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Abstract

The last years have seen an acceleration in the development and uptake of artificial intelligence (AI) systems by “early adopter”
hospitals, caught between the pressures to “perform” and “transform” in a struggling health care system. This transformation has
raised concerns among health care providers as their voices and location-specific workflows have often been overlooked, resulting
in technologies that fail to integrate meaningfully into routine care and worsen rather than improve care processes. How can
positive AI implementation be carried out in health care, aligned with European values? Based on a perspective that spans all
stakeholders, we have created EURAID (European Responsible AI Development), a practical, human-centric framework for AI
development and implementation based on agreed goals and values. We illustrate this approach through the co-development of
a narrow-purpose “in-house” AI system, designed to help bridge the AI implementation gap in real-world clinical settings. This
example is then expanded to address the broader challenges associated with complex, multiagent AI systems. By portraying all
key stakeholders across the AI development life cycle and highlighting their roles and contributions within the process, real use
cases, and methods for achieving iterative consensus, we offer a unique practical approach for safe and fast progress in hospital
digital transformation in the AI age.

(J Med Internet Res 2026;28:e80754) doi: 10.2196/80754
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The Transformation of Future Medicine
Through Artificial Intelligence
Technologies

Will the slogans already heard in health care system strikes,
such as “Trust Nurses, Not AI” and “AI has got to go!”[1,2],
become more common? They reflect growing concerns about
the evolving role of health care professionals (HCPs) in a
changing health system, which persist despite reports that 20%
of National Health Service (NHS) doctors are already using
artificial intelligence (AI) daily [3]. Although the importance
of digital transformation to enhance the efficiency of care
delivery and to provide better models of care suited to modern
age [4-6] is well recognized within care systems [7-11], it often
cannot be comprehensively addressed, as health care systems
worldwide find themselves caught between the need to both
“perform” and “transform” in a system facing “firefighting”

ongoing challenges [12-17]. The application of AI technologies
has the potential to address some of those aspects (Table 1), as
it can speed digital transformation and can (at least if applied
well and if the associated potential barriers and uncertainties
are jointly recognized and resolved) make health care more
accessible, effective, and economically sustainable [18].
Examples of the positive impact of good AI implementation
are (1) enhancement of clinical practice, particularly in areas
such as diagnosis and personalized medicine [11,19,20]; (2)
workflow improvements, by supporting administrative tasks
such as transcription, patient communication, and patient-related
recordkeeping [21,22]; and (3) increased operational efficiency,
through the optimization of routine processes, enabling HCPs
to work in a more patient-centered way [23], and potentially
contribute to cost reductions [24,25]. With the recent
introduction of “agentic AI” [26-29] and autonomous AI-enabled
systems [30,31], far more systematic complexity can be handled
by AI [32].
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Table 1. Problems artificial intelligence (AI)–enabled transformation can address, approaches, challenges, and possible unintended consequences.

Implementation challenges and risksPossible digital and AIa solutionsCurrent health system problems

Automation of administrative and
routine tasks, and AI-driven
workflow optimization, allowing
people to focus on patients.

Administrative workload unrelated
to direct patient care [33,34], inef-
ficient workflows, and fragmented

communication burden on HCPsb.

• Different perspectives on which tasks to automate.
• Increase in workload in some cases.
• Risk of overreliance on AI outcomes with insufficient human oversight.
• Automation of the current way of providing care without restructuring

and rethinking processes.
• Concerns about job security, the transformation of job roles, and medical

malpractice.

Adjusting the hospital’s IT environ-
ment as an AI-sustained platform,
characterized by high interoperabil-
ity in itself and with other
providers supporting seamless pa-
tient journeys.

Stress, duplication (eg, medical
history) [35], and discontinuous
care resulting from disconnected
devices, limited interoperability,
and manual coordination.

• Deficient data quality, data silos, inadequate computational resources,
a shortage of specialized expertise, and poor or nonexistent infrastructure
between providers.

• Concerns about safety and regulation.

AI-supported knowledge manage-
ment to build confidence in usage.

Poor information flow and HCP
training deficit.

• Shortage of HCPs limits time for training.
• Various adoption readiness levels among HCPs.
• Concerns about trust in technologies.

aAI: artificial intelligence.
bHCP: health care professional.

However, AI is not a panacea, and initial evaluations of
real-world performance in clinical settings are mixed [36-38].
One reason is that AI implementation projects have often
underestimated the importance of individual AI medical devices
operating as interconnected clinical and technological
infrastructures rather than being a collection of isolated,
standalone algorithms. AI in health care over the next years
needs to be seen as interacting, interdependent, and flexible
applications [39], involving both broad- and narrow-purpose
tools and models that closely interact with and reshape human
workflows, while simultaneously, human workflows,
adaptations, and experience reshape the use of AI, particular to
the local setting and local approach to health care delivery.

Integration of Interactive AI Systems in
Clinical Workflows Requires HCPs at the
Core, Not as Observers

This future model needs HCPs at its core, not only as users
interacting with AI systems, but as active participants in their
co-design, procurement, implementation, monitoring, and
evaluation. This idea is rooted in organizational and
implementation theories, such as the “socio-technical systems
theory” [40], that emphasizes the importance of a holistic
perspective to jointly bridge human and technological
capabilities, particularly in the context of autonomous
technologies [41,42], and the “normalization process theory”
[43], which acknowledges users’ cognitive participation and
collective action as key determinants in implementing,
embedding, and integrating complex and new interventions (eg,
AI systems) in daily practice [44,45]. “Human-centered AI”
can take a cross-theoretical perspective by viewing AI systems
not as stand-alone technologies, but as integral components of
a broader sociotechnical system. Two perspectives are relevant:
humans being able to understand AI and AI being able to
understand humans [46]. For example, explainable AI (XAI)

methods should not only address the technical transparency of
machine learning models but also focus on human understanding
[47]. On the other hand, AI systems need to take into account
the needs, requirements, and mental models of humans [48] and
the context of clinical decisions [49] to create explanations that
are supportive in the clinical setting.

