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Abstract
Background: The exponential growth of medical data and advancements in artificial intelligence (AI) have accelerated the
development of data-driven health care. However, the secure and efficient sharing of sensitive medical data across institutions
remains a major challenge due to privacy concerns, data silos, and regulatory restrictions. Traditional centralized systems are
prone to data breaches and single points of failure, while existing privacy-preserving techniques face high computational and
communication costs.
Objective: This study aims to provide a comprehensive review of the recent advances in blockchain-based federated learning
(BCFL) within the medical field. By exploring the synergistic integration of federated learning and blockchain, this review
evaluates how BCFL enhances data security, supports privacy-preserving cross-institutional collaboration, and facilitates
practical applications in health care, including medical data sharing, Internet of Medical Things, public health surveillance, and
telemedicine.
Methods: We conducted a systematic literature review using databases such as PubMed, IEEE Xplore, Web of Science,
and Google Scholar. Boolean logic and domain-specific keywords were used to retrieve studies from 2018 to 2025. After
automated deduplication and multistage manual screening, over 100 high-quality papers were included. These works cover
BCFL’s theoretical foundations, system architectures, application domains, limitations, and future directions.
Results: BCFL frameworks combine the decentralized trust and auditability of blockchain with the privacy-preserving
collaborative learning capabilities of federated learning. This integration mitigates risks such as model tampering, data leakage,
and a lack of incentives in federated systems. Applications span across cross-institutional medical data sharing, Internet of
Medical Things, epidemic forecasting, and telemedicine. Architectures including fully coupled, flexibly coupled, and loosely
coupled models offer varying trade-offs between efficiency, scalability, and security.
Conclusions: BCFL represents a transformative paradigm for secure, collaborative, and privacy-preserving medical AI. By
combining decentralized trust, incentive-driven participation, and privacy-enhancing machine learning, BCFL paves the way
for next-generation smart health care systems. Despite current technical and practical challenges, BCFL demonstrates strong
potential to support precision medicine, global health data collaboration, and large-scale AI deployment in health care.
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Introduction
Background
With the continuous advancement of medical informatiza-
tion, the volume of medical big data is growing exponen-
tially, offering significant opportunities for the application
of artificial intelligence (AI) in health care, particularly in
areas such as assisted diagnosis, personalized treatment, and
disease prediction. Especially in recent years, advances in
computing power and algorithmic innovation have made
machine learning (ML) models a cornerstone of medical
intelligence, with their efficient training and optimization
relying heavily on large-scale, high-quality datasets from
multiple sources [1-3]. However, the acquisition and sharing
of medical data face significant obstacles, including privacy
concerns, data security risks, and regulatory constraints [4].

In the digital medicine era, the secure exchange and
control of sensitive health information have become central
concerns in modern health care systems [5,6]. Meanwhile,
strict legal and regulatory requirements—such as HIPAA
(Health Insurance Portability and Accountability Act) and
GDPR (General Data Protection Regulation)—must be met
when handling these personal data [7]. Additionally, the
competition between different medical centers and hospitals
has led to data often remaining siloed [8]. These challenges
not only impede the effective integration of multisource
health care data but also hinder the translation of ML models
from theoretical research to clinical practice.

While conventional centralized data storage architec-
tures can partially facilitate model development, their
dependence on centralized infrastructures has become
increasingly problematic, rendering them vulnerable to
single-point failures and malicious cyberattacks [9,10].
Consequently, establishing secure frameworks for cross-
institutional data sharing and intelligent processing—while
rigorously protecting data security and patient confidential-
ity—has emerged as a pivotal challenge impeding progress
in medical AI. The fundamental tension between aggregat-
ing health care data for scientific progress and preserving
individual privacy and data security has spurred the develop-
ment of novel computational approaches. Federated learn-
ing (FL), as an emerging ML paradigm, addresses part
of this problem by allowing institutions to collaboratively
train models without exchanging raw data [11,12]. How-
ever, in practice, the deployment of FL in health care
faces practical obstacles: the integrity and authenticity of
model updates may be subject to security threats, includ-
ing malicious attacks, client-side data tampering, and model
forgery—all of which can reduce the accuracy of the global
model. Furthermore, at present, there is a lack of relia-
ble incentive structures for continuous participation, with
limited auditability. The heterogeneity between institutions
and edge devices undermines the integration and generaliza-
tion of the model. Blockchain technology, with its decentral-
ized architecture, immutable ledger system, and transparent
traceability, has become a potential solution to address these
limitations of logical reasoning [2,13,14]. When the two

are integrated, blockchain can provide a verifiable source
for model contributions, automated and transparent incentive
mechanisms [15,16], tamper-proof logs for auditing, and a
governance layer that supports cross-institutional workflows
[17]. Therefore, the combined paradigm of blockchain-based
federated learning (BCFL) is expected to become a practical
approach to coordinating data privacy, trust, and collaborative
intelligence in medicine.

Although research on FL and blockchain has accelerated
in recent years, existing reviews exhibit clear gaps in focus
and depth, limiting their value for clinical researchers and
multidisciplinary audiences. The main shortcomings can be
summarized as follows. First, most reviews examine either
FL or blockchain technology in isolation, without provid-
ing a systematic analysis of how these two approaches can
be integrated to address concrete challenges in health care.
Second, prior reviews tend to emphasize algorithmic and
technical details, while offering limited discussion of how
BCFL can be adapted to real-world medical scenarios—such
as cross-hospital electronic health record (EHR) integration,
collaborative training of medical imaging models, Internet of
Medical Things (IoMT) device coordination, and epidemic
surveillance. Finally, few reviews adequately address the
challenges, regulatory considerations, and future development
trends of BCFL within the constraints of modern health care
governance frameworks.

To address these gaps, this review makes three key
contributions. First, it provides a medical demand–orien-
ted, systematic classification of BCFL frameworks and
outlines their typical workflows. Second, it maps different
BCFL architectures to representative health care applica-
tion scenarios, clarifying their practical relevance. Third,
it analyzes the technical, regulatory, and implementation
challenges that currently hinder BCFL adoption and identifies
promising directions for future research, providing evidence-
based insights for clinical translation and decision-making in
the health care and biomedical research communities.
Objective
Although previous studies have analyzed BCFL frame-
works from the perspectives of technology and commer-
cial applications, the review of their practical application
scenarios in health care remains limited. Especially in the
era of AI, with the explosive growth of medical data, the
application of large models in medical practice has encoun-
tered some development obstacles, bringing some new ideas
for the application prospects of BCFL in health care. This
study investigates the synergistic integration of FL and
blockchain technology, elucidating their combined architec-
tural framework and operational mechanisms. We demon-
strate how this technological convergence enables secure,
privacy-preserving health care data sharing and collaborative
model development across distributed health care institutions.
Although blockchain-enhanced FL has recently emerged as
a promising approach in medical research, the field remains
nascent, constrained by technical limitations, unresolved
privacy issues, and implementation barriers. Furthermore,
we present a systematic review of current advancements in
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blockchain-assisted FL for medical applications and propose
actionable research directions to overcome existing chal-
lenges.

Key contributions of this work include:
1. This study systematically reviews the theoretical

foundations of FL and blockchain technology and
elaborates on their potential and advantages in the
medical field.

2. A comprehensive taxonomy of existing integration
frameworks, accompanied by a mechanistic analysis
of bidirectional benefits: how blockchain enhances FL
security and trustworthiness, and how FL expands
blockchain’s utility in distributed computing scenarios.

3. To summarize recent advancements and practical
applications of BCFL across key health care domains,
including cross-institutional medical data sharing,
IoMT, public health surveillance, and telemedicine.

4. The current technological limitations and application
challenges are examined, and key future research
directions are proposed to address these gaps and
advance real-world implementation.

By synthesizing current research and offering a structured
analytical framework, we aim to provide a comprehensive
reference for medical personnel, researchers, and health
care policymakers. Ultimately, it fosters the development of
trustworthy, privacy-preserving, and collaborative AI systems
that can support precision medicine and smart health care in a
decentralized digital era.

Methods
Overview
This review systematically summarizes recent advances in
BCFL within the medical field, following the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) checklist (Checklist 1). To ensure methodo-
logical rigor and reproducibility, we adopted a transparent
multistep process including comprehensive literature search,
independent screening, quality assessment, and evidence
synthesis.
Search Strategy
The literature data were primarily retrieved from several
prominent academic databases, including PubMed, IEEE
Xplore, Web of Science, and Google Scholar. To ensure the
timeliness of the research, the review focuses on literature
published between January 2018 and February 2025, while
also incorporating some early seminal studies to trace the
theoretical development and technological evolution of BCFL
in the medical field.

After that, the search strategy uses Boolean logic
operators to formulate a comprehensive formula, for
example, (“blockchain”) AND (“federated learning”) AND
(“medical” OR “healthcare”). To enhance retrieval effi-
ciency and encompass interdisciplinary intersections, the
search terms are further expanded, such as “(blockchain-ena-
bled federated learning),” “(distributed machine learning),”

“(decentralization),” “(Internet of Medical Things (IoMT),”
“(telemedicine),” “(EMR),” and “(epidemics)” are incorpora-
ted to ensure literature comprehensiveness. The exact search
string is as follows: (“blockchain” OR “distributed ledger
technology”) AND (“federated learning” OR “collaborative
learning” OR “distributed machine learning”) AND (“health-
care” OR “medical” OR “clinical” OR “EMR” OR “(epi-
demics)” OR “IoMT” OR “telemedicine”). Gray literature
(conference proceedings and preprints from arXiv) was
screened manually and included only if it contained original
data or detailed technical methodology relevant to BCFL.

Inclusion and Exclusion Criteria
To ensure relevance and academic rigor, this review
establishes strict inclusion and exclusion criteria. The
inclusion criteria are as follows: (1) the studies must involve
blockchain and FL technologies and explore their medical
applications; (2) the literature published in peer-reviewed
journals and reviews indexed in the Science Citation Index
or Social Sciences Citation Index or in top-tier interna-
tional conferences (eg, IEEE and Association for Comput-
ing Machinery) and seminal papers with >30 citations were
included regardless of publication venue; and (3) repor-
ted theoretical frameworks, system architectures, empirical
evaluations, or case studies. The exclusion criteria then
include (1) studies focusing solely on blockchain or FL
without medical applications, (2) editorial and opinion articles
that lack technical details or empirical validation, and
(3) duplicate reports or low-quality publications from non–
peer-reviewed sources.

Literature Screening and Processing
The above search strategy initially retrieved 2547 docu-
ments. After automatic deduplication by EndNote, 1327 were
retained. Subsequently, two independent reviewers (XW and
XC) manually screened all the literature in two stages based
on the inclusion and exclusion criteria. First, based on the title
and abstract, high-quality reviews, papers from top journals
and conferences, and literature that clearly explained the
application of BCFL in the health care field were selected,
totaling 319 articles. In the second stage, further review
was conducted. Through full-text reading, studies lacking
empirical verification, technical details, or experimental data
were eliminated, and ultimately 111 high-quality documents
were retained. In addition, to ensure the comprehensiveness
of the literature, this review also referred to the latest review
papers and included the core research results cited therein
to avoid missing key progress. Detailed literature retrieval
strategies can be found in Multimedia Appendix 1. After the
screening process, the reviewers evaluated the quality of the
literature. Since the corpus of this review mainly comes from
the cross-disciplinary research of medicine, engineering, and
computer science, the GRADE (Grading of Recommenda-
tions Assessment, Development, and Evaluation) framework
commonly used in clinical evidence-based studies was not
applicable. We used the Systematic Literature Review quality
checklist based on the Kitchenham principle [18] to score
each of the 12 indicators of the included studies, including
reproducibility, method transparency, evaluation design, data
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description, experimental validity, attack/privacy discussion,
and reproducibility, item by item (1/0.5/0). Two independent
reviewers (XW and XC) assessed each document. When there
were significant differences in the scores (the total score
difference of a single document was greater than 2 or there
were differences in key items), a third senior reviewer (YX)
arbitrated. Ultimately, the studies were classified into three
quality grades based on the total score: high (≥9), medium
(5-8), and low (<5). When writing summaries and conclu-
sions, priority was given to citing high-quality research.
Multimedia Appendix 2 [1-130] provides complete assess-
ment criteria, scoring rules, and statistics on peer-to-peer
agreements.

