JOURNAL OF MEDICAL INTERNET RESEARCH Liang et al

Review

Predictive Performance of Artificial Intelligence Algorithms
for Gestational Diabetes Mellitus in Pregnant Women:
Systematic Review and Meta-Analysis

Yingni Liang!*, MM; Anran Dai'*, MM; Meiyan Luo®*, MM; Zhuolian Zheng', MM; Jiayu Shen', MM; Yinhua
Su'*, PhD; Zhongyu Li'*, PhD

1School of Nursing, University of South China, Hunan, China
2Department of Obstetrics, Second Affiliated Hospital of the University of South China, Hunan, China
*these authors contributed equally

Corresponding Author:

Zhongyu Li, PhD

School of Nursing, University of South China
No. 28, Changsheng West Road, Hengyang
Hunan 421001

China

Phone: 867348281809

Email: 1zhy1023 @usc.edu.cn

Abstract

Background: Gestational diabetes mellitus (GDM) is a common complication during pregnancy, with its incidence increasing
year by year. It poses numerous adverse health effects on both mothers and newborns. Accurate prediction of GDM can
significantly improve patient prognosis. In recent years, artificial intelligence (AI) algorithms have been increasingly used in
the construction of GDM prediction models. However, there is still no consensus on the most effective algorithm or model.

Objective: This study aimed to evaluate and compare the performance of existing GDM prediction models constructed
using Al algorithms and propose strategies for enhancing model generalizability and predictive accuracy, thereby providing
evidence-based insights for the development of more accurate and effective GDM prediction models.

Methods: A comprehensive search was conducted across PubMed, Web of Science, Cochrane Library, EMBASE, Scopus,
and OVID, covering publications from the inception of databases to June 1, 2025, to include studies that developed or
validated GDM prediction models based on Al algorithms. Study selection, data extraction, and risk of bias assessment
using the Prediction Model Risk of Bias Assessment Tool were performed independently by 2 reviewers. A bivariate mixed-
effects model was used to summarize sensitivity and specificity and to generate a summary receiver operating characteristic
(SROC) curve, calculating area under the curve (AUC). The Hartung-Knapp-Sidik-Jonkman method was further used to adjust
for the pooled sensitivity and specificity. Between-study standard deviation (t) and variance (t?) were extracted from the
bivariate model to quantify absolute heterogeneity. The Deek test was used to evaluate small-study effects among included
studies. Additionally, subgroup analysis and meta-regression were conducted to compare the performance differences among
algorithms and to explore sources of heterogeneity.

Results: Fourteen studies reported on the predictive value for Al algorithms for GDM. After adjustment with the Hartung-
Knapp-Sidik-Jonkman method, the pooled sensitivity and specificity were 0.78 (95% CI 0.69-0.86; 7=0.15, 1°=0.02; PI
0.47-1.09) and 0.85 (95% CI 0.78-0.92; 7=0.11, t>=0.01; P1 0.59-1.11), respectively. The SROC curve showed that the AUC
for predicting GDM using Al algorithms was 0.94 (95% CI 0.92-0.96), indicating a strong predictive capability. Deek test
(P=.03) and the funnel plot both showed clear asymmetry, suggesting the presence of small-study effects. Subgroup analysis
showed that the random forest algorithm exhibited the highest sensitivity (0.83,95% CI 0.74-0.93), while the extreme gradient
boosting algorithm exhibited the highest specificity (0.82, 95% CI 0.77-0.87). Meta-regression further revealed an evaluation
in predictive accuracy in prospective study designs (regression coefficient=2.289, P=.001).

Conclusions: Unlike previous narrative reviews, this systematic review innovatively provided a comparative and quantitative
synthesis of Al algorithms for GDM prediction. This established an evidence-based framework to guide model selection
and identified a critical evidence gap. The key implication for real-world application was the demonstrated necessity of
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local validation before clinical adoption. Therefore, future work should focus on large-scale, prospective validation studies to

develop clinically applicable tools.

Trial Registration: PROSPERO CRD42025645913; https://www .crd.york.ac.uk/PROSPERO/view/CRD42025645913

J Med Internet Res 2026,28:e79729; doi: 10.2196/79729
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for Systematic Reviews and Meta-Analysis

Introduction

Gestational diabetes mellitus (GDM) is one of the most
common metabolic disorders during pregnancy, characterized
by glucose metabolism abnormalities that first appear during
gestation [1]. The incidence of GDM has risen to 15.8% due
to factors like increased childbearing age, dietary changes,
and pre-pregnancy obesity [2-4]. GDM not only signifi-
cantly increased the risk of adverse pregnancy outcomes for
pregnant women, such as macrosomia, preterm birth, and
preeclampsia, but also had a profound impact on the long-
term health of their offspring, including an increased risk
of developing obesity, type 2 diabetes, and other metabolic
disorders in the future [5-7]. Therefore, early prediction and
management of GDM could effectively reduce the incidence
of GDM and its associated maternal and neonatal compli-
cations, thereby optimizing perinatal care and improving
long-term health outcomes.