Yet, despite the substantial body of research on theoretical
foundations, the translation of the underlying principles into
everyday implementation of AI systems and clinical reality is
lagging behind [50-54], often key aspects are neglected, and
many implementation projects fail [55]. Problems often begin
during the development of AI systems, which are frequently
designed and tested in settings that are far removed from the
everyday realities of clinical practice [56], and with HCPs and
location-specific workflows often overlooked. The consequences
of systems designed without sustained input from HCP and
patients [57] are visible as they fail to demonstrate their
suitability and worsen rather than improve processes, leading
to the perception that the introduction of digital technologies
into health care adds to the burden [57,58] (Figure 1), although
general relief through well-implemented work aids would be
very welcomed. That misalignment has been associated with
increased stress among HCPs [59] (including “technostress”
[60,61]), disconnected patient care [62,63], and has even resulted
in other unintended negative consequences, such as HCPs
resisting the use of the technologies [15], using technologies in
unanticipated ways [64], or developing workarounds that may
endanger patient care [65]. Insufficient digital health literacy
and training among HCPs amplify these effects, leaving HCPs
unprepared for the demands of interacting with intelligent
systems [66]. Other consequences appearing in real-world
implementation are model uncertainty [67], “AI hallucinations”
or clinically harmful recommendations, bias [14], and context
misalignment [68], which risk fragmented care and diminish
patients’ trust in technology-assisted decisions.
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Figure 1. The introduction of artificial intelligence (AI) into clinical workflows is changing everyday clinical care and could, at least theoretically,
enhance satisfaction, empower, upskill, and provide a better work environment and better interactions for health care professionals (HCPs) and patients;
however, the reality is often much less positive. The upper circle is showing the current situation of health care delivery, which is characterized by a
low level of digitalization and an ever-increasing amount of nonpatient-related activities, causing moderate satisfaction and happiness among both HCPs
and patients. Care delivery transformation through AI can bring positive effects as shown in the green circle on the right (such as delivering better, more
efficient and even more patient-centered care through optimized processes and well-balanced support systems) or, as is frequently the case, negative
effects (red circle on the left), causing frustration, disconnection and stress of HCPs and patients because of interoperability issues with AI implementations
that were never properly designed with the user needs in mind.

Improving Adoption by Co-Development
Across the AI Life Cycle

Overview
The real-world challenges discussed underscore that successful
AI development and implementation are less a technical task
than a comprehensive change management process [57] that
needs active participation, transparent governance, continuous
feedback, and development beyond technical metrics, including
systematic real-world evaluation of human-AI interaction, and

a focus on non-technical design criteria such as usability,
workflow fit, trust, and acceptance.

To bridge this gap, we propose EURAID (European Responsible
AI Development), a practical framework of human-centric AI
development and implementation in hospitals, which is
cooperative and collaborative and based on shared goals in
accordance with European values according to Article 2 of the
Treaty on European Union (TEU; ie, human dignity [69,70],
freedom [69,71], democracy [72], equality [69], rule of law
[73], and human rights [69,74]) and European laws (Table 2).
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Table 2. Regulations in the European Union and its member states that guide AI use in health care (nonexhaustive).

ApproachScopeRegulation or law

Governs medical devices
(including digital systems)
used for diagnostic or
therapeutic purposes.

Medical Device Regulation (MDR;
2017/745)

• The medical devices’ intended purpose defines the associated performance
claims, which must be substantiated through clinical evaluation.

• GSPRsa must be met, including structured risk management (ISOb

14971:2019), a certified QMSc (ISO 13485:2016), usability engineering

(IECd 62366-1:2015+A1:2020), and a planned and documented development
process (IEC 62304:2006+A1:2015), depending on the respective product
category.

Governs the development,
market entry, and use of

AIe systems.

Artificial Intelligence Act (AI Act;
2024/1689)

• Classifies high-risk AI systems (including AI-enabled medical devices,

class IIa+) and GPAIf (that can perform a wide range of tasks, not limited

to one clear intended purpose) and LLMg models, depending on both the
function performed and the systems’ intended purpose.

• Additional transparency obligations apply for certain systems such as
emotion recognition, biometric categorization, and interactive or generative
AI.

Ensures workers’ health
and safety.

EU Occupational Safety and Health
Directive (89/391/EEC 1989) and na-
tional laws

• Systematic risk assessments and preventive measures.
• Worker consultation and participation.

Defines autonomy and
participation rights of

HCPsh.

Professional regulations (eg, Federal
Medical Code for doctors) and labor
laws (eg, German Works Constitution
Acts)

• Protection of professional independence in decision-making.
• Co-determination rights of employee representatives, for example, when

adopting systems that monitor behavior and/or performance.

aGSPR: general safety and performance requirements.
bISO: International Organization for Standardization.
cQMS: quality management system.
dIEC: International Electrotechnical Commission.
eAI: artificial intelligence.
fGPAI: general-purpose artificial intelligence.
gLLM: large language model.
hHCP: health care professional.