Results
Study Findings
Finally, this review is founded on over 100 strictly selec-
ted papers, encompassing theoretical research, technical
architecture, application scenarios, challenges, and future
trends. These studies provide a robust academic foundation
for an in-depth exploration of BCFL applications in medicine.
A PRISMA flow diagram illustrates the systematic selection
process (Figure 1).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the systematic review phases. FL:
federated learning.

Current Status of Artificial Intelligence in
Medicine
In the context of the rapid advancements in AI, the perform-
ance of ML models heavily depends on access to large
volumes of high-quality data. However, the health care sector
has long struggled with data sharing due to concerns over
privacy, security, and regulatory compliance. The prevalence
of “data silos” in health care impedes the advancement of AI
and hinders the translation of research findings into practical
clinical applications.

Traditional centralized ML approaches require aggregating
raw data from multiple sources to a central server for training.

While this approach allows for extensive data usage, it still
presents significant challenges in practical implementation.
First, data stored and transmitted in a centralized system
is susceptible to network attacks, which can lead to sensi-
tive information theft or tampering, posing a serious privacy
risk. Second, centralized storage faces significant compliance
challenges, especially under stringent privacy regulations
such as GDPR [7] and HIPAA, which further restrict the
cross-organizational exchange of health care data. Moreover,
health care organizations, research institutions, and enterpri-
ses are often reluctant to share critical data due to competitive
concerns and resource protection, thus further exacerbating
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data silos and hindering cross-organizational collaboration in
building high-quality ML models.
Federated Learning in Health Care
In this context, the limitations of traditional algorithms
are becoming increasingly apparent, driving researchers to
explore innovative solutions. In 2016, Google introduced
the concept of federated learning [19], a distributed and
collaborative ML paradigm. At its core, FL enables multiple
data holders to collaboratively develop a global model by
training locally and exchanging model parameters without
sharing raw data. This paradigm is well-suited for scenar-
ios with strict privacy requirements and decentralized data
that cannot be centrally stored, such as health care, finance,
and smart cities [20-23]. This approach not only effectively
enhances data privacy protection but also overcomes the
limitation of data silos, ushering in a new era of privacy-pre-
serving collaborative learning.

FL operates on the principles of distributed model training
and global parameter aggregation. One of its core algorithms
is the Federated Averaging (FedAvg) algorithm. As illustrated
in Figure 2, the fundamental process can be summarized as
follows [24,25]. The first step is that a central coordination
server initializes the global model and distributes it to all
participating clients (eg, hospitals or mobile devices). Then
each client trains the model locally using its private dataset
and transmits the updated model parameters (or gradients)
back to the central server in an encrypted form. Following
this, the central server collects and aggregates the model
parameters uploaded by all clients and updates the global
model based on a predefined aggregation algorithm (eg,
FedAvg). The updated model is then redistributed to the
clients for the next training round. This process is iteratively
performed over multiple communication rounds until the
global model converges or predefined performance metrics
are met.
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Figure 2. Federated learning architecture and workflow in the medical field.

Based on the above operating principle of FL, its unique
technical characteristics give it different advantages in the
health care field: if it can use large-scale, diverse, and
geographically distributed datasets without compromising
patient privacy, this decentralized approach not only mitigates
the impact of data silos, which are common in hospitals and
research institutions, but also captures a broader range of
features by leveraging heterogeneous real datasets, ultimately
achieving an AI model with higher efficiency, robustness,
and accuracy. Therefore, since its proposal, FL has shown
great application potential in the field of health care [26].
For instance, FL has been applied in drug research, allow-
ing pharmaceutical companies to leverage shared algorith-
mic models to accelerate drug discovery while avoiding
direct data sharing [27]. Additionally, FL-based collaborative
protocols, involving multiple hospitals and cloud servers,
have been developed for EHR analytics [28]. Moreover,

FL has been investigated for predicting hospitalizations in
cardiac patients [29]. FL has also been widely studied
in medical imaging applications, such as prostate cancer
detection, brain tumor segmentation [30], and MRI analysis
for Alzheimer and Parkinson diseases. Moreover, FL-based
approaches have been proposed for detecting coronavirus
infections [31,32].

Despite the promise of FL in medical applications, its
practical application still faces the following challenges: a
central concern is its dependence on a centralized server for
model coordination and parameter aggregation. However, the
central server can be a source of a single point of failure
and remains susceptible to man-in-the-middle attacks [33,
34]. Moreover, as an increasing number of local devices
simultaneously transmit model parameters to the central
server, it places significant pressure on server bandwidth and
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scalability, thereby elevating the risk of network congestion
[8,35,36]. Besides, although FL avoids direct sharing of
raw data, its training process may still inadvertently expose
sensitive information through model parameters. For instance,
via gradient inversion attacks [37], adversaries can recon-
struct sensitive training data from shared model parameters.
The risk is further heightened by the presence of malicious
participants, who may compromise the integrity of FL by
uploading falsified or adversarial local training updates, such
as poisoning attacks [38]. These attacks degrade the reliability
of the global model, reducing its accuracy and overall utility.
Additionally, the lack of a robust incentive mechanism
poses a practical barrier to adoption. FL implicitly assumes
that all participants willingly contribute data and computa-
tional resources without direct compensation. However, this
assumption is difficult to uphold in real-world scenarios.
The absence of a fair and transparent incentive mechanism
may diminish participants’ motivation to contribute high-
quality updates, ultimately degrading system performance
[39-41]. Moreover, some participants may receive rewards
without actively contributing data, leading to unfair financial
compensation.

When FL is applied to the medical domain, heterogeneity
across systems, data, and distributions presents a fundamen-
tal challenge to model reliability and practical deployment.
System heterogeneity arises from disparities in computing
power, memory, network stability, and energy availabil-
ity among participating devices [42]. This is particularly
critical in resource-constrained environments, where limited
hardware capabilities and intermittent connectivity can hinder
local training and delay model updates. Data heterogene-
ity further complicates collaboration, as medical institutions
often store data in different formats and standards, leading
to integration difficulties [43,44]. Variations in data quality—
such as incomplete records or inconsistent annotations—and
significant differences in dataset sizes across institutions can
distort the learning process and reduce model performance.
Most critically, distribution heterogeneity, or the non-inde-
pendent and identically distributed (non-IID) data prob-
lem, undermines generalizability. Institutions serve distinct
patient populations, resulting in divergent feature and label
distributions; for example, a model trained predominantly

on “healthy” samples may struggle with accurate predic-
tions when exposed to datasets with a higher prevalence of
“diseased” samples, reducing its generalizability.

These advantages and limitations together underscore the
urgent need for complementary technologies to enhance trust,
security, and coordination in FL workflows. Blockchain, with
its decentralized, tamper-resistant, and auditable infrastruc-
ture, offers a promising solution to many of these pain points.
In the following section, we explore how blockchain can be
integrated with FL to build more robust, transparent, and
privacy-preserving frameworks for medical applications.
Blockchain in Health Care
Introduced in 2008 as the foundational technology behind the
Bitcoin system, it was originally designed to solve trust-rela-
ted issues in digital currency transactions [45]. Essentially,
it functions as a distributed digital ledger, where transaction
records are maintained and shared across all participants
through a peer-to-peer network. Unlike traditional centralized
systems, blockchain eliminates reliance on a trusted third
party, ensuring decentralized data storage [46].

The implementation of blockchain technology relies on
multiple technical layers and core components. To fully
understand the principles of blockchain, it is essential to
analyze its specific components. The fundamental unit of
blockchain is the “block,” comprising two primary compo-
nents: the block header and the block body, which is shown
in Figure 3. The block header contains metadata, including
the hash value of the preceding block (which links the current
block to its predecessor), timestamps, random numbers, and
block version numbers. This metadata establishes the linkage
between blocks. The block body holds smart contracts and
actual data, including transaction records. These blocks are
cryptographically linked in chronological order, forming an
immutable chain structure. Each block is closely linked to
its predecessor via a hash value, ensuring that any tampering
with a single block will alter the hash values of all subsequent
blocks. This change is detectable and will be rejected by
the entire network, thereby preserving data authenticity and
integrity.
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Figure 3. A schematic diagram of the blockchain structure.

Furthermore, to fully understand the potential of blockchain
in such applications, it is essential to examine its underlying

architecture and systematically analyze its functional layers
(shown in Figure 4).

Figure 4. The system architecture of blockchain. P2P: Peer to Peer; PBFT: Practical Byzantine Fault Tolerance; PoQ: Proof of Quality; PoS: Proof of
Stake; PoW: Proof of Work; SCM: Supply Chain Management.

Data layer

Network layer

Consensus layer

Incentive layer

Contract layer

Application layer

Data blocks Merkel tree Hash function Asymmetric encryption

P2P Verification mechanisms Communication mechanisms

PoW PoS PBFTPoQ

Insurance mechanisms Distribution mechanisms

Smart contract Algorithms Script code

Digital currency Health care Financial service SCM

Fundamentally, blockchain systems are structured into 6
tightly interwoven layers, each addressing specific functional
needs. At the core lies the data layer, which serves as the
foundation for storing and organizing transaction records. The
data layer organizes and secures transaction records through

cryptographic techniques. This layer not only guarantees
data integrity and immutability but also significantly reduces
storage overhead, which is critical for handling the grow-
ing volume of medical data [47]. Above this, the network
layer enables efficient and reliable information exchange
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across decentralized nodes via peer-to-peer communication
protocols [47]. In the context of high-stakes environments
like health care, securing consensus across distributed and
often mutually untrusting participants is the responsibility of
the consensus layer. By establishing agreement on the validity
and chronological order of transactions, consensus mecha-
nisms prevent malicious interference and ensure the reliability
of shared records [48,49]. The widely adopted algorithms
include Proof of Work (PoW), Proof of Stake (PoS), and
Practical Byzantine Fault Tolerance (PBFT) [16,50,51]. To
sustain long-term network participation, the incentive layer
introduces economic mechanisms that reward nodes for
validating transactions and generating new blocks. This is
especially important in medical applications, where incentiv-
ized behavior facilitates the uploading of more high-qual-
ity medical data, while the authenticity and availability
of data directly affects patient outcomes. Building upon
these foundations, the contract layer operationalizes complex
protocols through smart contracts, which autonomously
execute predefined rules and transactions without the need
for third-party intermediaries [52]. In the health care sector,
this translates into streamlined workflows for processes such
as insurance claims, consent management, and secure data
access, offering enhanced transparency, reduced administra-
tive overhead, and minimized human error. Finally, the
application layer serves as the interface between users and
the blockchain, bridging technical functionality with real-
world applications. Across industries, this layer has fueled
innovations in financial services, supply chain management,
and beyond [53,54]. In health care, it enables secure sharing
of EHRs, protecting patient privacy, and supporting collabo-
rative research efforts across institutions [55]. By facilitating
trusted interactions in environments where data sensitiv-
ity and security are paramount, blockchain’s multilayered
architecture offers an indispensable foundation for integrat-
ing advanced paradigms such as FL, thereby unlocking
new possibilities for privacy-preserving, distributed medical
intelligence.

Through the analysis of the structure and underlying
architecture of blockchain, we can better understand that
blockchain has unique characteristics that distinguish it from
traditional systems, including decentralization, immutability,
transparency, traceability, security, anonymity, and high
availability [8,13].

These characteristics are particularly valuable in the field
of health care. For instance, decentralization eliminates
the inherent single point of failure in centralized medical
record systems, thereby enhancing the system’s resilience
and reducing its vulnerability to cyber attacks. This feature
is particularly suitable for scenarios with high trust require-
ments, such as medical record management and supply chain
supervision. Immutability and traceability not only ensure that
clinical data, diagnostic results, and patient consent records
cannot be altered or deleted, guaranteeing the auditing of
medical data, but also are crucial for tracking the source of
drugs and ensuring the integrity of the supply chain, thereby
reducing the risk of counterfeit drugs. Furthermore, block-
chain offers a transparent and privacy-protecting environment

that enables authorized clinicians, researchers, and insurance
companies to verify data sources without exposing sensi-
tive patient information, thereby enhancing accountability
in medical research and drug development. The security of
blockchain stems from smart contracts, consensus mecha-
nisms, etc, maintaining transaction integrity and preventing
malicious nodes from arbitrarily altering the block addition
process [56,57].