The emergence of artificial intelligence (AI) algorithms
in medicine has opened new frontiers for predictive ana-
lytics, offering the potential to model complex, non-linear
interactions within multidimensional health data [8]. In fields
such as oncology, cardiology, and endocrinology, Al-driven
prediction models have demonstrated superior discriminative
accuracy compared to conventional statistical approaches,
largely by capturing subtle patterns and interactions among
risk factors that traditional methods might overlook [9-12].
This capability was particularly salient for GDM, a condi-
tion influenced by a dynamic interplay of genetic, metabolic,
hormonal, and lifestyle factors [13].

Building on this general capability, the application of
Al algorithms for the specific task of GDM prediction
has gained considerable momentum, with primary attention
to 2 domains: machine learning (ML) and deep learning
(DL) [14-16]. Commonly used ML algorithms, such as
random forest (RF), support vector machine, and extreme
gradient boosting (XGBoost), have been applied to struc-
tured clinical and biomarker data, while DL algorithms
typically use neural networks to exploit high-dimensional
inputs, including eHealth records and even image-based data
[17]. Despite promising reported accuracies, a critical and
persistent challenge is the marked heterogeneity in model
performance across different populations and settings [18-20].
The ML model developed by Gallardo et al [21], based
on routine early-pregnancy examination data, showed high
predictive accuracy in a particular population but performed
poorly in other GDM populations due to differences in data
characteristics. This discrepancy revealed a severe methodo-
logical inconsistency in these studies, such as the lack
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of standardized data preprocessing, non-uniform validation
strategies, and incomplete reporting of performance metrics.
This heterogeneity made it difficult to directly compare and
integrate the results of different studies.

Consequently, although a growing body of primary studies
investigating Al models for GDM prediction, the evidence
in this field remained fragmented and methodologically
heterogeneous. Currently, for the prediction of GDM, there
was still a lack of systematic reviews and meta-analyses
that could directly compare multiple Al algorithms head-to-
head, quantitatively assess their cross-population applicabil-
ity, and systematically examine methodological rigor. The
majority of existing original studies have developed single-
algorithm models and validated them only within mono-eth-
nic or single-center cohorts [16,17,21,22]. Consequently,
clinicians lack the high-level evidence required to determine
which algorithm is superior and whether reported accura-
cies generalize to other settings, which markedly impedes
the credible clinical adoption and broader dissemination of
Al-based prediction models.

To address these evidence gaps, this systematic review
and meta-analysis aimed to quantitatively synthesize the
predictive performance of prediction models constructed
using Al algorithms across different scenarios for GDM,
compare the effectiveness of different AI algorithms,
and identify the key factors influencing performance.
By providing a rigorous, evidence-based framework for
evaluating and comparing Al prediction models in GDM, this
systematic review sought to inform the future development
of more robust, generalizable, and clinically actionable tools,
thereby supporting efforts toward early identification, risk
stratification, and personalized management of GDM.

Methods

Registration and Protocol

This systematic review adhered to the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA)
2020 extended checklist, with extensions for Diagnos-
tic Test Accuracy (PRISMA-DTA) and literature search
reporting (PRISMA-S) [23-25]. The protocol was prospec-
tively registered with PROSPERO (International Prospective
Register of Systematic Reviews; ID CRD42025645913). And
the registration was completed on February 13, 2025, prior to
the commencement of data extraction and analysis (Checklist

1.
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Information Sources and Search Strategy

A comprehensive search was conducted across 6 databa-
ses, including PubMed, Web of Science, Cochrane Library,
Scopus, EMBASE, and OVID, from the inception of each
database to June 1, 2025. To enhance the accuracy of the
search results and avoid the omission of relevant studies,
the research term developed a rigorous search strategy
by combining Medical Subject Headings terms, keywords,
and synonyms. No previously published search filters were
applied so as to maintain a highly sensitive search strategy.

Liang et al

Table 1 summarizes the core search concepts and representa-
tive terms. And the detailed search strategy is presented in
Multimedia Appendix 1. In addition, we also reviewed the
reference lists of relevant literature, particularly systematic
reviews related to the topic of this study, and conducted
additional searches in the electronic databases to minimize
the omission of the key literature as much as possible.
All searches were conducted under the supervision of an
academic librarian.

Table 1. Search strategy using the population, Intervention framework for artificial intelligence—based gestational diabetes mellitus prediction

studies.
Concept Key terms (PubMed example)
Population “Gestational Diabetes Mellitus” OR “Pregnancy-induced Diabetes” OR “GDM” OR “Diabetes in Pregnancy”
OR “Maternal Diabetes”
Intervention “Artificial Intelligence” OR “Machine Learning Algorithms” OR “Deep Learning Algorithms” OR “Ensemble
Learning Algorithms”
Eligibility Criteria

To screen out the original studies relevant to this systematic
review from the retrieved literature, detailed inclusion and
exclusion criteria were defined (Textbox 1).

Textbox 1. Inclusion and exclusion criteria

Inclusion criteria

ing GDM.

 Studies published in English.
Exclusion criteria

* Studies that conducted among pregnant women with gestational diabetes mellitus (GDM) or those at risk of develop-

» Studies that completely constructed one or more predictive models for predicting GDM.
 Studies that used Al algorithms for the construction of a predictive model.