In detail, we describe the appropriate stakeholder circle, the
approaches needed for implementing new and highly integrated,
localized, and adaptive AI models, and optimal techniques for
building consent. While this paper emphasizes that AI systems
are increasingly evolving into system-level tools with broad
intended purposes, it is nevertheless valuable to explore the
development of a narrow-purpose, limited-functionality tool as
a simple entry point in the consideration of AI system
implementation. This example serves as a foundation for
discussing the broader challenges associated with a broad
intended purpose and multiagent AI systems. We describe the
co-development of an “in-house” AI system [75] that is
developed within a health institution to address specific needs

[76,77], rather than the implementation of an externally
developed “off the shelf” AI system, as this allows more aspects
of the collaborative process to be described.

This pragmatic approach was developed in part through in-depth
individual consultation and 4 flexible multistakeholder
workshops, which are described in more detail in Table 3. By
bringing together all the relevant players in the health care
ecosystem, we were able to set agreed goals and processes for
the development, integration, use, and oversight of health AI.
These insights from the workshops informed aspects of the
development of the overall framework presented in this
viewpoint, alongside the perspective of the authors.
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Table 3. Methodological design of the stakeholder workshops. Since workshops are platforms to jointly identify and explore complex domains, and
help to gain relevant insights beyond the individual stakeholders’ scope of knowledge [78], they offer a valuable basis for a framework that has
consensus-building at its core.

ApproachAspect

Stakeholder definition • An individual or group who is affected by or can influence the digital transformation in hospitals, particularly with a
focus on AIa-enabled systems.

Identification of
stakeholders

• Stakeholders were identified using the 7Ps framework [79], which serves as a guide for engaging diverse and relevant
interest groups. We modified the categories and definitions of the 7Ps according to our context:

• Patients and the public: As this is not a traditional patient-focused study, but rather a practical, expert-driven implemen-
tation guide for human-centric digital transformation in a hospital setting, stakeholders were viewed both as domain
experts and as potential patients. Additionally, we had feedback from two different international patient representative
organizations.

• Providers: Individuals who provide care to patients and offer relevant insights from their clinical work were included.
The selected clinicians represent various medical fields, including psychology, and are balanced in their seniority and
professional position.

• Purchasers: Since digital transformation must be financed individually by each hospital, we included stakeholders re-
sponsible for the high-level management of digital transformation in large hospitals who manage strategic decisions
about cost underwriting based on a specific internal budget.

• Payers: In Germany, digital hospital transformation is supported through federal programs. Therefore, we involved
stakeholders working at the Federal Ministry of Health and stakeholders who are actively translating those programs
into clinical practice. Additionally, we included employees of insurance companies, as insurers play, in general, a critical
role in creating patient-centric digital ecosystems and in incentivizing digital health solutions.

• Policy makers: Policy makers and supporters of digital transformation in hospitals were included, particularly those who

support a human-centric approach while ensuring the rights of HCPsb and patients are in place, spanning stakeholders
from labor unions to occupational health and safety experts, as well as relevant legal and ethical perspectives.

• Product makers: As EURAIDc highlights the need for a well-balanced stakeholder group developing and implementing
AI in health care, the stakeholders representing the “in-house” manufacturers are in their profession AI system developers,
psychologists and human-centered AI development professionals, as well as experts in medical device regulation, qual-
ity and clinical risk management, medical informatics, and in occupational health and safety at work.

• Principal investigators: The researchers included were from a background of clinical AI, medical device regulation,
nursing science, medical informatics, digital health, patient safety, psychology, and ethics.

Stakeholder engage-
ment

• Objectives: The goal of stakeholder engagement was to achieve a common agreement on the theme by balancing the
differences of individual viewpoints (eg, between calls for greater space for innovation or rather tighter regulation), and
developing a framework that all stakeholders agree with.

• Methods: Stakeholders were engaged through participatory workshops (three dealt with relevant aspects EURAID should
focus on and were initiated by the German Federal Institute for Occupational Safety and Health (BAuA), in 2024 and
2025, with 25, 24, and 17 participants respectively; and one dealt with aspects of HCP integration and current health
system problems AI-enabled transformation might solve (Table 1) and was organized by the Else Kröner Fresenius
Center for Digital Health in February 2025, with 5 participants). The participating stakeholders spanned the whole 7P
categories. Based on this data and a critical review of the literature exploring existing frameworks and gaps, AS and SG
developed the concept for the paper and wrote the first draft of EURAID. The stakeholders reviewed the paper, validated
its content, and provided further expert insights during a 4-month iterative consensus process.

aAI: artificial intelligence.
bHCP: health care professional.
cEURAID: European Responsible AI Development.

Step 1: Comprehensive and Inclusive Stakeholder
Involvement to Build Consensus and Ensure
Goal-Oriented Development and Implementation
The selection and active participation of stakeholders and the
building of consensus are critical to the success of the AI system
development and implementation. The stakeholders involved
should be balanced in disciplinarity (clinical, technical, and
administrative [80]) and operational responsibilities
(professional positions, employee representatives, etc) as well

as in age and gender. In Table 4, we highlight the key
stakeholders involved, and in particular their role in the
implementation process. Each stakeholder is selected for their
contribution, ranging from strategic aspects (management board)
to safety perspectives (employee representatives, quality
management, clinical experts, and users), and data-driven issues
(AI system developer, data scientists, and IT and regulatory
specialists). In principle, stakeholders in their profession are
not mutually exclusive; instead, one could fulfill several roles
simultaneously.
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Table 4. Key stakeholders and their roles in shaping and guiding AI development and implementation in health care. Each stakeholder is selected for
their contribution to the process and expertise.