As illustrated in Multimedia Appendix 3, a compari-
son of the technical characteristics of blockchain and FL
is presented. Simultaneously, given these characteristics,
blockchain facilitates trust establishment among untrusted
participants in wireless networks [58,59]. Consequently,
blockchain demonstrates great potential across various
domains, including cryptocurrencies, health care, and the
Internet of Things (IoT) [45,60,61]. In health care, blockchain
technology enables the storage and verification of IoT data
within patients’ electronic medical records (EMRs), clinical
trials, and sensors, granting patients control over their own
medical data [62-64]. During AI-driven sample learning,
medical data from various institutions—including x-rays,
CT scans, MRI reports, and pathological examinations—are
securely stored on the blockchain. Predefined entity and
event annotation platforms facilitate data labeling within
each institution, followed by model training on in-hospital
servers [65,66]. Kordestain et al [67] proposed HapiChain,
a telemedicine platform built on a patient-centered block-
chain infrastructure, ensuring the security of remote consulta-
tions between patients and doctors. In addition, decentralized
blockchain solutions, such as Drug-ledger and Med-ledger,
have been proposed to enhance traceability and security in the
pharmaceutical supply chain [68,69].

Given blockchain’s significant advantages in decentraliza-
tion, privacy protection, data immutability, incentives, and
automation, its attributes fit well with FL’s requirements for
secure data sharing and distributed modeling. Blockchain
can serve as a secure and reliable collaborative infrastruc-
ture for FL, addressing challenges such as trust deficiency,
data integrity, and transparency [4,22,70]. Conversely, the
decentralized data processing mechanism of FL can compen-
sate for blockchain’s limitations in scalability and compu-
tational efficiency. Therefore, integrating blockchain with
FL has the potential not only to address their respective
challenges but also to unlock new application scenarios and
possibilities. The following section examines the necessity
and feasibility of integrating blockchain with FL.
Integration of Blockchain and Federated
Learning in Health Care

Overview
BCFL has emerged as a promising solution in health care,
fostering a balance between privacy protection and data
collaboration while unlocking new opportunities for data-
driven health care innovation [71,72]. The following section
analyzes the complementary strengths and performance of
integrating blockchain with FL, illustrating how blockchain
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mitigates the limitations of FL (as illustrated in Multimedia
Appendix 3) and how FL benefits blockchain.

Blockchain Empowers Federated Learning in
Health Care
Decentralization Mitigates Single Points of
Failure and Scalability Bottlenecks
The traditional architecture of FL primarily depends on a
central server to manage and coordinate participants. This
architecture is susceptible to single points of failure and
can also result in bandwidth and computational resource
bottlenecks as the number of clients increases [70,73,74].
In contrast, blockchain’s decentralized architecture elimi-
nates reliance on a central server by leveraging a distrib-
uted network, allowing automated data collaboration across
multiple nodes and effectively mitigating the risk of single
points of failure [13]. In this context, temporary aggregators
are selected based on blockchain’s consensus mechanisms
(eg, PoW or PoS) [8,36]. Moreover, blockchain’s Byzan-
tine fault tolerance, which enables the dynamic manage-
ment of unreliable nodes through consensus mechanisms,
further enhances the stability of FL in large-scale distributed
environments [75].

Incentives to Enhance Participant Motivation
Traditional FL systems often lack effective incentives,
especially in environments where resources are unevenly
distributed. High-performing participants may struggle to
sustain long-term contributions due to the absence of direct
benefits [76,77]. Blockchain’s built-in incentive mechanisms
address this challenge by rewarding data contributors,
validators, and maintainers through tokens or other finan-
cial instruments, introducing an economic driver for FL
[78]. This incentive model encourages the contribution of
high-quality data while discouraging unreliable participation,
ultimately improving the overall performance and stability
of FL models. For instance, Weng et al [79] proposed
an incentive mechanism designed to promote collaboration
in training deep learning models. The mechanism intro-
duces two key concepts: compatibility and activity. Com-
patibility ensures that each participant receives optimized
rewards based on their contribution, while activity incenti-
vizes participants to update the local model and aggregate
the global model actively. Upon each global model update,
rewards are distributed to local devices and miners based on
individual contributions. Similarly, Kang et al [77] intro-
duced a reputation-based incentive model to measure client
trustworthiness. By leveraging blockchain’s immutability,
the system ensures distributed reputation management and
evaluates participants based on model quality and computa-
tional contributions.

Privacy Protection and Attack Resistance
Enhancement
Although FL protects raw data privacy, it remains vul-
nerable to adversarial threats such as poisoning attacks
and Byzantine attacks, which can mislead model training

and hinder convergence [36,80]. Blockchain strengthens
FL security through its immutability and tamper-proof
nature. Its authentication mechanisms detect and exclude
malicious nodes, ensuring that only authorized participants
can access FL data, thereby enhancing privacy protec-
tion. Moreover, blockchain’s cryptographic techniques and
anonymity mechanisms reduce the risks of background
knowledge attacks and collusion attacks [78]. Additionally,
its consensus mechanism ensures data consistency across
all nodes while using sophisticated algorithms to prevent
malicious nodes from compromising the network [81,82]. For
example, in medical data collaboration, blockchain records
the training processes and contributions of each participat-
ing hospital, ensuring both data integrity and privacy while
mitigating risks of data contamination and adversarial attacks.
Shayan et al [83] proposed a multi-Krum consensus mecha-
nism to counter poisoning attacks by electing a validation
peer committee that filters out malicious model updates.
Similarly, Chen et al [84] used a blockchain-based valida-
tion voting mechanism, where nodes vote on model update
validity and remove malicious devices based on consensus
results.

Transparency and Auditability
Blockchain’s transparency and auditability effectively address
the challenges of trust deficits and compliance difficulties
in FL. By leveraging blockchain’s transparent data-shar-
ing mechanisms, FL participants can verify the source
and integrity of health care data and model updates in
real time, ensuring fairness and reliability in contributions
[72]. Additionally, blockchain’s immutable records estab-
lish an accountability framework for FL [33,85]. These
records facilitate anomaly detection and responsibility
attribution throughout the model training process, strengthen-
ing compliance and governance mechanisms. This transparent
and auditable nature not only fosters trust in collaborative
learning but also provides a technological foundation for
regulatory compliance.

Automated Management With Smart Contracts
Smart contracts enable automated execution of key pro-
cesses in FL, including model update sharing, model update
validation, and global model aggregation. By enforcing
predefined rules, smart contracts eliminate human inter-
vention, ensuring an unbiased and tamper-proof process.
Moreover, they can dynamically allocate resources and
rewards through conditional triggering mechanisms—such
as when a model reaches an expected accuracy or when
a node successfully completes a specific task [86,87]. This
automation enhances the autonomy and reliability of FL
while ensuring transparency and fairness through open code
logic. By reducing administrative overhead and mitigating
trust concerns, smart contracts introduce a novel and efficient
approach for managing decentralized collaborative learning
[33].
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How Federated Learning Can Benefit
Blockchain
Enhancing Blockchain Consensus Efficiency
The blockchain consensus mechanism, while ensuring
network security and data consistency, is often associated
with substantial computational costs and energy consumption,
a challenge that is particularly serious in the PoW mecha-
nism [8,88]. PoW relies on miners solving complex hashing
operations to compete for block generation, necessitat-
ing the continuous operation of high-performance comput-
ing hardware, which in turn results in substantial global
energy consumption. Studies indicate that the annual energy
consumption of the Bitcoin network is comparable to that
of a small- to medium-sized country. This highly inefficient
competition leads to an enormous waste of computational
resources—only the first miner to discover a valid hash can
package the transaction and claim the reward, rendering all
other computational efforts futile. Furthermore, the exces-
sive energy consumption of PoW constrains blockchain’s
sustainable adoption in critical domains such as health care
data management and edge computing, necessitating the
development of more energy-efficient consensus optimiza-
tion strategies. In this context, FL offers a novel approach
to optimizing blockchain consensus mechanisms. Integrating
the blockchain consensus process with FL allows miners
to contribute to model training while competing for block
validation, effectively repurposing computational resources
that would otherwise be wasted. This approach not only
reduces energy consumption but also enhances computational
resource efficiency, rendering the consensus process more
practically valuable [89].

Facilitating Cross-Chain Data Collaboration
As blockchain applications continue to expand, the demand
for data exchange across different blockchains has grown,
making cross-chain technology a crucial solution to address-
ing “data silos” across various domains. FL and its variants,
such as federated transfer learning, can establish a unified
model collaboration framework across different blockchain
networks, enabling privacy-preserving data sharing and joint
modeling. By maintaining a shared ML model, disparate
blockchains can collaborate while preserving autonomy
and privacy, thereby facilitating cross-chain applications in
finance, health care, and other sectors [90].

Enhancing Blockchain Scalability
Blockchain faces storage and computational bottlenecks when
handling large-scale data. FL, by adopting a local train-
ing model that eliminates the need to upload raw data
to the blockchain, significantly reduces on-chain storage
demands. Additionally, FL alleviates blockchain’s compu-
tational burden by distributing processing tasks among
participating nodes, thereby providing a scalable foundation
for large-scale collaboration.

Architectural Frameworks for Integrating
Blockchain and Federated Learning
A BCFL typically adopts one of three architectural para-
digms: fully coupled, flexibly coupled, and loosely coupled
architectures [41,85,91]. These architectures differ in terms
of the degree of coupling between blockchain nodes and
FL clients, each offering unique characteristics in function
allocation, resource usage, and system structure.
Fully Coupled BCFL
The fully coupled architecture represents a highly integra-
ted design, wherein FL clients simultaneously function as
blockchain nodes, assuming dual roles. Consequently, each
node is responsible for local model training, update valida-
tion, global model aggregation, and new block generation.
These tasks are executed on a single node, fostering a fully
decentralized collaborative model [36,74,79,92].

Global model aggregation can be carried out either by
selected nodes or collaboratively by all nodes, depending on
the network’s design strategy. Moreover, the blockchain’s
distributed ledger not only records local model updates
but also stores global models and other relevant informa-
tion generated during training, ensuring data integrity and
traceability.

Flexibly Coupled BCFL
The flexibly coupled architecture achieves higher design
flexibility by separating FL clients from blockchain nodes.
In this architecture, FL clients primarily handle local data
collection and model training, whereas blockchain nodes are
responsible for validating model updates, storing the global
model, and maintaining the ledger [2,40,93]. The blockchain
can aggregate global models via selected nodes, which
typically possess superior computing resources and reliability,
thereby reducing resource consumption and enhancing system
efficiency. Alternatively, aggregation can be performed
collaboratively by all nodes, achieving full decentralization
and mitigating the risk of a single point of failure.

This architecture significantly lowers the resource
requirements for FL clients, allowing them to function
in different network environments while preserving block-
chain’s inherent advantages in data security and transparency.
Due to its high adaptability, this architecture has become
a preferred choice for large-scale distributed systems, such
as health care data sharing and cross-organizational collabora-
tion.

Loosely Coupled BCFL
The loosely coupled architecture further weakens the
coupling between blockchain nodes and FL clients by
optimizing functional allocation. FL clients primarily perform
local model training and upload updates to the blockchain
for validation, whereas the blockchain handles authentication,
model update validation, and participant reputation manage-
ment.
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In this architecture, the blockchain does not store model
updates but instead records only reputation-related data. A
reputation mechanism is implemented as a key criterion for
assessing participant reliability, thereby incentivizing them
to contribute high-quality data and updates [77,94,95]. This
design enhances system scalability by alleviating storage
pressure on the ledger while ensuring the trustworthiness of
participant behavior.

Workflow in BCFL
Overview
In BCFL systems, the flexibly coupled architecture
has emerged as the predominant choice for real-world
applications due to its optimal balance of efficiency and

adaptability. By separating FL clients from blockchain nodes,
this architecture allows them to operate on different net-
works and devices, thereby reducing system communication
overhead and latency. Additionally, it alleviates the computa-
tional and storage burden on client devices while preserving
key advantages such as data privacy protection and block-
chain-based verification, ultimately achieving an optimal
balance between efficiency and privacy. Leveraging these
advantages, the flexibly coupled architecture has demonstra-
ted significant potential in practical applications, including
medical data sharing and cross-organizational collaboration.