* Reviews, meta-analysis, protocols, letters, conference abstracts, case reports, and animal studies.

» Studies on the predictive accuracy of single-factor predictors.

 Studies only conducted a risk factor analysis without constructing a predictive model.

* Studies did not include any outcome measures for assessing the predictive accuracy of the predictive model.

Selection and Data Collection Process

Following the completion of the systematic research, all
records were imported into the reference management
software Endnote 21. After removing duplicate records, 2
reviewers independently examined the titles and abstracts of
each study. Studies not reporting Al-based predictive models
were discarded. Subsequently, a thorough full-text assessment
was conducted for all studies that initially met the criteria,
and the reasons for excluding each study were recorded
in detail. In the predesigned Excel spreadsheet, data was
extracted from studies that qualified based on the inclusion
criteria. The extracted information included: characteristics of
the study (authors, country, publication year, study design,
and sample size), characteristics of the participants (diagnos-
tic criteria for GDM and number of GDM cases), intervention
features (model development process, types of Al algorithms
used, methods for handling missing data, predictors, and
model validation), and study outcomes (assessment of model
accuracy). In cases where the information presented in the
literature was ambiguous, the researchers would proactively
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contact the corresponding author to acquire the relevant
information. The aforementioned process was independently
conducted by 2 authors. Any discrepancies were discussed
and resolved with a third author.

Study Risk-of-Bias Assessment

The Prediction Model Risk of Bias Assessment Tool
(PROBAST) was used to assess the risk of bias (ROB) for
each study. PROBAST consisted of four domains: partici-
pants, predictors, outcomes, and analysis [26]. Based on the
responses to the items provided in the PROBAST checklist,
a ROB rating (high, low, or unclear) was assigned to each
domain. The criteria for assessment were detailed below: (1)
the overall ROB was deemed “low” when all domains were
classified as “low risk™; (2) the overall ROB was considered
“high” if any domain was identified as “high risk”; (3) the
overall ROB was determined to be “unclear” when there
was at least one domain with an “unclear” rating, while
the other domains were classified as “low risk” [26]. The
quality assessment was conducted by the same 2 authors
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who performed the study selection and data extraction. Any
disagreements between the 2 authors were resolved through
consultation with a third author.

Effect Measures and Synthesis Methods

Statistical analyses were performed using Stata (version 17.0;
StataCorp LLC), R (version 4.2.0; R Development Core
Team), and Meta DiSc (version 1.4; Clinical Biostatistics
Unit) software. A bivariate mixed-effects model was used to
pool sensitivity and specificity, generate a summary receiver
operating characteristic (SROC) curve, and calculate area
under the curve (AUC). The Hartung-Knapp-Sidik-Jonkman
method was further used to adjust the pooled estimates.
All results were reported with 95% CI values. Between-
study standard deviation (t) and variance (t?) were extracted
from the bivariate model to quantify absolute heterogeneity.
And prediction intervals (PIs) were subsequently computed
to estimate the range within which the true sensitivity or
specificity of a future study was expected to lie, providing
a clinically interpretable measure of real-world dispersion.
Moreover, the Fagan nomogram was used to explore the
relationship between pretest probability, likelihood ratios
(LR), and post-test probability. The LR dot plot, divided into
4 quadrants based on the strength of evidence threshold, was
used to determine the exclusion and confirmation of the Al
model. Additionally, a bivariate boxplot was drawn to detect
heterogeneity caused by threshold effects. And subgroup
analysis was used to compare the predictive capabilities of
different Al algorithms in GDM prediction. In line with
current recommendations for interpreting heterogeneity, we
quantified real-world dispersion primarily using the T, 72,
and calculated PIs as the key measure of practical uncer-
tainty [27]. The I? statistic was considered but not empha-
sized, given its limited use informing the generalizability of
findings compared to PIs [27]. Based on the clinical and
methodological characteristics anticipated to cause heteroge-
neity across studies, a meta-regression analysis was used to
explore and explain such heterogeneity. It aimed to uncover
potential influencing factors and analyze which variables
might account for variations in the effect sizes. And the
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Deek test was used to evaluate small-study effects among the
included studies, with P<.05 indicating funnel-plot asymme-

try.
Ethical Considerations

This systematic review and meta-analysis was conducted
exclusively with published aggregate data. No individual-
level or identifiable participant information was involved.
Therefore, informed consent, institutional review board
approval, privacy protection, and participant compensation
were not applicable.