Important areas of stakeholder involvement and key aspects they can addressStakeholder

The management board sets an overall vision and strategy, leading change management [57,81],
and providing investment [82] in staff, hardware, and supporting infrastructure [17]. They foster an

Management Board

institutional culture that tolerates experimentation (and failure) [80], serve as the institution’s most
credible communicator (ensuring transparency around risks and benefits), and manage external re-
lationships by forging alliances with industry innovators, researchers, professional associations, and
policymakers.

The foremost priority of employee representatives is to defend and improve working conditions,
including occupational safety, workload management, and job security. Although large-scale staff

Employee Representatives

redundancies are unlikely consequences of the near-term implementation of AIa in hospital health
care systems, which are operating against a backdrop of large staff shortage [83,84], anxiety about
automation and transformation of job roles is real [85]. Employee representatives ensure that AI is
implemented in a way that eases staff workload and safeguards their well-being and autonomy. In
the mid- to long-term, they also negotiate fair compensation policies [86] and career development
frameworks that reflect changing roles and skills in an increasingly digital workplace.

The AI system owner holds primary accountability for the system’s performance, safety, and oper-
ational impact. They lead the project and ensure alignment with strategic goals and regulatory

AI-System Owner and teamb

compliance, while understanding the users’ “pain points” both from a clinical and organizational
perspective. Their responsibilities include bridging the communication gap between technical and
nontechnical language, balancing different perspectives, and developing educational approaches
[66] to increase user adoption.

Clinical experts identify clinical relevance and utility, which are interpreted and transcribed into a
specific scope (intended purpose that specifies clinical indication and initial target group). They

Clinical Experts

provide crucial input to clinical validation and safety, ensuring the AI system integrates effectively
into workflows, as well as initiate, oversee, and conduct clinical trial–based AI studies.

To design and develop machine learning algorithms tailored to specific needs, the AI system devel-
oper must integrate and harmonize data from different sources [15]. They also validate the AI

AI System Developer

model and detect and mitigate model bias to ensure the systems are fair, scalable, adaptable, and
verifiable in real-world environments [87].

Users with varying levels of digital literacy [57,88] provide real-world, iterative feedback on the
system’s usability, workflow integration, and perceived value. They often become multipliers for

Users (HCPc or patient)

AI adoption, and by their active participation in co-designing educational materials [66], they support
evolving digital competence among peers.

The data scientist safeguards the quality of the data foundation on which the AI system depends
during preparation, collection, and checking of the data, for example, by keeping data collection

Data Scientist

protocols and detecting data imbalance, bias, or outliers across age, sex, gender, race, or ethnicity
to prevent disparities and underperformance before they arise [89].

This role provides the essential technical infrastructure and ensures secure, seamless integration

with existing systems, like EHRd platforms or laboratory systems, requiring technical, syntactic,

IT Specialists

semantic, and organizational interoperability [15,90]. Beyond integration, they build and maintain
structures for data security, access control, and real-time support, and establish data backup and
disaster-recovery systems.

Regulatory Specialists provide expertise in medical device and AI law, data protection, and human

rights. They ensure regulation standards (like the MDRe and the AI Regulation) are met throughout
the product lifecycle, which is essential to mitigate legal risks and prevent potential breaches.

Regulatory Specialists

J Med Internet Res 2026 | vol. 28 | e80754 | p. 7https://www.jmir.org/2026/1/e80754
(page number not for citation purposes)

Schönfelder et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Important areas of stakeholder involvement and key aspects they can addressStakeholder

The role of the Notified Body is to assess whether medical devices meet European legislation, like
MDR. This includes determining the correct classification, evaluating legal compliance, and reviewing

technical documentation [75,91]. The Notified Body only has a direct role where a CEf-mark is
sought for medium or high-risk AI systems.

Notified Body

Quality management ensures continuous patient safety by monitoring and measuring performance,
outcomes, and the integrity of clinical workflows [87]. They establish comprehensive risk manage-
ment systems (eg, handling device failures or malfunctions) [87] and drive standardization. This
role also promotes safe system use by co-designing educational programs [66] for both HCP and
patients.

Quality Management

aAI: artificial intelligence.
bRole of the stakeholders whose input is coordinated through the AI-System Owner.
cHCP: health care professional.
dEHR: electronic health record.
eMDR: Medical Device Regulation (2017/745).
fCE: Conformité Européenne.

An interactive environment, with all critical stakeholder groups
adequately represented, enables and encourages the integration
of stakeholder insights and experiential learnings, while
promoting careful consideration of how AI systems are best
built to be suited to clinical workflows, as well as where existing
workflows may need to be modified to adapt to the AI system.
This does not mean that every stakeholder group is involved in
every decision and has an equal say in the progress of
digitalization. Creating this impression could lead to
disillusionment and eroded trust in digitalization, and would
probably slow down the whole process. Each stakeholder group
is involved in some part of the process, with their precise stages
of involvement and roles depending on their potential
contribution to the process, and it is essential that each
stakeholder is aware of the degree of their involvement.

A crucial success factor alongside the development and
implementation is the role of the “product owner,” who takes
the coordinating lead. As in-house development in health care
institutions often does not have a commercial development
focus, we use the term “AI-System Owner” to denote the
“product owner.” Although the title may vary by organization,
this role usually combines both the entire lifecycle product
ownership responsibilities and the domain expertise in health
care and AI. The absence of a single person taking responsibility
for the development and performance of the system will
generally result in a range of negative consequences, such as
poor stakeholder communication, a lack of clear vision, scope,
and prioritization, and other issues, as real-world examples [92]
have shown. We therefore highlight the AI-System Owner as
a central stakeholder leading a team of other stakeholders
(Figure 2).