As illustrated in Figure 5, the following section focuses
on the specific workflows of mainstream BCFL frameworks,
analyzing their distinct advantages in practical applications.
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Figure 5. Flexibly coupled blockchain-based federated learning architecture and workflow. gRPC API: Google Remote Procedure Calls – Applica-
tion Programming Interface; REST-API: Representational State Transfer – Application Programming Interface.

Task Release
Task initiators release FL tasks and requirements on the
blockchain, specifying details such as data volume and type,
hardware specifications, and the number of training rounds.

Leveraging blockchain’s transparency and decentralization,
this process ensures fair and open task distribution while
fostering participant trust.
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Local Model Training and Update Transmission
Each FL client downloads the initial global model from the
blockchain, after which it preprocesses local data, extracts
features, and uses this data for model training, subsequently
generating local model updates. These updates are then
transmitted to the blockchain network in encrypted form.

It is important to note that, in the flexibly coupled
architecture, FL clients and blockchain nodes operate within
different networks and systems, each with clearly defined
responsibilities. Therefore, this architecture heavily relies
on integrated middleware, which serves as a communica-
tion bridge and coordinator between the two components.
In a research study, Lamken et al [96] used REST-API
(Representational State Transfer – Application Programming
Interface) for communication with the Hyperledger Fabric
blockchain, facilitating the recording and incentivization of
gradient uploads. Additionally, the Remote Procedure Calls
(RPC) protocol developed by Google, known as the gRPC
API, facilitates data exchange between FL clients and the
Ethereum blockchain network [33,96].

Blockchain Node Verification Update
Blockchain nodes (ie, miners) verify the uploaded model
updates using a predefined validation mechanism. Concur-
rently, miners exchange their validated local model updates
with each other. A consensus algorithm guarantees that only
validated updates contribute to the global model aggregation.

Global Model Aggregation
Subsequently, the blockchain selects an interim leader among
its nodes through a consensus mechanism. The selected
node(s) then collect verified model updates and aggregate
them to construct the global model [36]. The flexibly coupled
architecture enables this process to be executed by selected
nodes or collectively by all nodes, thereby opening up the
possibility of optimizing efficiency across various scenarios.

New Block Generation and Model Storage
Validated model updates and global models are packaged
by selected blockchain nodes to generate new blocks. Upon
adding the block header information, the legitimacy of the
block is verified through a consensus mechanism among the
nodes.

Distributed Ledger Update
The newly generated blocks are broadcast across the entire
network, and all blockchain nodes update their local ledgers
after verification. This process ensures the transparency and
traceability of the global model and its associated information
throughout the network.

Reward Distribution and Incentives
The system allocates rewards, such as cryptocurrency
or reputation scores, based on client performance. This
incentive mechanism not only motivates participants to
contribute high-quality updates but also deters malicious
behavior, thereby enhancing the accuracy and reliability of
the model.

Global Model Download
After the training is completed, all participating clients can
download a newly generated block containing the updated
global model parameters from the blockchain. Clients can
then independently decide whether to participate in the next
training round based on their specific needs. This mechanism
enhances both system flexibility and participant autonomy.

As illustrated in Table 1, a comparison of BCFL integra-
tion architectures is presented. In future practical applications,
the selection of a specific architecture must be carefully
evaluated based on scenario requirements, resource con-
straints, and design objectives to achieve optimal collabora-
tion and technical performance.

Table 1. Comparison of blockchain-based federated learning integration architectures.
Architecture
type Characteristics Advantages Disadvantages Applicable scenarios
Fully coupled
BCFLa • High integration:

FLb clients and
blockchain nodes
are fully merged

• Fully
decentralized: All
nodes work
together through a
consensus
mechanism

• High transparency: All
transactions and model
updates are recorded on
the blockchain

• Strong security: Resistant
to single-point failures and
man-in-the-middle attacks

• Strict control: Highly
controlled over data and
models

• High resource demand:
Requires significant
computational and storage
resources

• High network complexity:
All nodes participate in the
consensus mechanism, and the
network complexity is high

• Intensive coordination:
Frequent internode
communication is required

• Large-scale distributed
environments: Suitable
for large medical
institutions and research
centers

• Strict control and
security requirements:
Scenarios involving the
sharing and analysis of
sensitive medical data
[97,98]

Flexibly coupled
BCFL

• Functional
separation: FL
clients operate
independently

• Enhanced efficiency:
Optimized allocation of
computing and storage
resources

• Complex coordination: The
responsibilities of clients and
nodes are separated, and
complex coordination and

• Dynamic collaboration
settings: Suitable
for cross-institutional
medical data sharing,
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Architecture
type Characteristics Advantages Disadvantages Applicable scenarios

from blockchain
nodes

• Computational
offloading: Model
aggregation
occurs at selected
nodes

• Greater flexibility: Can
be adapted to different
application scenarios

• Improved scalability:
Supports large-scale data
sharing and collaborative
learning

management mechanisms are
required

• Centralization risks: Use of
a centralized aggregator may
introduce a single point of
failure

• Node selection challenges:
Issues such as node selection
criteria and fairness are
involved

IoMTc device
management [40,99]

Loosely coupled
BCFL • Minimal

integration: FL
clients and
blockchain nodes
operate
independently

• Lightweight
blockchain:
Primarily used for
identity
authentication and
reputation
management

• Reduced overhead:
Reduce the operating cost
of blockchain and improve
system performance

• Enhanced privacy: Reduce
on-chain storage pressure
and improve scalability

• Optimized incentives:
Reputation-based
mechanisms encourage
high-quality contributions

• Lower decentralization: May
still rely on trusted central
nodes for model aggregation

• Data integrity risks:
Blockchain does not store
model updates

• Resource-constrained
environments: Suitable
for wearable medical
devices and real-time
health monitoring

• Small-scale institutions:
Ideal for personal mobile
health applications and
smaller clinics [100]

aBCFL: blockchain-based federated learning.
bFL: federated learning.
cIoMT: Internet of Medical Things.

BCFL in Medicine

Overview
As the demand for data-driven technologies in health care
continues to grow, the BCFL framework presents signifi-
cant potential due to its advantages in privacy preservation,
data security, and collaborative efficiency. BCFL facilitates

cross-organizational data sharing and collaborative analytics,
optimizing personalized health care solutions while driving
advancements in areas such as telemedicine, IoMT, and
public health monitoring, which are shown in Figure 6. In
the following section, we will discuss the various applications
of BCFL in the medical field and analyze its key role and
potential value in addressing real-world challenges.
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Figure 6. Blockchain-based federated learning framework for different domains in health care. EMR: electronic medical record.

Cross-Institutional Medical Data Sharing and
Collaborative Analysis
In modern health care, data serves as a crucial resource
for driving innovation and enhancing treatment efficacy.
However, data sharing among health care institutions is
hindered by concerns over privacy, data security, and
regulatory compliance. The integration of blockchain and
FL offers an innovative solution for cross-institutional health
care data sharing and collaborative analysis. While numer-
ous studies have demonstrated the feasibility of BCFL in
various medical domains, the strength of evidence supporting

these applications varies considerably, and critical challenges
remain.

Several studies have investigated BCFL in the context of
chronic disease management, particularly diabetes prediction.
Hasan et al [101] developed a blockchain-FL framework
that reported a 15% improvement in predictive performance
across multiple metrics. Although these results are encour-
aging, the framework relied primarily on public diabetes
datasets with limited diversity, raising questions about its
generalizability to heterogeneous real-world populations.
Similarly, Moulahi et al [102] evaluated a BCFL model on
the Pima Indians Diabetes dataset, achieving a multilayer
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perceptron accuracy rate of 97.11% and an average FL
accuracy rate of 93.95% while protecting privacy. Yet, the
reliance on small, well-characterized datasets constrains the
robustness of the findings. Taken together, these studies
suggest that BCFL holds promise for chronic disease
prediction, but the supporting evidence remains preliminary,
and large-scale multi-institutional validation is still lacking.

In the realm of the IoMT, Ramani et al [103] introduced
the ODMSM-FL (Optimized Data Management and Secured
Federated Learning) approach to address secure data storage
and exchange using EHR datasets from HealthData.gov.
This research report presents a set of numerical results on
key performance indicators: transaction throughput (102.75
Kbps), data retrieval delay (64.02 ms), security (88.97%), and
accuracy (86.32%). The research results highlight the great
potential of ODMSM-FL in effectively addressing the urgent
data management and security issues in IoMT. However,
the system was evaluated under controlled experimental
conditions rather than real-world clinical settings, limiting
its immediate applicability. By contrast, research in medical
imaging tasks, such as brain tumor segmentation, has placed
greater emphasis on model accuracy and privacy preservation.
For example, Kumar et al [104] proposed a permissioned
blockchain-based federated framework with quality-aware
model aggregation, achieving improved segmentation metrics
on the BraTS 2020 dataset. Specifically, compared with the
baseline method, our approach increased the Dice similarity
coefficient of enhanced tumors by 1.99% and reduced the
Hausdorff distance of the overall tumor by 19.08%. Although
the study demonstrated methodological innovation, it still
relied on benchmark imaging datasets rather than prospec-
tive clinical data, which restricts the strength of evidence
regarding its clinical translatability.

Other investigations have targeted specific diagnostic
applications. Heidari et al [105] designed the FBCLC-Rad
(Federated Learning–Enabled Blockchain CapsNets Lung
Cancer Radiologist) framework for lung cancer detection,
achieving near-perfect accuracy on nodule identification
tasks. This technology achieved an accuracy rate of 99.69%
with the lowest classification error. While technically
impressive, results derived from controlled datasets may
not fully reflect the complexity of real-world diagnostic
workflows. Liang et al [106] extended BCFL applications to
clinical trials, where blockchain ensured data authenticity and
traceability, and FL supported participant screening across
organizations. This study represents an important step toward
integrating BCFL into the clinical research pipeline, but it
remains largely conceptual, with limited empirical validation
in actual trial environments.

A growing body of work has also highlighted the
integration of BCFL with EMRs to facilitate precision
medicine [99,107-110]. This approach has demonstrated
significant effectiveness in enhancing diagnostic accuracy,
optimizing treatment planning, identifying patient subgroups
for clinical trials, and accelerating the development of novel
therapeutics. Within the paradigm of precision medicine,
such a framework facilitates a transition from the traditional
“one-size-fits-all” treatment model to a more personalized

and adaptive intervention strategy. However, despite their
conceptual appeal, most studies are limited to prototype
frameworks or simulations and have not yet undergone
prospective evaluation in clinical practice. As such, the
current evidence supporting BCFL in EMR-based precision
medicine remains promising but immature.

Overall, existing literature demonstrates the conceptual
feasibility and technical potential of BCFL for cross-institu-
tional health care data sharing and analysis. Nevertheless, the
evidence base is uneven: studies using small public datasets
provide only preliminary support, while those addressing
more complex tasks such as imaging or clinical trials often
lack real-world validation.
Internet of Medical Things
The IoMT is an advanced technological ecosystem that
integrates internet technology with medical devices, enabling
real-time data collection, exchange, and analysis to enhance
clinical decision-making, disease prevention, and patient care.
With the rapid advancement of the IoMT, the traditional
hospital-centric model has evolved into a patient-centered
health care system driven by comprehensive clinical analysis.
The widespread adoption of IoMT enables individuals to
conveniently monitor their health at home, thereby streamlin-
ing diagnosis and treatment while allowing patients to enjoy
more efficient, personalized health care. However, despite
its growing adoption, IoMT in health care is also facing
significant challenges. One of the primary concerns is data
privacy and security. IoMT devices collect and transmit
vast amounts of sensitive data, including patient identities,
insurance details, and payment information. Once these data
are accessed by malicious individuals, it could lead to serious
consequences. Moreover, the absence of standardized security
protocols among IoMT devices exacerbates the risks of
data leakage and device manipulation. Consequently, device
manufacturers and health care institutions face immense
pressure to ensure data privacy and regulatory compliance.
Additionally, IoMT devices frequently encounter challenges
such as high computational complexity, elevated costs, and
communication delays due to resource limitations.