Results

Study Selection and Characteristics of
Included Studies

A total of 2790 studies were retrieved from the database.
After removing duplicates, the titles and abstracts of 1455
studies were reviewed, and the full texts of 116 studies were
screened. Finally, 22 studies were included in this study,
with 8 studies [14,15,28-35] being included in the systematic
review and 14 studies being incorporated into the meta-
analysis [15,16,21,22,28,36-44]. The detailed process of the
literature screening is illustrated in Figure 1. The fundamen-
tal characteristics of the included studies are presented in
Table 2. The included studies were conducted in 11 countries,
with 12 being single-center studies [14,16,21,28,30-32,36,37,
40,4143], 10 being multicenter studies [15,22,29,33-35,38,
39,42 441, 14 being retrospective studies [14,16,21,22,28-30,
32,36,37,39-41 43], and 8 being prospective studies [15,31,
33-35,38,42.44]. All 22 studies used ML algorithms, and 2
of them further used DL algorithms [16,42]. To evaluate the
predictive performance of the models, 12 studies conducted
internal validation [14,15,21,22,31,32,34,37,38,40-42], and 8
studies performed external validation [16,28-30,32,37,39 42].
Multimedia Appendix 2 provides a detailed record of the
model performance parameters for each study.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram for study selection. This figure illustrates
the process of identifying, screening, and selecting studies for inclusion in the systematic review, showing the number of records at each stage and
reasons for exclusions. Al: artificial intelligence; GDM: gestational diabetes mellitus.
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Table 2. General characteristics of the 22 studies included in the systematic review of artificial intelligence models for gestational diabetes mellitus
prediction.

Single-center or

Study Country Study type multicenter Diagnostic criteria Sample size Type of model
Belsti et al Australia Retrospective Multicenter IADPSG? 48,502 MLP
(2023) [22]
Ali et al United Arab Emirates Prospective Multicenter IADPSG 3858 ML
(2022) [33]
Wu et al China Retrospective Single-center IADPSG 32,190 ML and DL
(2021) [16]
Lin and Fang China Retrospective Single-center IADPSG 406 ML
(2023) [36]
Ye et al China Retrospective Single-center IADPSG 22,242 ML
(2020) [37]
Wang et al China Retrospective Single-center IADPSG 1075 ML
(2022) [30]
Wu et al China Retrospective Single-center IADPSG 17,005 ML
(2021) [28]
Wang et al China Prospective Multicenter IADPSG 1139 ML
(2021) [38]
Syngelaki et al England Prospective Single-center NICEY 41,587 ML
https://www .jmir.org/2026/1/e79729 J Med Internet Res 2026 | vol. 28 179729 | p. 5
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Single-center or
Study Country Study type multicenter Diagnostic criteria Sample size Type of model
(2025) [31]
Donovan et al America Retrospective Multicenter NIH® 11,56,708 ML
(2019) [39]
Kaya et al Turkey Retrospective Single-center IADPSG 97 ML
(2024) [40]
Huet al China Retrospective Single-center IADPSG 735 ML
(2023) [41]
Liu et al China Prospective Multicenter IADPSG 6848 ML
(2022) [34]
Lee et al Korea Prospective Multicenter NIH 1443 ML and DL
(2021) [42]
Kumar et al Singapore Prospective Multicenter IADPSG 222 ML
(2022) [35]
Bigdeli et al Iran Retrospective Single-center NIH 743 ML
(2025) [14]
Kurt et al Turkey Prospective Multicenter IADPSG 489 DL
(2023) [15]
Cubillos et al Chile Retrospective Single-center IADPSG 1611 ML
(2023) [21]
Ding et al China Retrospective Single-center IADPSG 554 ML
(2024) [43]
Kang et al Korea Retrospective Multicenter NIH 34387 ML
(2023) [29]
Zhao et al China Retrospective Single-center IADPSG 1,03,172 ML
(2025) [32]
Liu et al China Prospective Multicenter IADPSG 19,331 ML

(2020) [44]

4IADPSG: International Association of Diabetes and Pregnancy Study Groups.

PML: machine learning.

°DL: deep learning.

INICE: National Institute for Health and Care Excellence.
®NIH: National Institutes of Health.

ROB in Studies

Based on the PROBAST checklist, each study was assessed
in terms of participants, predictors, outcomes, and analysis
(Figure 2). The majority of studies consistently demonstrated
low overall ROB and high applicability, indicating reliable
methodology. However, in terms of overall ROB, 5 studies
were rated as “unclear” [15,33,35,37,40]. One study was
identified as having “high risk” in overall applicability due
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to insufficiently detailed descriptions of predictors used in
model development [15]. Additionally, within the analysis
domain, 2 studies were rated as “unclear” due to relatively
small sample size, and this might also be one of the potential
sources of bias [35,40]. In summary, most studies exhibited
strong methodological quality and applicability. The detailed
quality assessment of the included studies is detailed in
Multimedia Appendix 3.
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Figure 2. Risk assessment of the included models. This graph summarizes the methodological quality of the included prediction models, categorizing
ROB across key domains to help readers assess the reliability of the evidence. ROB: risk of bias
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Performance of Al Algorithms for GDM

A total of 14 studies conducted on independent patient
populations were included with the aim of evaluating the
predictive value of Al algorithms for GDM [15,16,21,22 28,
29,36-43]. Since some studies used multiple Al algorithms
to construct several prediction models, this systematic review
selected the model with the best performance reported in each
study for meta-analysis. The pooled sensitivity was 0.78 (95%
CI 0.69-0.86; 7=0.15, t?>=0.02; PI 0.47-1.09), and specific-
ity was 0.85 (95% CI 0.78-0.92; 7=0.11, t>=0.01; PI 0.59-
1.11) after adjustment for the Hartung-Knapp-Sidik-Jonkman
method (Figure 3). The wide PIs indicated substantial
heterogeneity in real-world performance across populations,
supporting the recommendation for local validation in the
target population before clinical deployment. Note that the
upper bounds of the PlIs exceeded 1.0, specifically reaching
1.09 and 1.11. This occurred as a result of back-transforma-
tion from the logit scale and was a recognized statistical
artifact, which did not indicate actual predictive performance
greater than 100%.