Figure 2. The (ongoing) product development in a dynamic team led by the AI-System Owner. The AI-System Owner fulfils a crucial role as he is
leading a core team of relevant stakeholders during the process of development and implementation. In a hospital setting, team members will often
fulfill several roles simultaneously. AI: artificial intelligence; HCP: health care professional.
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Step 2: Agreement on the Overall Goals and “Device”
Purpose
The collaborative and effective implementation of an AI system
into clinical workflows starts with a collective agreement on
the goals of the implementation, for example, using methods
such as SMART (specific, measurable, attainable, relevant, and
time-bound), particularly the specific user (generally an HCP
or patient) whose needs the system is intended to address. These
identified needs are then interpreted and transcribed into a
specific scope of the device, known as the “Intended Purpose,”
which specifies the clinical indication, how the system addresses
this clinical indication, and the (initial) target group needs.

Although the regulations for AI-system design and
implementation do not formally require the direct involvement
of any other health care system actors than the “user” of the AI

and its “deployer” (in a broad sense), we argue that the
sustainable and beneficial implementation of AI systems needs
early and proportional agreement on goals and input from all
stakeholders. This includes discussion between the management
board, employee representatives, quality management, and the
AI-System Owner and their team (Figure 3). Later product
development steps require feedback between the AI-System
Owner team (including clinical experts and the users of the
system), and selected stakeholders (as shown in Figure 3), with
management “checkpoints” periodically to ensure that the
development of the AI-system is following the initially agreed
plan for the AI system. Given the complexity of
multistakeholder involvement, it is useful to have a set of rules
for working together at the beginning, and to repeatedly build
consent along the AI development life cycle, for which we
highlight techniques in Figure 3.

Figure 3. Stakeholder interaction and consent-building across the AI life cycle. The figure describes the co-development of an “in-house” AI system,
ie, one that is developed within a health care organization to address specific needs. During the development phases, which build on each other and can
be repeated, different groups of stakeholders interact to improve the AI system by providing feedback and optimizing the system’s adaptation to health
care professional workflows. Building consent with a range of different stakeholders with varying levels of experience and backgrounds is not easy.
We therefore highlight techniques for building consent at each stage of development to ensure an efficient and safe process that is in line with European
values and regulations. AI: artificial intelligence; MDR: Medical Device Regulation; ML: machine learning; PCCP: predetermined change control plan;
RWP: real-world performance; SaMD: software as a medical device.

Step 3: AI System Development “In-House”
While generally medical devices must undergo a conformity
assessment procedure and must be marked with a CE
(Conformité Européenne)-mark before being used, the European
Union (EU) exempts certain devices from this general obligation
and allows individual health institutions to develop and use
“in-house” medical AI systems involved in the diagnosis or
therapy of disease without the obligation to conduct a conformity
assessment procedure, as long as safety standards and those for

quality management are in place. Based on Article 5(5) of the
EU Medical Device Regulation (MDR; 2017/745) [75], this
exemption applies only for in-house use on a nonindustrial scale
and if the needs of the targeted patient groups cannot be met
through available and equivalent devices on the market [75,93].
Also covered is the in-house combination or modification of
existing systems or devices [93,94]. For example, in Table 5,
we have outlined 3 practical examples of AI systems, which
have been developed in-house in a German hospital setting,
each of them with a unique intended purpose, clinical indication,
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and target group. We highlight for each the technical approach
used as well as the stakeholders included during development

and potential prospective trial designs.

Table 5. Practical examples of AI applications developed in-house and their stakeholder integration. The AI use cases presented originate from the
SmartHospital.NRW [95] research project, funded by the Federal State of North Rhine-Westphalia, Germany. The project is limited to research and
development activities; therefore, the use cases are confined to the development stage. Clinical testing and product commercialization are explicitly
beyond the project’s scope.

AI-supported prevention of adverse eventsAIa-powered voice assistant for bedside
patient support

Automated discharge summaryUse case

Focuses on early and reliable detection of
nursing-relevant risks by enhancing existing
risk models based on structured nursing as-

sessments and integrating LLMsb to analyze
clinical progress notes and identify patient-
specific risk factors.

Enables patients at the bedside to interact
via natural speech, facilitating access to
medication schedules, personal calendars,
diary management, and support to over-
come language barriers through oral
translation and simplified language.

Automates and optimizes the cre-
ation of discharge letters within
hospital workflows to reduce clin-
ician workload and improve com-
munication regarding patient care.

Intended purpose

Designed to support systematic, early iden-
tification of nursing-related risks, including
falls, pressure ulcers, and malnutrition,
augmenting safety and enabling individual-
ized care planning.

Designed for patients requiring accessible
communication support, especially those
experiencing language barriers, vision
impairments, or limited mobility, while
promoting autonomy without providing
direct medical advice.

Addresses the challenge of time-
intensive medical documentation,
particularly discharge summaries
following inpatient stays.

Clinical indication

Nursing staff responsible for patient care
and hospitalized patients are actively in-
volved in care processes.

Hospitalized patients who require assis-
tance in accessing information and com-
municating effectively.

Primarily, hospital physicians with
indirect patient benefits, such as
improved continuity of care and
efficient information transfer to
general practitioners.

Target group

Integrates structured clinical data, unstruc-
tured data derived from speech-to-text con-
version of nursing assessments, and patient-
reported outcomes to facilitate comprehen-
sive risk detection.

Uses on-premises LLMs within dedicated
patient devices; enables localized process-
ing of voice input streams independent of
hospital system integration, thereby pre-
serving data sovereignty.

Uses generative AI language
models interfaced with hospital
information systems to au-
tonomously extract structured
clinical data and generate contex-
tually relevant text suggestions for
documentation.