To address these limitations, several studies have explored
the integration of blockchain and FL in IoMT. For instance,
Rahman et al [111] proposed a lightweight hybrid FL
framework that leverages blockchain to secure health data
provenance and uses smart contracts to coordinate model
training and trust management. While this framework
demonstrates theoretical scalability and robust traceability,
its evaluation was primarily conducted in simulated settings,
raising concerns about its applicability in heterogeneous and
large-scale real-world health care environments.

Muazu et al [112] combined BCFL with edge computing
to improve resource allocation, reduce computational costs,
and enhance IoMT data security. By offloading intensive
computations to edge nodes, the study reported reductions
in latency and energy consumption. Meanwhile, the perform-
ance of the proposed model offers a higher precision of 83%
and an accuracy rate of 78%. However, the framework largely
relies on linear regression as the global learning model,
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which—although interpretable and useful for basic clinical
predictions—may not adequately capture the complexity of
real-world multimodal medical data. Compared with Rahman
et al [111], this work provides stronger performance evidence
in terms of latency and efficiency but weaker generalizability
for complex clinical prediction tasks.

Dhasaratha et al [113] extended BCFL by incorporating
reinforcement learning and distributed computing to improve
risk factor monitoring and COVID-19 patient prediction. The
dynamic optimization enabled by reinforcement learning is
a notable strength, allowing adaptive performance improve-
ments in evolving environments. Compared with the previous
two documents, this approach offers methodological novelty
but lacks equally rigorous performance benchmarking across
standard IoMT metrics.

To tackle fraud detection and scheduling issues, Lakhan et
al [114] introduced the FL-BETS (Federated Learning–Based
Blockchain-Enabled Task Scheduling) framework, which
integrates BCFL with dynamic heuristics for task schedul-
ing across fog and cloud nodes. The experimental results
show that the framework, from the initial 60:80 fraud
delay ratio to a 10:10 ratio, demonstrates better perform-
ance in energy-delay trade-offs and antifraud behavior. Yet,
the framework emphasizes technical efficiency rather than
clinical utility, and its reliance on hard and soft scheduling
constraints may limit adaptability in unpredictable medical
environments. Compared with Dhasaratha et al [113], which
focuses on patient-specific outcomes, this work provides
stronger technical validation but weaker clinical alignment.

In the context of wearable IoMT devices, Baucas et
al [115] designed a system that integrates FL with a
private blockchain in a fog computing architecture to
enhance privacy and adaptability. Their framework dem-
onstrated efficiency in resource-constrained environments
and produced accurate predictive models while safeguard-
ing patient privacy. Unlike the literature above, this study
directly validated its framework on wearable health care
devices, thereby providing more immediate clinical relevance.
However, the scalability of the approach for larger IoMT
networks remains uncertain.

Overall, these studies collectively highlight the potential
of BCFL in overcoming IoMT’s inherent privacy, security,
and performance limitations. Yet, their evidence strength
varies significantly: some emphasize theoretical frameworks
validated in simulations [111], while others demonstrate
more robust experimental performance [112,114] or closer
alignment with clinical practice [115].

Public Health Surveillance and
Epidemiological Forecasting
The global outbreak of COVID-19 highlighted the limita-
tions of existing surveillance infrastructures, particularly the
inability to provide accurate, real-time epidemic monitoring.
Traditional methods often struggle with the rapid spread and
variability of epidemics, while stringent privacy require-
ments hinder effective collaboration across institutions. For
instance, during global outbreaks such as COVID-19, the

inability of national and regional health care organizations
to efficiently integrate data has impeded comprehensive
analyses of epidemic progression [116]. This phenomenon
of data silos delays the formulation of precise response
strategies and undermines the efficiency of vaccine distribu-
tion and health care resource allocation. Therefore, achiev-
ing efficient and secure data integration while preserving
privacy has emerged as a critical challenge in public health.
The BCFL framework not only integrates anonymized health
data from diverse regions but also facilitates the efficient
construction of predictive models for epidemic spread. This
framework enables multiple health care organizations and
research institutions to collaborate securely without compro-
mising patient privacy, thereby providing robust data support
for early epidemic detection, transmission trend analysis,
and the formulation of intervention strategies. However, the
strength of evidence supporting BCFL frameworks varies
considerably across different studies, depending on data scale,
validation methods, and implementation feasibility.

FedMedChain [117] represents an early attempt to address
these challenges. By combining blockchain with FL and
leveraging the IoMT, it enhances the trustworthiness of
public health communication and mitigates risks associated
with centralized data transmission. Its contribution lies in
demonstrating that blockchain can ensure data transparency
and tamper resistance while maintaining privacy. Neverthe-
less, FedMedChain was mainly verified through small-scale
simulation experiments rather than real-world deployments,
which limited the strength of the evidence and its direct
clinical applicability.

In contrast, Kumar et al [118] explored a BCFL frame-
work for processing heterogeneous CT images using capsule
networks. This method achieves a high detection accuracy on
the CC-19 dataset, and its research results include 98.68%
specificity and 98% sensitivity. While the study demonstrates
the feasibility of applying BCFL to medical imaging and
highlights the benefits of privacy-preserving collaboration,
the restricted dataset size and limited institutional diversity
weaken its external validity. Compared with FedMedChain,
this workplaces greater emphasis on model performance but
provides weaker evidence regarding scalability and generaliz-
ability.

Durga and Poovammal [119] extended this direction
by proposing the FLED-Block (Federated Learning–Ensem-
bled Deep Learning Blockchain Model) framework, which
integrates blockchain with FL for COVID-19 prediction
using multisource heterogeneous CT datasets. This frame-
work improves the classification accuracy by using cap-
sule networks for feature extraction and extreme learning
machines for efficient classification. The research results
include an accuracy of 98.2%, a precision of 97.3%, and a
recall rate of 96.5%. Importantly, it integrates blockchain to
share model weights without the need to exchange raw data,
thereby resolving privacy issues. Compared with Kumar’s
study [118], FLED-Block was supported by evidence from
more hospitals, providing stronger validation. However, the
latency of blockchain is regarded as a limitation, rais-
ing questions about its applicability in real-time clinical
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diagnosis. Therefore, although this framework demonstrates
outstanding technical performance, its transformation in
emergency health care settings remains uncertain.

Abdel-Basset et al [120] proposed the blockchain-
based federated learning for pandemic diagnosis (BFLPD)
framework, which stands out for its focus on system security
and robustness in the context of smart cities. Unlike FedMed-
Chain and FLED-Block, BFLPD combines more encryption
technologies, including secure aggregation, homomorphic
encryption (Cheon-Kim-Kim-Song scheme), and consensus
mechanisms (PBFT), to mitigate malicious attacks and
improve reliability. The classification accuracy of BFLPD
reaches 95.14%, exceeding the benchmark set by the most
advanced distributed models. In addition, this framework also
demonstrated significant precision and recall rates (95.26%
and 95.77%, respectively) and a relatively high F1-score
(95.52%). Meanwhile, the authors incorporated heat map
visualization, further enhancing its clinical application value.
This framework provides stronger evidence than earlier
works, as it addresses adversarial threats that are often
overlooked in BCFL studies. Nevertheless, its reliance on
complex cryptographic and consensus algorithms introdu-
ces implementation challenges, such as high computational
overhead, which could hinder real-world deployment.

Telemedicine and Telesurgery
In recent years, telemedicine has experienced rapid advance-
ments, especially in response to the global COVID-19
pandemic, which has significantly increased its role in
modern health care systems. Telemedicine leverages modern
information and communication technologies to facilitate
medical information exchange across geographic boundaries,
encompassing various applications such as remote diagno-
sis, remote consultation, remote treatment, and continuous
health monitoring [5]. By providing on-demand, personalized
health care services, telemedicine optimizes medical resource
allocation, effectively addressing the challenge of unequal
distribution of traditional health care resources and ensur-
ing medical support for patients in remote or underserved
areas. Despite its potential, telemedicine faces several critical
challenges in practical implementation:

• Data Security and Privacy Risks: Most telemedicine
systems rely on centralized cloud servers to store
patient health data, making them vulnerable to single
points of failure.

• Lack of Data Access Control Mechanisms: Many
existing telemedicine platforms do not offer a robust
data access control framework, meaning that once
patient data are uploaded to the cloud, patients often
lose ownership and control over their own health
records.

• High Infrastructure and Computational Costs: Teleme-
dicine demands substantial computational resources,
high-speed communication networks, and specialized
medical equipment, particularly for real-time diagnosis
and treatment.

Building upon these advantages, recent studies have
proposed generalized frameworks that integrate blockchain

and FL to support secure and scalable telemedicine sys-
tems. For example, Hiwale et al [5] highlighted the impor-
tance of incorporating privacy-preserving technologies into
BCFL, laying the groundwork for reliable, privacy-com-
pliant telemedicine applications. Within such frameworks,
blockchain’s distributed ledger technology enables decentral-
ized data storage, reducing the risks of single points of
failure and data breaches, while ensuring transparency and
traceability in data access. Simultaneously, FL enhances data
privacy by enabling local model training, thereby minimiz-
ing the exposure of sensitive health information. Although
valuable as a theoretical framework, this study provides
limited experimental validation and thus represents weak
evidence for clinical applicability. Gupta et al [121] enhanced
trust between patients and providers by designing a smart
contract system based on public blockchains. The frame-
work allows patients to retain ownership and fine-grained
control of health data, addressing a central shortcoming of
conventional telemedicine platforms. Compared to Hiwale et
al [5] conceptual work, Gupta et al [121] system offers a
more concrete mechanism for authorization and data sharing.
Nonetheless, its validation remains restricted to simulation
environments, with no real-world deployment or clinical
evaluation. As such, while it provides moderate evidence of
feasibility, its generalizability remains uncertain.

With the rapid advancement of technology and the
increasing improvement of medical demands, traditional
telemedicine models are evolving beyond routine diagno-
sis and treatment. Among these advancements, telesurgery—
a critical extension of telemedicine—is emerging as a
transformative innovation. However, this technology imposes
stringent requirements on real-time data synchronization,
precise coordination of surgical equipment, and robust
data security, introducing new challenges to the reliability
of underlying technological infrastructures. For instance,
Chaudjary et al [122] proposed a secure telesurgery sys-
tem that integrates blockchain and FL with 6G communica-
tion networks and the Interplanetary File System protocol.
This study demonstrated notable improvements in latency
reduction, storage efficiency, and transmission reliability
compared with traditional telesurgery systems. Unlike earlier
works by Hiwale et al [5] and Gupta et al [121], Chaudh-
ary et al [122] provided more systematic experimental
results, suggesting stronger evidence of technical feasibility.
However, these results were still derived from controlled
simulations rather than real-world surgical environments, and
issues such as blockchain latency and computational overhead
remain unresolved. Therefore, while the study represents the
strongest evidence among current works, its translation into
clinical practice requires further validation.

In the past few years, BCFL’s research in the health care
field has shown significant growth. Multiple studies have
confirmed the improvement of model performance in public
datasets or experimental environments, such as enhancing the
accuracy of disease prediction, strengthening image diagnos-
tic capabilities, or improving edge device management.

However, when examined from the perspective of
evidence, most of these achievements are still at the stage
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of simulation experiments, prototype systems, or preclinical
validation. Research is usually based on controlled datasets or
static data scenarios, and there is a significant gap between
the model performance and the actual clinical diagnosis and
treatment process. Importantly, current literature pays more
attention to technical indicators (such as accuracy, Dice,
and delay) rather than specific medical endpoints, such as
changes in misdiagnosis rates, shortened treatment duration,
or improved patient prognosis. Therefore, a direct chain of
evidence has not yet been formed between the technical
performance of BCFL and its actual medical value.