https://www jmir.org/2026/1/e79729

As depicted in Figure 4, the SROC curve revealed the
AUC of 0.94 (95% CI 0.92-0.96) for Al algorithms predicting
GDM, suggesting a strong predictive capability. Furthermore,
we set the pretest probability at 20% based on the pretest
probability of the disease. At this level, when patients were
predicted to have GDM by the AI algorithms, the true
positive rate was 79%, and when the prediction was not
GDM, the false negative rate was 4% (Figure 5). Moreover,
the model demonstrated a positive LR of 15 and a negative
LR of 0.17 (Figure 5). However, the summary LR plot for
the Al algorithms was located in the upper right quadrant
(positive LR>10 and negative LR>0.1: confirmation only),
and the individual studies were widely dispersed (Figure 6).
The results indicated that while the prediction models built on
Al algorithms generally demonstrated acceptable perform-
ance, they were not yet adequate for definitive diagnosis
or exclusion of GDM. Additionally, there were notable
variations in performance among the existing models.
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Figure 3. Forest plots of sensitivity and specificity in 14 included studies on using artificial intelligence algorithms for predicting gestational diabetes
mellitus. Each horizontal line represents the performance estimate of an individual study, with the diamond indicating the pooled result. The wide
variability across studies highlights substantial heterogeneity in model performance [15,16,21,22,28,36-44]. DNN: deep neural network; GBDT:
gradient-boosting decision tree; LR: logistic regression; RF: random forest; RNN-LSTM: recurrent neural network-long short-term memory; SVM:
support vector machine; XGBoost: extreme-gradient boosting.

Study Sensitivity TE

SE Weight IV, Random, 95% CI

IV, Random, 95% CI

Yitayeh Belsti et al (2023) Catboost 0.7890

Yanting Wu et al (2021) DNN 0.6301
Qin Lin et al (2023) RF 0.9086
Yunzhen Ye et al (2020) GBDT 0.9001
Yingting Wu et al (2021) RF 0.9298
Jingyuan Wang et al (2021) RF 0.7003

Brittney M. Donovan et al (2019} LR 0.7100

Yeliz Kaya et al (2024) XGBoost  0.4082
Xiaoql Hu et al {2023) XGBoost 0.8503
Seung Mi Lee et al {2021) RF 1.0000

Burcin Kurt et al {2023) RNN-LSTM 0.8437
Gabriel Cubillos et al (2023) SYM  (0.7555
Tianze Ding et al (2024) XGBoost (.7697
Hongwel Liu et al (2020} XGBoost 0.7601

Total (95% CI)

Prediction interval

0.0040
0.0069
0.0205
0.0053
0.0058
0.0103
0.0017
0.0702
0.0294

0.0274
0.0284
0.0341
0.0111

7.9%
7.9%
7.8%
7.9%
7.9%
7.9%
8.0%
6.3%
7.6%
0.0%
7.7%
7.6%
7.5%
7.9%

100.0%

0.79 [0.78-0.80]
0.63 [0.62-0.64]
0.91 [0.87-0.95]
0.90 [0.89-0.91]
0.93 [0.92-0.94]
0.70 [0.68-0.72]
0.71 [0.71-0.71]
0.41 [0.27-0.55]
0.85 [0.79-0.91]
1.00
0.94 [0.89-1.00]
0.76 [0.70-0.81]
0.77 [0.70-0.84]
0.76 [0.74-0.78]

0.78 [0.69~0.86]
[0.47-1.09]

Heterogeneity: Tau® = 0.0191; Chi® = 2883.82, df = 12 (P = 0); I* = 99.6%

Study  Specificity TE

SE Weight IV, Random, 95% CI

=
)
!
-

0.2 0.4 0.6 0.8 1 1.2

IV, Random, 95% CI

Yitayeh Belsti et al (2023) Catboost 0.9100

Yanting Wu et al (2021) DNN 0.8200
Qin Lin et al (2023) RF 0.8517
Yunzhen Ye et al (2020) GBDT 0.9900
Yingting Wu et al (2021) RF 0.7900
Jingyuan Wang et al {2021) RF 0.7600

Brittney M. Donovan et al (2019} LR 0.6400

Yeliz Kaya et al (2024) XGBoost  1.0000
Xiaoql Hu et al (2023) XGBoost ~ 0.9898
Seung Mi Lee et al (2021} RF 1.0000

Burein Kurt et al (2023) RNN-LSTM 0.9904
Gabriel Cubillos et al (2023) SVM  (.7504
Tianze Ding et al (2024) XGBoost (.9403
Hongwel Liu et al (2020) XGBoost 0.7700

Total (95% Cl)