Technical approach

Management Board, AI System Developer,
AI-System Owner, IT Specialists, Clinical
Experts, and Users.

Management Board, AI System Develop-
er, IT Specialists, Clinical Experts, and
Users.

Management Board, AI System
Developer, AI-System Owner, IT
Specialists, Clinical Experts, and
Users.

Stakeholders included
during development

Development prioritized screening instru-
ments to assess signs and symptoms of
nursing care, optimization of AI risk detec-
tion models, and ensuring data privacy using
pseudonymization and anonymization
techniques.

Followed an iterative development ap-
proach with thorough curation of informa-
tional content; faced technical challenges
such as limited server access before full
deployment of open-source models.

Developed iteratively as a proto-
type, validated with real clinical
data, while ensuring compliance
with regulatory, privacy, and inter-
operability standards.

Experience of develop-
ment

Pragmatic controlled trial in clinical wards
comparing standard care with and without
AI-based risk detection algorithms. Out-
comes: incidence of adverse events (falls,
pressure ulcers, and malnutrition), timeli-
ness of risk identification, and changes in
clinical workflow.

Patient-level crossover trial with and
without AI voice assistant support. Main
outcomes: patient autonomy, effectiveness
of information access, and user satisfac-
tion, controlling for intrapatient variability.

Cluster-randomized controlled trial
at the ward level, comparing stan-
dard discharge processes versus
AI-assisted summaries. Primary
endpoints: clinician documentation
time and report quality (as judged
by independent review).

Potential prospective
trial designs

aAI: artificial intelligence.
bLLM: large language model.

In contrast to commercial deployments, in-house systems offer
a distinctive opportunity for embedding participatory ethics,
iterative design cycles, and real-world validation and feedback
loops directly into the lifecycle of medical AI. This allows the
creation of a highly customized solution that fits in
location-specific clinical workflows and staff practices, which
can be extended to multiple systems within the same platform
and institution [76]. Moreover, a key advantage is the use of

the hospital's own data; however, this requires a well-developed
data infrastructure and processes for obtaining patient consent.
Considerations include interoperability and data preparation,
such as labeling (although label-free approaches are becoming
more common), structuring, and collection (requirements also
under the AI Regulation), in order to know which data can be
used for a specific solution.

J Med Internet Res 2026 | vol. 28 | e80754 | p. 10https://www.jmir.org/2026/1/e80754
(page number not for citation purposes)

Schönfelder et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Step 4: AI-System Testing, Validation, and Clinical
Evaluation
Health care AI demands rigorous, multidimensional evaluation
that must encompass not only technical performance, but also
clinical integration, and verify safety, usability, ethical
robustness, and regulatory compliance.

Independent assessment of device performance can be generated
through statistically sound test plans, which generate information
separate from the training data set [96]. Since validation in
real-world settings is still a bottleneck [97], prospective,
noninterventional silent trials [98,99] (where AI is tested within
the clinical pathway in real time without affecting patients) can
enhance transparency and facilitate informed deployment
decisions. For large language models (LLMs) and, in particular,
adaptive AI models that evolve over time, continuous validation
frameworks are needed [100]. Recent studies have highlighted,
substantial challenges to the reliability and safety of LLMs in
health care persist, including hallucinations [101], metacognitive
deficiencies [102], vulnerability to bias [103] and data-poisoning
[104], and problems in integration in existing workflows [105],
making single evaluation dimensions insufficient. Therefore,
multidimensional methods could help to operationalize
feasibility, score diagnostic accuracy or unsafe
recommendations, and detect bias and usability issues. Examples
are “QUEST” [106] to score outputs, or agentic-based

simulations such as “CRAFT-MD” [107] for clinical workflow
evaluation. Alignment with international AI standards (eg,
ISO/IEC [International Organization for Standardization/
International Electrotechnical Commission] 42001:2023 [108],
FG-AI4H [Focus Group on AI for Health] clinical evaluation
framework [109]) further strengthens interoperability and safety.

Beyond objective data and algorithm quality, subjective
feedback from users is essential [57,110]. Evaluations should
capture how AI systems integrate into existing workflows and
routines, their ease of use, and their perceived performance and
interface design. Researchers highlighted several approaches
for evaluation, such as through integrated feedback systems
[110,111] or through organizational internalization by creating
an “AI-QI”-unit responsible for quality improvement and
assurance [87], interacting as a “glue” between different entities.

Evaluation should follow a risk-tiered approach that links the
level of regulatory and ethical scrutiny to the severity of the
health decision involved (Figure 4). For instance, AI systems
used for administrative optimization or appointment scheduling
may require a lower level of risk mitigation, while those
supporting diagnostic or therapeutic decisions demand
significantly higher safeguards. This tiering can draw on the
EU AI Act’s risk classes and MDR risk classifications, and
should be developed in consensus with relevant stakeholders,
including clinical risk management and regulatory specialists.
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Figure 4. Risk-based tiering of safeguards. With a proportional approach to regulatory and ethical safeguards aligned with the severity of the health
decisions affected by an AI system, this provides a useful link between risk classification (eg, under Medical Device Regulation or the EU AI Act) and
the required level of human oversight, transparency, and stakeholder involvement. AI: artificial intelligence; EHR: electronic health record; EU: European
Union; LLM: large language model.