Furthermore, the BCFL architecture is not inherently
compatible with the real deployment environment. The
medical system features a complex governance struc-
ture, compliance requirements, and heterogeneous infra-
structure. However, existing research often assumes node
autonomy, network stability, or institutional equivalence,
while neglecting key issues such as data authorization,
responsibility division, and system compatibility. Although
blockchain consensus, smart contracts, and high-intensity

encryption enhance security, they also bring about latency,
energy consumption, and maintenance costs, which conflict
with the real-time and reliability requirements of clinical
practice. These mismatches have led to many frameworks
performing well in experimental settings but being difficult to
migrate to real medical scenarios.

Given the above limitations, relying solely on technical
performance indicators cannot accurately reflect the maturity
of BCFL in medical scenarios. To more systematically
assess the application level of existing research, we adopted
an evidence stratification strategy to categorize the exist-
ing literature from multiple dimensions such as architec-
tural innovation, deployment environment, verification depth,
clinical relevance, and potential risks. This stratification
aims to reveal the gap between “technical performance” and
“medical practice value,” identify the most critical bottle-
necks in the process from conceptual framework to clini-
cal validation, and provide directional references for future
research design. Table 2 summarizes the evidence stratifica-
tion of typical BCFL studies in the health care field.

Table 2. Evidence stratification of blockchain-based federated learning studies in health care.

Reference
Application
domain

BCFLa architecture/
contribution

Deployment
environment Validation depth Clinical relevance/risk

Evidence level/
maturity

[101] Cross-Institutional
Medical Data
Sharing (Chronic
Disease)

Proposed a decentral-
ized and privacy-
preserving
collaboration
framework that
integrates blockchain
and FLb, enhancing
the predictive
performance of
diabetes models
while ensuring data
security and reducing
communication
overhead

Evaluation on
public dataset
(unspecified
diabetes data)

Retrospective data
validation

Population heterogene-
ity is not covered; it is
difficult to extrapolate
to real clinical patients

Level 3: Preclini-
cal

[102] Cross-Institutional
Medical Data
Sharing (Chronic
Diseases)

Developed a
blockchain-
integrated FL
mechanism to
enhance IoMTc data
privacy and improve
diabetes prediction
accuracy, achieving
97.11% accuracy
with a multilayer
perceptron model

Evaluation on
public dataset
(Pima Indians
Diabetes)

Retrospective data
validation

Relying on a small and
well-defined dataset
limits the robustness of
the findings

Level 3:
Preclinical

[103] Cross-Institutional
Medical Data
Sharing (Data
Management)

Introduced the
ODMSM-FLd
framework, which
optimizes storage,
management, and
privacy protection
for IoMT data,
enhancing data
security and system
efficiency

Evaluation on
public EHRe
dataset
(HealthData.gov)

Controlled
experimental
conditions

Data latency, human-
machine device
heterogeneity; The real
IoMT network is
uncontrollable

Level 2: Prototype
validation

[104] Cross-Institutional
Medical Data

Designed a
blockchain-powered
FL framework for

Evaluation on
public
benchmark

Retrospective data
validation

Relying on benchmark
datasets rather than
prospective clinical data

Level 2: Prototype
validation
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Reference
Application
domain

BCFLa architecture/
contribution

Deployment
environment Validation depth Clinical relevance/risk

Evidence level/
maturity

Sharing (Medical
Imaging)

brain tumor
segmentation using
3D U-Net, achieving
significant
improvements in
Dice similarity
coefficient and
Hausdorff distance

dataset (BraTS
2020)

limits the clinical
translational application

[105] Cross-Institutional
Medical Data
Sharing (Medical
Imaging)

Proposed the
FBCLC-Radf
framework,
integrating CapsNets,
blockchain, and FL
to enhance lung
cancer nodule
detection accuracy in
CT scans, reaching
99.69% accuracy

Evaluation on
public and local
dataset
(Cancer Imaging
Archive [CIA],
Kaggle Data
Science Bowl
[KDSB], LUNA
16, and local
datasets)

Retrospective data
validation

The process of not
covering the real image;
lack of doctor decision-
making and workflow
verification

Level 2: Prototype
validation

[106] Cross-Institutional
Medical Data
Sharing (Drug
Discovery)

Designed Rahasak-
ML, a decentralized
blockchain-FL
platform enabling
multi-institutional
collaboration with
enhanced
transparency and
security in drug
discovery

Theoretical
analysis; limited
empirical
validation

Conceptual framework Empirical verification in
actual test environments
is limited

Level 1:
Conceptual

[107] Cross-Institutional
Medical Data
Sharing (EMRg)

Integrated FL and
blockchain for cloud-
based medical record
recommendation
systems, leveraging
Hyperledger Fabric,
IPFSh, LightGBM,
and N-Gram models
for collaborative
learning

Evaluation on
public EHR
dataset
(not specified)

Simulated Limited to prototype
frameworks or
simulations, not
prospectively evaluated
in clinical practice

Level 2: Prototype
validation

[108] Cross-Institutional
Medical Data
Sharing (EMR)

Proposed a
blockchain-FL
framework for EHR
privacy protection,
achieving 92.5%
global model
accuracy and 88.33%
local model accuracy
using a deep neural
network

Evaluation on
public EHR
dataset
(Chronic Kidney
Disease [CKD]
dataset [UCI
Machine
Learning
Repository])

Retrospective data
validation

Limited to prototype
frameworks or
simulations, not
prospectively evaluated
in clinical practice

Level 3:
Preclinical

[109] Cross-Institutional
Medical Data
Sharing (EMR)

Used lightweight
encryption and FL to
secure EHR data in
an Ethereum test
environment,
reducing reliance on
trusted third parties

Evaluation on
public EHR
dataset
(Simulation in
Ethereum test
environment)

Simulated Limited to prototype
frameworks or
simulations, not
prospectively evaluated
in clinical practice

Level 2: Prototype
validation

[110] Cross-Institutional
Medical Data
Sharing (EMR)

Combined CNNi and
blockchain-FL to
enhance EHR data
security and detect
abnormal user
behaviors
automatically

Evaluation on
public EHR
dataset
(Python-based
simulation)

Simulated Limited to prototype
frameworks or
simulations, not
prospectively evaluated
in clinical practice

Level 2: Prototype
validation
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Reference
Application
domain

BCFLa architecture/
contribution

Deployment
environment Validation depth Clinical relevance/risk

Evidence level/
maturity

[99] Cross-Institutional
Medical Data
Sharing (EMR)

Explored blockchain-
FL applications in
precision medicine,
emphasizing
diagnostic accuracy,
treatment
optimization, clinical
trial subpopulation
identification, and
drug development
acceleration

Evaluation on
public EHR
dataset
(not specified)

Simulated Limited to prototype
frameworks or
simulations, not
prospectively evaluated
in clinical practice

Level 2: Prototype
validation

[111] IoMT (Data
Security)

Proposed a
lightweight hybrid
FL framework with
blockchain smart
contracts for edge
training plan
management, trust
evaluation, and
authentication in
IoMT networks

Evaluation on
public
COVID-19
dataset
(not specified)

Simulated The device has heavy
computational burden,
high system complexity,
and difficult clinical
translation

Level 1: Proof-of-
concept

[112] IoMT
(Data
Management)

Developed a
blockchain-FL
system leveraging
edge computing and
Paillier encryption to
securely manage
medical resource
transactions in IoMT
environments

Evaluation on
public dataset
(unspecified
diabetes data)

Retrospective data
validation

The device has heavy
computational burden,
high system complexity,
and difficult clinical
translation

Level 2: Prototype
validation

[113] IoMT
(Data Security)

Introduced a
distributed
reinforcement
learning method
integrating
blockchain and FL
for improved data
privacy and security
in IoMT applications

Evaluation on
public
COVID-19
dataset
(not specified)

Simulated The device has heavy
computational burden,
high system complexity,
and difficult clinical
translation

Level 2: Prototype
validation

[114] IoMT
(Data Security)

Proposed the FL-
BETSj framework,
leveraging fog
computing and
blockchain to
minimize energy
consumption and
latency while
enhancing fraud
detection in health
care

Evaluation on
Private dataset
focusing on
medical
insurance fraud
(Kaggle)

Simulated The device has heavy
computational burden,
high system complexity,
and difficult clinical
translation

Level 1: Proof-of-
concept

[115] IoMT
(Data Security)

Developed a fog
computing IoT
platform that
integrates FL and
private blockchain
technology to
enhance privacy
protection in
wearable IoMT
devices

Evaluation on
human activity
recognition
dataset
(UCIk Machine
Learning
Library)

Simulated The device has heavy
computational burden,
high system complexity,
and difficult clinical
translation

Level 2: Prototype
validation

[117] Public Health Proposed a
blockchain-FL-based

Evaluation on
public

Simulated High real-time
requirements in

Level 1: Proof-of-
concept
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Reference
Application
domain

BCFLa architecture/
contribution

Deployment
environment Validation depth Clinical relevance/risk

Evidence level/
maturity

(COVID-19
Imaging)

IoMT architecture
for COVID-19
detection and
epidemic
management; the
architecture enhances
data privacy through
FL and ensures data
transparency and
immutability via
blockchain

COVID-19
dataset
(Centers for
Disease Control
[CDC] data)

epidemic environment;
blockchain delay is not
resolved

[118] Public Health
(COVID-19
Imaging)

Developed a
blockchain-based FL
framework for
COVID-19 detection,
using Capsule
Networks for image
segmentation and
classification to
enhance data privacy
and model accuracy

Evaluation on
Private
COVID-19
dataset
(CC-19)

Retrospective data
validation

The limited scale and
types of data restrict the
generalization ability of
the model

Level 3:
Preclinical

[119] Public Health
(COVID-19
Imaging)

Introduced FLED-
Blockl, a blockchain-
based FL model
integrating Capsule
Networks for image
feature extraction
and extreme learning
machines (ELM) for
classification,
achieving high
accuracy with strong
privacy protection

Evaluation on
public
COVID-19
dataset
(CT data from
multiple
hospitals)

Retrospective data
validation (multisource
datasets)

The computational
complexity and the
feasibility of actual
deployment require
further research

Level 3:
Preclinical

[120] Public Health
(Pandemic
Diagnosis)

Designed BFLPDm,
a blockchain-FL
framework for
epidemic diagnosis
in smart cities,
particularly for
COVID-19; the
framework ensures
secure model
aggregation and
enhances global
model integrity and
efficiency

Evaluation on
public ultrasound
COVID-19
dataset
(POCUS,
ICLUS-DB, and
COVIDx-US)

Retrospective data
validation (multisource
datasets)

The huge computational
overhead and the high
resistance to actual
deployment

Level 3:
Preclinical

[5] Telemedicine
(Telemedicine
System)

Proposed a
blockchain-FL
application
framework for
telemedicine,
analyzing how these
technologies improve
data accessibility,
security, and privacy
in remote health care

Based on
theoretical
simulations or
examples

Conceptual framework Mainly focuses on the
theoretical framework,
the lack of a real-world
application cases

Level 1: Proof-of-
concept

[121] Telemedicine
(Remote Surgery
System)

An intelligent remote
surgery framework
named BITSn, which
is based on
blockchain and
artificial intelligence,
is proposed; this

Based on
theoretical
simulations or
examples

Simulated Limited to a simulated
environment, no actual
deployment or clinical
evaluation has been
carried out yet

Level 1: Proof-of-
concept
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Reference
Application
domain

BCFLa architecture/
contribution

Deployment
environment Validation depth Clinical relevance/risk

Evidence level/
maturity

architecture
integrates blockchain
technologies (such as
Ethereum and IPFS
protocols), 6G
communication
networks, and
federated learning (or
AIo algorithms),
aiming to enhance
the security, privacy,
and real-time
performance of
remote surgery
systems

[122] Telemedicine
(Remote Surgery
System)

Developed a remote
surgery system
framework leverag-
ing blockchain and
FL to enhance data
security, reliability,
and real-time
processing; the
framework integrates
6G networks and
IPFS for low-latency
and high-reliability
data transmission

Based on
theoretical
simulations or
examples

Conceptual framework There is insufficient
discussion on the
specific implementation
details of BCFL in
remote surgery and a
lack of clinical
deployment

Level 1: Proof-of-
concept

aBCFL: blockchain-based federated learning.
bFL: federated learning.
cIoMT: Internet of Medical Things.
dODMSM-FL: Optimized Data Management and Secured Federated Learning.
eEHR: electronic health record.
fFBCLC-Rad: Federated Learning–Enabled Blockchain CapsNets Lung Cancer Radiologist.
gEMR: electronic medical record.
hIPFS: Interplanetary File System.
iCNN: convolutional neural network.
jFL-BETS: Federated Learning–Based Blockchain-Enabled Task Scheduling.
kUCI: University of California, Irvine.
lFLED-Block: Federated Learning–Ensembled Deep Learning Blockchain Model.
mBFLPD: blockchain-based federated learning for pandemic diagnosis.
nBITS: Blockchain-Driven Intelligent Scheme for Telesurgery System.
oAI: artificial intelligence.