Prediction interval

0.0015
0.0023
0.0246
0.0007
0.0033
0.0035
0.0005

0.0041

0.0048
0.0116
0.0118
0.0032

8.4%
8.4%
8.0%
8.4%
8.4%
8.4%
8.4%
0.0%
8.4%
0.0%
8.4%
8.3%
8.3%
8.4%

100.0%

0.91 [0.91-0.91]
0.82 [0.82-0.82]
0.85 [0.80~0.90]
0.99 [0.99-0.99]
0.79 [0.78-0.80]
0.76 [0.75-0.77]
0.64 [0.64-0.64]
1.00
0.99 [0.98-1.00]
1.00
0.99 [0.98-1.00]
0.75 [0.73-0.77]
0.94 [0.92-0.96]
0.77 [0.76-0.78]

0.85 [0.78-0.92]
[0.59-1.11]

Heterogeneity: Tau® = 0.0130; Chi® = 186194.99, df = 11 (P = 0); I* = 100.0%

https://www .jmir.org/2026/1/e79729

:

H

.
]

|

|
|

. -
B

.

0.2 0.4 0.6 0.8 1 12

J Med Internet Res 2026 | vol. 28 179729 | p. 8
(page number not for citation purposes)


https://www.jmir.org/2026/1/e79729

JOURNAL OF MEDICAL INTERNET RESEARCH Liang et al

Figure 4. SROCs of included studies. This plot shows the overall diagnostic accuracy of artificial intelligence algorithms, with the curve position
indicating the trade-off between sensitivity and specificity across different thresholds. The high AUC (0.87) reflects strong average discriminatory
power. SROC: summary receiver operating characteristic curve; AUC: area under the curve.
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Figure 5. Fagan nomogram of artificial intelligence (Al) algorithms for predicting gestational diabetes mellitus. The first column of this nomogram
represents the pretest probability, the second column represents the likelihood ratio, and the third shows the posttest probability. Interpretation: This
tool helps clinicians estimate how a positive or negative test result changes the probability of gestational diabetes mellitus. The limited shift from pre
to posttest probability indicates that current AI models provide only modest diagnostic value in clinical practice.
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Figure 6. Likelihood ratio dot plot of artificial intelligence algorithms for predicting gestational diabetes mellitus. The position of the summary point
in the upper right quadrant indicates that current artificial intelligence algorithms have confirmation but limited exclusion ability (positive likelihood
ratio>10 and negative likelihood ratio>0.1), supporting their role as screening adjuncts rather than definitive diagnostic tools. LRN: likelihood ratio

for a negative test; LRP: likelihood ratio for a positive test.
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From the models included in this systematic review,
all reported predictors were systematically extracted and
cataloged. The selection of key predictors for presentation
and further analysis was based on three principal crite-
ria: (1) clinical and pathophysiological relevance to GDM
development, as established in prior literature and clinical
guidelines; (2) frequency of reporting across the included
studies, ensuring the findings were representative of common
modeling practices; and (3) feasibility of meta-analytic
synthesis, prioritizing variables with consistent definitions
and measurements.

The consistently reported and clinically salient predictors
were age, pre-pregnancy body mass index, first-trimester fast

https://www jmir.org/2026/1/e79729

and history of GDM. These factors were well-recognized
risk determinants in existing GDM etiological research and
screening protocols. Detailed information is provided in
Multimedia Appendix 4.

Assessment of Small-Study Effects

Deek test (P=.03) and the funnel plot (Figure 7) both showed
clear asymmetry, suggesting the presence of small-study
effects. This asymmetry might stem from publication bias,
selective reporting, and methodological differences among
smaller studies.
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Figure 7. Deek funnel plot asymmetry test of small-study effects. The asymmetric distribution of studies suggests potential publication bias, where
smaller studies reporting higher accuracy may be overrepresented in the literature.
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Figure 8. Bivariate boxplot of threshold effect analysis. This plot evaluates whether heterogeneity in results can be explained by differences in
diagnostic thresholds used across studies, with dispersed points indicating substantial variability beyond what threshold effects alone can explain.

Bivariate Boxplot

©
5 @
4 -
95}
3
5 ®
» ®
= ®
O o4 ©
@]
2 ®
| P
1 o Wo)
®
0-
T T T @ T 1
0 2 4 6 8
LOGIT_SPEC
https://www .jmir.org/2026/1/e79729 J Med Internet Res 2026 | vol. 28 179729 | p. 12

(page number not for citation purposes)


https://www.jmir.org/2026/1/e79729

JOURNAL OF MEDICAL INTERNET RESEARCH

Subgroup Analysis

To evaluate the performance of prediction models constructed
using various algorithms, subgroup analyses were performed
on models that had been used in at least 3 studies, after
first excluding 2 studies with extreme values caused by
sparse data [40,42]. The performance of each algorithm was
assessed using AUC, sensitivity, specificity, positive LR,
negative LR, and diagnostic odds ratio (DOR). Details are
presented in Table 3 and forest plots for sensitivity and
specificity are shown in Figure 9. Among the subgroup

Liang et al

models with sparse-data studies removed, the models using
the RF algorithm exhibited the highest AUC, followed by
those using the XGBoost algorithm, while the models using
the logistic regression algorithm demonstrated the lowest
AUC performance. Additionally, these models demonstra-
ted varying performance across different metrics. The RF
algorithm exhibited the highest sensitivity (0.83, 95% CI
0.74-0.93), while the XGBoost algorithm demonstrated the
highest specificity (0.82, 95% CI 0.77-0.87) and DOR (49,
95% CI 11-211).