To ensure that the AI system is compatible with European
values, ethics-based auditing frameworks like capAI, grounded
in the EU AI Act, can guide risk identification in each phase of
the AI lifecycle from an ethical point of view [112]. The
integration of tools like the self-assessment list for trustworthy
AI (ALTAI) [113], developed by the EU High-Level Expert
Group on AI, into ethics-based auditing of AI systems can
further support responsible usage of AI and foster user trust.
Yet, ethical guidelines are just that: guidelines. They rarely or
incompletely answer concrete ethical questions regarding the
use of an AI system in a specific situation, such as the question
of specific moral responsibility if mistakes of AI systems lead
to patient harm. This is a highly discussed topic in ethics [114]
and becomes even more severe in the context of black-box
problems, eventually leading to moral responsibility gaps [115].
Other still unsolved ethical questions occur, for example,
regarding data ownership in the context of the principle of
beneficence (ie, promoting others’ benefit and preventing harm
[116,117]) and informed consent [118] or anthropomorphization
of AI [119]. Therefore, embedding ethical points of view into
the whole life cycle of AI is necessary [120].

Step 5: Development and Deployment of Training
Approaches
The successful adoption of AI by hospital employees correlates
with continuous development and training [88]. Although
training is also a requirement of the EU AI Act [121], it is of
note that only 24% of the health care institutions provide AI
training programs and workshops [122]. This underscores a gap
in education and certification, leaving clinicians without the
necessary tools to harness the full potential of AI. However,
there are various ways to support confidence in AI technologies
among HCPs. For example, (1) by investing in comprehensive
training programs that help to gain necessary skills [88] while
also extending existing programs with AI literacy, or (2) by
developing and provisioning resources and mechanisms to build
and strengthen connections among peers and innovators to share
their AI-related knowledge and experiences [80]. And more
importantly, AI training should be a fixed part of any
professional education and competency assessment, as well as
included in further training (eg, through integration into
Continual Medical Education programs) [123] to build
confidence in its use among the next generation of HCP and
achieve a symbiotic relationship between humans and AI [124].
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In order to build AI literacy among HCP in a safe and controlled
environment, training methods such as simulation-based
modules [125,126] (ie, practice in realistic settings [125,127]),
case-based exercises [128], and interactive workshops [129]
can help to explore tools repeatedly without risking patient
safety while facilitating experimental learning. Another method
of providing HCPs with hands-on experience using AI tools in
a controlled environment is to conduct a pilot phase, during
which AI is tested by selected clinical users in a narrow area of
practice, or shadow deployment, in which AI operates in shadow
mode alongside clinicians in real time and is guided by
predefined safety and workflow indicators [130]. This will also
influence trust and adoption among users and foster
psychological safety, since evidence from human-computer
interaction research indicates that a positive attitude toward AI
is not only a function of system transparency or explainability,
but also depends on users’ self-efficacy, previous experience,
and the perceived fairness and predictability of the system [131].
With regard to content, it is important to define responsibilities
within the company regarding who will take ownership of
training the users in basic competencies of AI literacy. The

AI-System Owner and his or her team would be the best fit, as
they combine the entire use case-relevant expertise through
different perspectives, ranging from clinical experts to system
developers.

Training should foster understanding of AI systems and facilitate
interaction and use of AI systems, and is relevant not just for
direct users, but for all HCPs who will work alongside care
systems influenced by AI (Figure 5) [15,66]. Key competencies
are a basic understanding of when and how to use AI, knowledge
about the use of the systems’ elements, the ability to make
informed decisions based on a risk-benefit analysis, the
awareness of legal and ethical considerations, and, to adapt to
new tools and applications [123,132]. Components of health
care AI training that are generic do not need to be developed
de novo by the health institution. However, specific training
directly related to the AI-system to be deployed will generally
be required, and it is often necessary to provide ongoing training
which takes account of the learning curve of the HCP in the use
of the AI, emergent problems such as automation bias [133]
and deskilling [134], and changes and further development of
the AI-systems.

Figure 5. The learning curve of the health care professional (HCP) in the use of artificial intelligence (AI) systems in health care. After training in the
basic AI principles and their use, as well as health care–specific guidelines for AI integration, on the first day of the system’s clinical use, the HCP
should be trained in the operational knowledge of the system being deployed. The HCP will then develop their skills through experience in their use.
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Step 6: AI-System Deployment, Real-World
Performance Monitoring, and Later Decommissioning
After model creation and testing, the goal is to place the system
in real-world clinical settings to improve patient care and
outcomes [135] according to the previously defined overall
goals and device purpose. This needs transparency, and
compliance with legal and ethical processes (user consent), as
well as the completion of all steps required for the exemption
to conduct a conformity assessment under in-house deployment
(“MDR Article 5(5)”) or third-party approval (CE-mark).
Therefore, looping in all stakeholders is needed to
collaboratively address associated challenges. A key role is
played by the management board and AI-System Owner to
provide a clear external and internal communication that signals
the prioritization of human well-being during the whole process,
and users as multipliers to promote trust for broad widespread
acceptance and use.

Involving all stakeholders also applies to monitoring and
oversight of real-world performance, as it needs constant
feedback from different perspectives to improve system
performance and data-related processes. The goal of monitoring
is to raise an alarm when unintended or special cases occur [87],
which emphasizes the importance of finding solutions through
collaboration and collective intelligence. The “AI-QI” unit
described above could consolidate and strengthen the established
stakeholder structure within the company long term. In addition,
algorithmic audits can serve as a framework for continuously
monitoring AI systems and understanding errors, how and why
these adverse events occurred, while anticipating their potential
consequences [136]. Real-world performance monitoring must
adequately account for model drift (degradation of AI system
performance over time) due to changes in external factors such
as patient populations, data collection, or medical practice [137].