As shown in the table, most BCFL studies are still focused on
the concept or prototype stage, lacking multicenter real data
validation and evaluation corresponding to clinical endpoint
indicators. To promote the clinical application of BCFL,
improvements need to be made in three aspects: (1) conduct
cross-institutional and prospective validations to evaluate the
model’s performance in real patient populations and medical
processes; (2) strike a balance among security, latency, and
maintainability to avoid the unavailability caused by simply
pursuing complex encryption or on-chain computing; and
(3) achieve integration with medical information systems,
data governance and regulatory frameworks, and deploy the
system under the premise of clearly defining data responsi-
bilities and authorities. Only when verified under the joint
constraints of clinical workflow, patient heterogeneity, and
compliance requirements can BCFL gradually evolve from a
conceptual technology to a usable medical solution.

Discussion
Challenge
Although BCFL shows great potential in transforming health
care data sharing, its deployment in real medical environ-
ments is still highly limited. The vision of change for BCFL
must be balanced with technical limitations and the specific
complexity of applications (particularly the interoperability
gap, high implementation costs, and unresolved scalability
bottlenecks), which prevent it from being transformed from a
conceptual framework into regular clinical practice.

There are many application challenges in the field of
medical data sharing, including the lack of system interoper-
ability and the absence of standardized benchmark datasets
specifically designed for medical applications. Currently,
various health care information systems (eg, EMR systems)
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use diverse system architectures, data formats, and opera-
tional standards, lacking a unified interoperability frame-
work. Moreover, unlike conventional FL research that
often leverages open-access datasets such as CIFAR or
MNIST, health care data are inherently sensitive, fragmen-
ted, and institution-specific, which makes reproducibility and
cross-study comparability particularly difficult.

Scalability and communication efficiency also present
critical obstacles. As FL tasks expand, the number of
health care data sources and the complexity of training
increase significantly. However, in practical deployments,
the scalability and throughput limitations of blockchain are
particularly pronounced. Even in permissioned frameworks
such as Hyperledger Fabric, which offer improved through-
put, empirical benchmarks still report end-to-end latencies
of several seconds per block under moderate workloads.
Insufficient mining resources slow down block generation
and verification, hindering the efficient execution of large-
scale tasks [123]. Moreover, the influx of numerous par-
ticipants in distributed health care environments amplifies
the load on the blockchain network, while the efficiency
of existing consensus mechanisms is difficult to meet the
demands of health care applications [124]. When applied to
BCFL, these constraints imply that each iteration of local
training, parameter aggregation, and block creation may
introduce cumulative delays that significantly slow model
convergence. Furthermore, as the number of blockchain
nodes rises, communication costs increase exponentially. The
network delays and communication efficiency degradation
caused by high communication costs directly impact the
training speed and overall model performance.

High implementation and maintenance costs represent
another practical barrier. Establishing a BCFL infrastruc-
ture requires significant upfront investment in blockchain
nodes, secure servers, storage, and high-speed networking.
Additionally, energy consumption associated with blockchain
consensus protocols, as well as the operational costs of
managing frequent model updates across institutions, may
exceed the financial capacity of many health care providers,
especially in resource-limited settings. Without clear evidence
of cost-benefit balance, hospitals and regulators may be
reluctant to adopt BCFL at scale.

Additional difficulties arise from the integration of
BCFL within IoMT environments. The heterogeneity of
IoMT devices results in substantial disparities in storage
capacity, computational power, energy consumption, and
communication capabilities. For instance, advanced hospital
equipment often features powerful processors, stable power
supplies, and ample storage space, whereas wearable medical
devices typically operate on low-power batteries, constrained
network bandwidth, and limited computational resources.
This disparity in device capabilities poses a significant
challenge to the deployment of FL models. Moreover, energy
constraints and unstable network connections make edge
medical devices prone to data transmission failures or system
disconnections, ultimately resulting in end-device desynchro-
nization. This issue not only hampers the timeliness of data

uploads and model updates but may also prevent the global
model from converging efficiently.

Compounding these challenges is the heterogeneity of
health care data within IoMT systems. Data generated by
various devices exhibit significant diversity, often displaying
uneven distributions and violating the non-IID assumption.
For instance, hospital A may collect dynamic ECG signals,
whereas hospital B primarily acquires static medical images.
Such disparities in data distribution exacerbate the com-
plexity of model training. Moreover, variations in medical
coding standards across countries and regions (eg, ICD-10
[International Statistical Classification of Diseases, Tenth
Revision] in the United Kingdom vs ICD-10-CM [Inter-
national Classification of Diseases, Tenth Revision, Clini-
cal Modification] in the United States) contribute to data
standard inconsistencies. Consequently, such heterogeneities
complicate global model training, analysis, and evaluation,
ultimately impairing the model’s generalization across diverse
clients [125].

Beyond the application-level challenges, BCFL also faces
significant technical limitations that must be addressed
to realize its full potential in medical settings. Although
BCFL integrates the decentralized nature of blockchain
with the “data availability without visibility” principle of
FL to provide an initial level of privacy protection and
enhance overall system security, it does not fully resolve
privacy concerns. The sensitivity of patient data and the
stringent privacy requirements in the medical field necessi-
tate addressing a series of complex security challenges. The
system remains vulnerable to various types of malicious
attacks that pose significant risks to patient confidentiality
and institutional trust. For instance, background knowledge
attacks involve adversaries inferring sensitive information
using previously known data and analyzing shared model
parameters [3]. In conspiracy attacks, multiple nodes conspire
to steal data features from other participants by exchanging
local training information [126]. Inference attacks similarly
analyze model parameter updates, and attackers can infer
private details about patient data [1,43]. These threats
highlight the critical need for advanced privacy-preserving
mechanisms within BCFL to ensure the safety and integrity of
medical data.

While existing privacy-preserving technologies provide
preliminary protections, they are often inadequate when
faced with the dual demands of strong privacy and high
model utility. Homomorphic encryption allows computation
directly on encrypted data, preventing plaintext exposure.
However, its computational inefficiency makes it unsuita-
ble for large-scale, complex operations. Differential privacy
introduces noise to model parameters to obscure individual
data contributions; however, this can significantly compro-
mise model accuracy and system performance if not carefully
balanced. Secure Multiparty Computation (SMPC) offers
robust data confidentiality through distributed computation,
yet its reliance on frequent interaction between parties
contradicts the low-interaction protocols typically favored in
BCFL for efficient aggregation. These limitations under-
score the urgent need for lightweight, efficient, and scalable
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privacy-preserving solutions specifically tailored to the BCFL
context.

Another critical technical issue is the optimization of
incentive mechanisms. In traditional blockchain systems,
fixed token-based reward structures fail to reflect the true
value of each participant’s contribution [8]. This mis-
alignment can result in low-quality nodes receiving unde-
served rewards, while high-contribution nodes may become
demotivated due to insufficient compensation. In BCFL, this
issue is further complicated by the heterogeneity of partici-
pants, who differ in computational capabilities, data quality,
and participation frequency. Resource-constrained nodes,
in particular, may lack sufficient incentives to participate,
ultimately affecting the quality and diversity of the global
model. To address these disparities, incentive mechanisms
in BCFL must go beyond simple token rewards and instead
adopt dynamic, contribution-aware frameworks that account
for the multidimensional nature of participant involvement.
A well-designed incentive system can encourage broader and
more sustained engagement, improve fairness, and enhance
the overall efficiency and robustness of BCFL. There-
fore, developing more sophisticated and adaptable incentive
mechanisms is a pressing direction for future research.

While the immutability of blockchain and the tamper-
resistant nature of smart contracts ensure data integrity and
trustworthiness, these characteristics also introduce rigidity,
posing challenges in dynamic health care environments
[33]. Several scenarios highlight the importance for greater
flexibility: when patient data are entered incorrectly or
require modification, the immutable blockchain structure
cannot accommodate efficiently; then patients may request
the deletion or modification of their data to preserve privacy,
particularly to comply with data protection regulations;
moreover, in public health emergencies, ensuring timely
access to accurate health care data is crucial for effective
crisis management, necessitating mechanisms for control-
led updates within blockchain systems. These scenarios
underscore the need for greater flexibility within BCFL
systems, where mechanisms must be designed to support
controlled edits under predefined conditions—balancing the
need for data integrity with the operational demands of
evolving health care environments.

What’s more, another important consideration in the
medical application of BCFL is model interpretability, which
directly impacts the reliability of clinical decisions, patient
trust, and regulatory compliance. In medical decision-mak-
ing, the ability to interpret model outcomes is essential to
ensuring safety, transparency, and credibility. However, the
“black-box” nature of many complex deep learning models
limits their interpretability, posing significant challenges for
medical applications [106]. The necessity of interpretability
can be emphasized from multiple perspectives: For health
care professionals, AI model predictions must be interpretable
to allow physicians to understand the underlying reason-
ing and effectively integrate them into diagnosis, treatment
planning, and patient monitoring. Moreover, interpretability
enables researchers and clinicians to identify and trace the
sources of bias or errors in model predictions, facilitating

performance optimization and improving diagnostic accuracy
and reliability. Simultaneously, in terms of patients, the
widespread adoption of AI in medicine inevitably raises
concerns regarding privacy and ethics. Enhancing model
interpretability can build patient trust in AI-assisted diagno-
sis and treatment by clarifying the model’s reliability and
limitations, thereby mitigating concerns over “black-box”
decision-making. Moreover, at the regulatory level, numer-
ous countries and regions have mandated transparency and
auditability in medical AI systems to ensure that decision-
making processes align with ethical and legal standards.
Furthermore, medical AI operates within a highly interdisci-
plinary environment, encompassing physicians, technology
developers, data scientists, and other professionals. Interpret-
ability serves as a crucial bridge for communication among
experts from diverse disciplines, facilitating the effective
implementation of medical AI technologies and ultimately
enhancing the quality and accessibility of health care services.

Finally, summarize the limitations of the literature
included in the review: first of all, the risk of prejudice
is very common. Many available studies are conceptual
frameworks, simulations, or small-scale case studies, rather
than large-scale clinical implementations, without independ-
ent external validation. Common methodological flaws
include the selective presentation of favorable performance
metrics, limited or lack of adversarial and privacy attack
tests, and the absence of long-term or actionable measure-
ments (such as maintenance burden, interoperability failures,
or ongoing participation rates). Unavailable code, undisclosed
model/configuration details, and dependencies on nonsharea-
ble datasets often compromise reproducibility. In conclusion,
these factors have created systemic uncertainties, posing the
risk of overestimating feasibility and underestimating the
actual deployment challenges. Second, the included studies
demonstrated substantial inconsistencies in the key dimen-
sions of system design and evaluation. Research in BCFL
architecture (fully coupled, flexibly coupled, and loosely
coupled), blockchain configuration (private and public),
privacy countermeasures (secure aggregation, differential
privacy, homomorphic encryption, and SMPC), and data
sources (public benchmarks, single-center clinical records,
and various IoMT streams) varies greatly. The result
measurement criteria have not been standardized: some
papers prioritize predictive performance, others emphasize
communication or computational overhead, and still others
focus on source or incentive metrics. This heterogeneity has
led to different discoveries. Furthermore, there are potential
biases because many studies are conducted in a controlled
environment with carefully curated datasets, which may not
reflect the heterogeneity and noise of real-world medical
data. Finally, due to the limited performance index reports
and insufficient longitudinal validation, statistical uncertain-
ties (confidence intervals and variability between runs) are
rarely reported; large-scale, multi-institutional deployments
remain uncommon; and few studies have evaluated long-term
stability, scalability under large volumes of clinical data, or
regulatory compliance under real-world conditions. These
gaps prominently indicate the need for more robust and
well-designed research, including prospective clinical trials,
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to verify the effectiveness, safety, and interoperability of the
BCFL framework in actual health care settings.
Future Prospects
The main obstacles to data sharing and collaboration in
the health care system lie in the lack of interoperability
and standardization, as well as the absence of standardized
benchmark datasets in medical applications in the context of
FL and blockchain applications. Therefore, future research
must integrate the joint efforts of the government, regulatory
authorities, and industry leaders to establish unified techni-
cal standards and policy frameworks and give priority to
the development of standardized BCFL benchmark datasets.
These standards should encompass data formats, transmis-
sion protocols, privacy safeguards, and technology implemen-
tation guidelines to facilitate seamless data integration and
collaboration across diverse health care entities. Standardized
datasets should reflect the realistic heterogeneity of medical
imaging, EHRs, and multimodal data streams. By providing
a common reference point, these benchmarks will enable
fair and transparent algorithm comparisons, promote the
reproducibility of results, and accelerate the transformation of
BCFL innovations into clinical validation tools. In addition,
benchmark datasets can be stratified based on disease types,
patterns, and clinical tasks (eg, diagnosis, prognosis, and
treatment response prediction), thereby allowing for more
fine-grained evaluations of system performance in different
health care settings. Moreover, regulatory frameworks should
prioritize patient privacy and data security, delineate the
rights and responsibilities of stakeholders, and foster the
compliant adoption of BCFL technology. Comprehensive
policy support and technical guidance will be instrumental
in mitigating data silos and enhancing the efficiency of
collaborative model training.