Table 3. Subgroup analysis of predictive performance across different artificial intelligence algorithms.

Models Logistic regression Random forest XGBoost* SVMP P value
Number 8 4 4 4 ¢
Aucd 0.75 0.87 0.86 0.78 <001
Sensitivity (95% CI) 0.67 (0.62-0.72) 0.83(0.74-0.93) 0.82 (0.79-0.85) 0.61 (0.36-0.86) <.001
Specificity (95% CI) 0.72 (0.66-0.79) 0.80 (0.75-0.85) 0.82 (0.77-0.87) 0.80 (0.61-0.99) 03
Positive LR® (95% CI) 2.8(1.7-4.7) 45(3.5-5.7) 10.1 (2.9-35.3) 42(19-9.2) <.001
Negative LR (95% CI) 042 (0.31-0.55) 0.17 (0.09-0.31) 0.21 (0.16-0.27) 0.45 (0.34-0.60) <.001
DOR! (95% CI) 7 (3-15) 26 (12-58) 49 (11-211) 9(5-17) <.001

34X GBoost: extreme gradient boosting.
bSVM: support vector machine.

“Not applicable.

dAUC: area under the curve.

°LR: likelihood ratio.

fDOR: diagnostic odds ratio.
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Figure 9. Forest plots of sensitivity and specificity in subgroup analysis. This forest plot presents pooled sensitivity and specificity estimates
stratified by algorithm type (logistic regression, random forest, XGBoost, and SVM), allowing visual assessment of performance variability across
model subgroups. The width of CI values reflects the precision of each estimate, while consistent point estimates across studies within a subgroup
indicate algorithm-specific stability in diagnostic performance [16,21,22,28,36,38,39,41-44]. DL: deep learning; SVM: support vector machine;
XGBoost: extreme gradient boosting.
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Meta-Regression Analysis

To further explore the potential sources of heterogeneity
in the performance of prediction models, a meta-regres-
sion analysis was conducted by including the study design
(whether the study was conducted in Asia), study type
(whether it was prospective), study design (whether it was
multicenter), sample size (whether it exceeded 1000), GDM
diagnostic criteria (whether it was based on IADPSG), and
the timing of model use (whether it was in first trimester).
Through meta-regression, we identified sources of heteroge-
neity among studies and evaluated their impact on diagnostic
outcomes. The results indicated that study type significantly
influenced heterogeneity among studies, with a trend toward

Liang et al

increased predictive accuracy in prospective study designs
(regression coefficient=2.289; P=.001). And the sample
size had a substantial impact on the heterogeneity across
studies, with predictive accuracy declining as the sample size
increased (regression coefficient=—2.535; P=.001; Figure 10).
This might reflect overfitting in small single-center datasets
and greater clinical heterogeneity in large multicenter cohorts.
Moreover, given the disparities among regions, the study
area also served as one of the potential sources of heteroge-
neity (regression coefficient=—2.139, P=.002). The detailed
procedures of the meta-regression are provided in Multimedia
Appendix 5.

Figure 10. Bubble plot of meta-regression examining the association between sample size and predictive accuracy. This bubble plot visualizes the
relationship between study sample size (log-transformed) and predictive accuracy (log-transformed diagnostic odds ratio) across all included studies.
Each circle represents an individual study. The fitted regression line demonstrates a significant negative association, indicating that larger sample
sizes tend to be associated with lower diagnostic accuracy. The plot provides an intuitive graphical confirmation of the quantitative meta-regression
results, highlighting sample size as an important source of heterogeneity in model performance. log(DOR) values were truncated at +3 for extreme

cases ( fp=0 or fn=0).
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Discussion

Overview

This systematic review and meta-analysis aimed to evalu-
ate the predictive performance of Al algorithms for GDM,
compare the efficacy of different algorithms, and determine
the key performance determinants. The pooled analysis
revealed that Al-based models exhibited robust predictive
capability for GDM prediction. However, the wide PIs
revealed substantial performance heterogeneity in real-world
applications, urging cautious interpretation of the currently
summarized high-performance metrics. In addition, the
summary LR plot and Fagan nomogram analyses indica-
ted that existing models were insufficient to independently
confirm or exclude GDM, so their present role should be
positioned as an adjunct screening tool.

Consistent with the mainstream research trend, this
systematic review further confirmed the dominant role of