Running a “legacy system” usually means facing layers of
technical debt, which slows down development and complicates
maintenance, and leads to several risks, such as the technology
becoming less reliable and decreasing in performance, or
exposing systems to vulnerabilities such as cyberattacks.
However, decommissioning can be an option to abstract and
secure data in a newer system [138]. This process needs to be
carried out by IT and regulatory specialists, as well as data
scientists and quality management, in consultation with users,
the management board, and employee representatives, and
notified bodies where required.

Special Considerations for Adaptive,
“Agentic” and “off-the-Shelf” AI Systems

Some recent AI approaches are developed so that they learn
and adapt from data and feedback from the real world, allowing
them to change continuously without explicit interventions from
the developer [139,140]. Ensuring such systems are safe,
effective, and of high quality while being flexible requires a
more interactive and participatory approach than traditional
systems that follow static and predefined rules. This is especially
true when self-learning systems are combined with agentic AI
systems that are able to handle multilevel tasks, coordinate tools,

centralize human communication, and basically act as health
care teammates [26-29]. Autonomous AI systems and
LLM-enabled clinical decision systems have already been
approved in Europe [30,141,142]. As the approval and use
increase, and as these systems continuously encounter new
settings and tasks, it is essential to define clear boundaries,
controlled environments with clinician oversight [27], ongoing
auditing [26], and adequate training capacities for HCPs [27].
As broad models may be applied across multiple hospital
departments and clinical contexts (eg, simultaneously used in
an emergency department and psychiatry clinic) with dynamic
or variable workflow integration, transparent communication,
and iterative feedback across stakeholders (as presented in this
paper) are also critical to ensure adaptability and to address the
more complex ethical, legal, and social implications.

For off-the-shelf AI systems provided by external companies,
the interaction between stakeholders should be focused on
integration, compliance, and validation to meet operational and
regulatory needs. These systems may limit the level of
innovation achievable (no bottom-up activism from internal
users and developers to continually contribute improvements
and features that better meet unique requirements) and may lead
to trust issues due to less transparency in the handling of data
and underlying algorithms [14], requiring proactive
communication and change management. Responsibilities for
monitoring and model updating, especially with proprietary
algorithms, become more complex and need to be clarified
between external collaborators and internal stakeholders [87].
Platforms for delivering off-the-shelf AI systems now allow the
co-hosting of in-house developed AI models, alongside the
CE-marked models, enabling both approaches to coexist, and
making clear the need and possibilities for the co-design,
embedding, and co-implementation of commercial and in-house
approaches [143].

Discussion

Studies show a persistent gap between research and clinical
implementation [144,145], with medical AI adoption still very
slow [144,146] and limited to a few use cases [147]. Reasons
include the difficulty of aligning diverse stakeholder
perspectives within complex health care systems, the rigidity
of regulatory frameworks, and the limited consideration of
design approaches of work and organizational psychology [148].
As a result, achieving both technological effectiveness, in the
sense of medical accuracy and system performance, and user
acceptance among HCP and patients is often perceived as
conflicting goals.

A balance is therefore needed between ensuring safety and
enabling innovation [149]. EURAID finds this “sweet spot,”
accelerating digital transformation in a human-centric way.
Unlike existing frameworks, which focus narrowly on user
perspectives [80,150,151], isolated implementation aspects
[150,152-155] (such as evaluation, safety, or ethics), serve as
decision support tool for choosing the most fitting available AI
solution [156], or have a limited clinical scope [157-160],
EURAID explicitly maps all key stakeholders across the AI
development life cycle, clarifies their roles and key aspects they
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can address (Table 4) in co-creating, guiding, and governing
“in-house” AI development and deployment. It also details
stakeholder roles in real use cases, and methods for achieving
iterative consensus at each development stage across disciplines
that reflect shared goals in alignment with European values,
and strengthening the understanding of training methods,
content, and key competencies.

However, EURAID has some limitations. The resources or
specialized staff needed for iterative development and testing
are more limited in smaller hospitals, necessitating concentrating
multiple roles on fewer people, which can lead to a shortage of
expertise, but, on the other hand, may also speed up processes.
Although our approach can likely better address creative
problem-solving, traditional, rigid, and hierarchical structures
common in health care may hinder stakeholder selection based
on their contributions and expertise rather than their positions
and level of seniority. Although “in-house” AI devices may not
require CE marking, they are not exempt from regulation and
have legal liability implications. Health institutions must comply
with a number of obligations that may discourage them from
doing it at all, which slows down both innovation and
digitalization. A practical solution is to designate key staff for
legal or ethical liaison roles or establish a multidisciplinary AI
advisory board and data governance council within the
institution to ensure compliance and continuity.

Conclusions
EURAID is a pragmatic, solution-oriented framework,
compatible with European values and regulations, and ensures
that barriers to “in-house” AI development and implementation
in hospitals are acknowledged early and resolved through
collaborative problem-solving. The underlying principle is that
the likely future of medicine, driven by integrated, localized,
and adaptive AI technologies, will need all critical stakeholders
(which we portray individually in this paper) adequately
represented, and their various perspectives embedded in the
co-design, procurement, implementation, and oversight of AI
systems, ensuring that digital transformation in health care truly
benefits the people who will use them every day. Additionally,
as AI systems used vary by type and clinical setting, we propose
a risk-tiered approach that provides a useful link between risk
classification and the required level of human oversight,
transparency, and stakeholder involvement.

To translate EURAID into action, hospitals should begin by
conducting internal readiness assessments, establishing
cross-functional AI governance structures, and defining clear,
role-specific responsibilities for ethical, legal, technical, and
clinical oversight. Regulators and professional bodies should,
in parallel, create structures that connect local innovation with
next-generation European legislation, for governance that is as
intelligent as the technology built.
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