitations for expert users
seeking highly specialized customizations, the platform’s
modular design allows for the future integration of additional
compatible architectures, expanding its versatility. The main
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focus of possible future work could be the integration of
explainable or interpretable ML, including its visualization
for each prediction.
Conclusions
A major strength of ExChanGeAI is its ability to democra-
tize advanced deep learning for ECG analysis. By integrat-
ing pretrained, fine-tuned, and untrained models within a
unified interface, ExChanGeAI overcomes significant barriers
associated with data loading, model-specific installation,
environment setup, and code dependencies, particularly
benefiting nonexperts and general-purpose applications. This
not only enables rapid prototyping and empirical validation
by both experts and nonexperts but also encourages open
science and sharing of ready-to-use models for collabora-
tive research. Ultimately, ExChanGeAI aims to enhance the
accessibility of deep learning models and reduce opera-
tional overhead, facilitating broader adoption and accelerating
progress. This approach not only minimizes human error and

technical debt but also supports best practices for reproduci-
ble research and clinical validation. Limitations are mainly
posed by the available data and infrastructure, even though
the training, on modern machines, becomes significantly
easier due to the large increase in computational power in
recent years and wider adoption of specialized hardware, such
as GPUs and neural processing units.

In conclusion, this work introduced ExChanGeAI, a novel
open-source platform designed to streamline and democratize
the application of deep learning for ECG analysis. Our results
demonstrate the effectiveness of ExChanGeAI across both
conventional and state-of-the-art deep learning models—even
with limited data—and highlight that pretrained models are
not always superior in data-constrained scenarios. Regular
empirical benchmarking and model selection remain crucial.
By promoting accessibility, reproducibility, and systematic
model comparison, ExChanGeAI broadens participation in
deep learning research and clinical adoption in ECG analysis.
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Multimedia Appendix 1
Sample size and class distribution for training samples of PTB-XL (Physikalisch-Technischen Bundesanstalt-extra large
[National Metrology Institute of Germany]) across defined classification targets.
[PDF File (Adobe File), 49 KB-Multimedia Appendix 1]
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Overview of dataset characteristics, including the total number of ECG recordings, age, and sex distribution for the PTB-XL
(Physikalisch-Technischen Bundesanstalt-extra large [National Metrology Institute of Germany]), MIMIC-IV-ECG (Medical
Information Mart for Intensive Care IV Electrocardiogram), Yang et al., and EDMS (Emergency Department Münster)
datasets.
[PDF File (Adobe File), 60 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Extended classification and calibration metrics of the trained models on electrocardiogram classification tasks across the
external datasets.
[ZIP File (ZIP archive File), 9 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Trained and fine-tuned models using the ExChanGeAI platform based on the PTB-XL (Physikalisch-Technischen Bundesan-
stalt-extra large [National Metrology Institute of Germany]) dataset. Training conducted using default settings (commit number
4d862c04) to ensure reproducibility.
[ZIP File (ZIP archive File), 32127 KB-Multimedia Appendix 4]
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