https://www jmir.org/2026/1/e79729

the RF algorithm in predicting GDM, which corroborated
the findings of prior systematic reviews that highlighted
ensemble methods for their robustness [14,45]. However,
our analysis moved beyond merely confirming superiority by
quantifying its extent and contrasting it with other algorithms.
Specifically, the RF algorithm performed the best in key
metrics such as AUC and sensitivity, mainly because it
handles the complex, non-linear relationships inherent in
GDM prediction more effectively than linear models [46,
47]. This was particularly relevant in clinical settings where
data could be incomplete; the inherent ability of RF to
handle missing values gracefully contributed to its stron-
ger robustness when dealing with the imperfect data often
presented in routine care, which was a critical practical
advantage for implementation in real-world settings [47].
In contrast, the XGBoost algorithm demonstrated higher
specificity, probably benefiting from its built-in regulariza-
tion and feature-importance ranking, which made it more
proficient at identifying true-negative cases [48,49]. It was
worth noting that the 95% CI for the DOR of XGBoost was
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wide, reflecting marked between-study differences in sample
size, event rate, or clinical heterogeneity and indicating
that its actual diagnostic consistency was highly depend-
ent on specific population characteristics and implementa-
tion settings. Notably, this systematic review identified and
emphasized methodological heterogeneity as a key driver of
performance disparities. Inconsistencies across studies in data
preprocessing (eg, handling of missing values and feature
scaling), validation strategies (eg, data split ratios and internal
validation methods), and performance reporting standards
significantly hindered the comparability and integrability
of research outcomes. Therefore, while pursuing superior
algorithms, future studies should prioritize the establishment
and adherence to methodological reporting standards for the
development and validation of Al-based prediction models.

To further elucidate the real-world implications of our
findings, our meta-regression analysis identified several
influential factors related to variations in model accu-
racy, providing a more nuanced understanding than simple
performance pooling. Specifically, we found that prospec-
tive study design was associated with significantly higher
predictive accuracy. This might be attributed to more
standardized data collection procedures and better control
of confounders in prospective settings, whereas retrospec-
tive studies often relied on preexisting eHealth record data,
which could be heterogeneous and incomplete [50-52]. These
findings aligned with the results reported by Liu et al [53],
who reported that Al-based models in prospective cohort
studies achieved AUC values 4%-7% higher than those
from retrospective studies. This consistency across different
analyses strengthened the argument for prioritizing prospec-
tive validation designs. Additionally, we observed that studies
with larger sample sizes tended to report lower accuracy
estimates. This counterintuitive finding was crucial, as it
likely reflected greater demographic and clinical diversity
in larger cohorts, thereby reducing overfitting and offering
a more realistic, generalizable performance assessment than
optimistic estimates from small, homogeneous samples. This
underscored that larger, more diverse studies provided a more
trustworthy evidence base for clinical deployment. Similarly,
studies conducted in certain geographic regions also showed
systematically lower accuracy, possibly due to regional
differences in diagnostic criteria, risk factor prevalence, or
health care infrastructure. These findings indicated that the
performance of a model depended not only on the algo-
rithm itself but was also profoundly shaped by the environ-
ment in which it was developed and validated. This had
direct implications for implementation: a model successful
in one region might not translate directly to another without
adaptation and local validation.

Despite the strong performance of some algorithms, Al
models still faced critical barriers to clinical deployment that
should be addressed to realize their potential [54]. These
included the “black-box” nature leading to limited interpret-
ability, a persistent lack of large-scale external validation
in diverse populations, and the absence of standardized
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interfaces for integration with existing clinical workflows—
especially eHealth record systems [55,56]. To overcome
these barriers, future efforts should adopt a multifaceted
implementation-science approach. This entails: (1) prioritiz-
ing prospective, multicenter validation studies to generate
high-grade, generalizable evidence; and (2) incorporating
explainable Al techniques to enhance model interpretability
and foster clinician confidence. Ultimately, realizing the full
potential of Al in GDM prediction requires a concerted shift
from merely developing accurate algorithms to engineering
clinically viable, trustworthy, and deployable solutions.

Limitations

However, several limitations exist in this systematic review
and meta-analysis. First, most included studies and cita-
tions focused on East Asian populations, which might
limit the generalizability of our findings to multi-ethnic or
low-resource settings. External validation in diverse cohorts
from Europe, North America, and Africa should therefore
be needed to assess global applicability and to examine
performance after feature-set simplification. Second, owing
to limited application frequency, several emerging algorithms
such as artificial neural networks and DL were not inclu-
ded in the subgroup analysis. Future studies should pay
attention to the development of these emerging algorithms,
verify their performance through more empirical studies, and
explore their unique value in GDM prediction. Third, the
Deek funnel plot asymmetry test indicated potential publica-
tion bias, suggesting that studies reporting higher perform-
ance metrics might be overrepresented. This could inflate
the pooled estimates and limit generalizability. Future studies
should consider preregistering protocols and sharing analysis
code and datasets to improve reproducibility and reduce
selective reporting.

Conclusions

This systematic review and meta-analysis confirmed the
strong discriminative performance of Al models for GDM
prediction. However, substantial heterogeneity, publication
bias, and small-study effects currently limited their readi-
ness for direct clinical deployment. Unlike previous nar-
rative reviews, this study innovatively provided the first
direct comparative and quantitative synthesis of multiple Al
algorithms in this field. This approach filled a critical gap in
existing literature by offering an evidence-based framework
to guide algorithm selection, rather than merely summariz-
ing performance metrics. The key implication for real-world
application was the demonstrated need for local validation
in target populations before implementation. To translate
this potential into practice, future studies must prioritize
prospective, multicenter, large-scale external validations. The
ultimate goal was to develop Al tools that were not only
accurate but also interpretable and seamlessly integrable into
clinical workflows, thereby enabling reliable Al-driven early
prediction and management of GDM.
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