Scalability and communication efficiency remain two of
the most critical technical challenges facing BCFL, particu-
larly in large-scale and high-frequency health care environ-
ments. To address the scalability limitations, future research
should focus on several key technical optimizations. The
first is off-chain computing and side-chain technology [43].
Off-chain computing enables complex training tasks to be
executed off-chain, reducing the computational burden on the
main blockchain. Meanwhile, side chains can independently
handle task-specific transactions, alleviating congestion on
the main chain. Layer 2 protocols, such as stateful channels
and plasma technology, offer a viable solution by enabling
faster transaction processing while preserving blockchain
security [43]. These technologies enhance scalability by
minimizing main-chain data storage requirements. Another
crucial research direction is cross-chain technologies [42].
This approach not only decentralizes workloads and mitigates
single-chain bottlenecks but also enhances system-wide
parallel processing capabilities. Moreover, cross-chain FL
is particularly well-suited for cross-regional and cross-organ-
izational health care collaborations, further strengthening
resource management and system security.

Regarding communication cost and efficiency, the
following directions are worth exploring in depth. One

promising direction is gradient compression. Using gradi-
ent compression techniques helps reduce communication
overhead. For instance, Konecny et al [127] proposed that
structured updates and sketch updates can significantly lower
communication costs. However, this approach also introdu-
ces potential challenges, such as the loss of relevant informa-
tion during compression, which may have an impact on the
performance of the global model. Therefore, future research
should focus on achieving an optimal balance between
gradient compression and global model accuracy [128].
Lightweight consensus protocols are also another crucial
research direction. Another key technological direction is
the Digital Twin [14], which minimizes the need for long-
distance data transmission by enabling the generation of
virtual models directly on miner nodes. This approach
significantly decreases communication latency and costs,
making it particularly well-suited for resource-constrained
health care environments.

In the field of IoMT, to address the challenges posed
by heterogeneous storage, computing, and communication
capabilities of medical devices and sensors, future research
should prioritize optimizing resource usage. First, lightweight
ML models and algorithms, such as model compression
and pruning techniques [128], can be developed to alleviate
the computational burden on local devices. This not only
enhances device operational efficiency but also significantly
reduces communication overhead. At the task allocation
level, device grouping and hierarchical architectures can be
leveraged to allocate computation and data aggregation tasks
to devices or intermediate nodes with higher computational
capacity, thereby forming a resource-optimized collaborative
network.

Another critical aspect is enhancing system robustness in
the face of equipment instability. To mitigate this issue, future
research should focus on optimizing both failure recovery
mechanisms and participant selection strategies. On the one
hand, an adaptive connection protocol can be designed to
enable devices to automatically rejoin the training process
after a connection interruption, ensuring that the global
model’s convergence remains unaffected. On the other hand,
an optimization strategy based on device availability and
performance can be implemented to prioritize the selection
of more stable devices for training. Moreover, incorporating a
flexible time window would allow devices to complete tasks
within a predefined period, thereby enhancing the overall
system’s fault tolerance and training efficiency.

Given the highly diverse and statistically heterogeneous
nature of medical data in IoMT environments, achieving
robust model generalization is another priority. The preva-
lence of non-IID data across institutions often results in
significant discrepancies between global and local models,
undermining convergence and performance. Consequently,
Wu and Wang [125] have proposed an optimal aggregation
algorithm that dynamically adjusts the selection probability of
each trainer based on the algorithm’s output. However, trainer
selection based on model preferences can severely compro-
mise the generalization capability of the global model. Future
research should focus on developing a highly accurate BCFL
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system with enhanced model generalization. One promising
direction is the development of automated data normaliza-
tion tools, which are capable of recognizing various dataset
formats and characteristics, performing automatic transforma-
tions to ensure that the data can be directly used by model
training [129].

The technical limitations faced by BCFL systems need to
be well addressed in the future, and privacy protection is
one of the fundamental challenges. Future research should
further weigh the relationship between privacy and utility,
selecting appropriate privacy-preserving techniques based on
system priorities. For instance, in certain scenarios, prioritiz-
ing privacy may necessitate the adoption of computationally
intensive yet more secure techniques, whereas high-perform-
ance requirements may favor more lightweight solutions.
Additionally, more advanced privacy-preserving techniques
can be explored. For example, zero-knowledge proof (ZKP)
is a promising cryptographic method that enables a prover to
demonstrate the validity of a statement to a verifier without
disclosing any additional information. This ensures that the
data owner can validate the accuracy of an update while
keeping the original data confidential. This approach not only
minimizes the trust overhead among participants but also
alleviates the verification burden on clients. Future research
should investigate how ZKP can be seamlessly integrated
into the BCFL architecture to optimize the balance between
performance and privacy, paving the way for a more efficient
and secure system with enhanced privacy measures.

Another pressing issue in the development of BCFL
systems is the design of fair and dynamic incentive
mechanisms to ensure equitable resource allocation among
contributors. On the one hand, the Shapley value-based
contribution quantification method can be used to assess each
participant’s impact on global model performance improve-
ment, thereby enabling a fairer incentive distribution. On the
other hand, since variations in data quality directly impact
model training effectiveness, data quality-driven incentives
can be introduced so that participants contributing high-qual-
ity or more representative data receive greater rewards.
Moreover, integrating penalty mechanisms is also another
crucial research direction [85]. For instance, Cui et al [130]
proposed withdrawing tokens when a trainer’s behavior is
identified as malicious. Similarly, Weng et al [79] suggested
requiring trainers to predeposit tokens, which are forfeited
upon detection of malicious activity, but the fairness of
this deposit mechanism remains uncertain. Therefore, how
to reasonably set the punishment rules under the premise of
ensuring fairness still needs further research. These optimi-
zation strategies will contribute to building a more effec-
tive and equitable BCFL ecosystem, fostering its sustainable
development in medical data sharing.

It is undeniable that token-based incentive mechanisms
have been widely discussed as a promising approach to
encouraging participation in the BCFL network. Although
such mechanisms can enhance participation and promote
fair resource allocation, they also introduce complex ethical
issues. Therefore, in future research, ethical supervision

should be embedded in token-based system design, and new
solutions should be continuously explored.

Editable mechanisms are expected to be implemented
in the near future. Future research could explore how to
introduce a moderate degree of editability while ensuring data
integrity and security. For instance, the modified Chameleon
hash function (also known as the trapdoor hash function)
enables controlled modification of blockchain data. When
the trapdoor information is available, hash collisions can be
efficiently identified, allowing input modifications without
altering the hash output. This mechanism facilitates the
correction of inaccurate or incomplete data while preserving
the structural integrity of the blockchain [8].

In parallel, the interpretability of AI models remains
a central concern for the deployment of BCFL in clini-
cal practice. Trust, transparency, and accountability are all
closely tied to how well clinicians and patients can under-
stand the rationale behind AI-generated predictions. Existing
mainstream interpretability tools (eg, SHAP and LIME)
have limitations in the medical field, including difficulties
in handling complex distributed data environments and the
inability to provide clinically relevant interpretations. Future
research should focus on enhancing existing tools and
developing interpretability methods adapted to BCFL, such
as global-local model comparison techniques, to provide more
intuitive and trustworthy interpretations.

In addition to technological and application-level
innovations, the future development of BCFL also needs
to confront the issue that research mainly remains at the
simulation, prototype, and preclinical stages, and these
studies have not yet formed a direct correspondence with
real medical endpoint indicators. Future work should start
from real scenarios: (1) conduct prospective validations in
multi-institutional, heterogeneous data and complete clinical
workflows to evaluate their actual impact on diagnostic
efficiency, therapeutic effect improvement, and resource
usage; (2) maintain a balance between security, latency,
and maintainability in system design to avoid unacceptable
computing and communication costs caused by encryption
and on-chain operations; and (3) at the governance level,
strengthen the connection with the medical system, regula-
tions and ethical frameworks, and clarify data ownership,
responsibility attribution, and auditing mechanisms. Only
when technical performance is validated in real clinical
settings, system design remains practically deployable, and
governance mechanisms are clearly defined, BCFL can
progress from laboratory prototypes to clinically reliable
infrastructure.

While the above guidance outlines strategic directions for
policymakers, clinicians, and implementers, these recommen-
dations remain high-level. To move from broad vision to
actionable progress, there is a pressing need for specific
evaluative structures that can translate theories into meas-
urable outcomes. Therefore, establishing a good evaluation
framework is indispensable, which can provide a foundation
for future research, allowing for comparison, verification, and
ultimately integration into clinical workflows.
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A unified, multidimensional evaluation framework is
central to the advancement of BCFL in medicine. From a
technical perspective, standardized metrics such as model
accuracy, convergence speed, robustness against adversa-
rial attacks, communication latency, and scalability across
heterogeneous institutional datasets are indispensable. These
indicators establish the baseline scientific validity of BCFL.
Equally important afterwards are the clinical assessment
criteria, which should reflect the sensitivity and specificity
of the diagnosis, its universality in different patient popula-
tions and multicenter environments, reduce algorithmic bias,
and bring about a tangible improvement in patient progno-
sis. By embedding clinical endpoints into the assessment,
this framework can ensure that technological progress is in
line with the real-world health care needs. Finally, there
are operational indicators, which should cover interoperabil-
ity with existing medical data systems, cost-effectiveness,
and the long-term sustainability of deployment. By integrat-
ing these three dimensions into a unified evaluation system,
researchers and clinical workers can establish benchmarks
that can both horizontally compare different studies and
vertically track research progress. This evaluation framework
not only enhances the scientific rigor of BCFL research
but also provides an evidence-based basis for decision-mak-
ing sharing, thereby accelerating the transformation from
experimental prototypes to clinical applications.
Conclusions
This review systematically compiles the research progress
of blockchain and FL in the medical field. First, we
introduce the theoretical foundations and core technical
features of both technologies, analyzing how blockchain
enhances the security, privacy protection, and decentralization

characteristics of FL, while FL improves the computational
efficiency and scalability of blockchain. In addition, we
describe the three frameworks and workflows of BCFL.
Next, we summarize the research progress in BCFL applica-
tions across cross-institutional health care data sharing, the
IoMT, public health monitoring, and telemedicine, high-
lighting its practical value in privacy protection and data
collaboration. Moreover, we discuss key challenges in BCFL,
including computational efficiency, scalability, data privacy,
and incentive mechanism design, while proposing potential
solutions and future research directions. The significance
of this review lies in providing a comprehensive overview
of how BCFL could reshape medical data collaboration
and security paradigms, thereby offering valuable insights
for researchers and practitioners exploring this interdiscipli-
nary field. However, it is important to acknowledge certain
limitations of this review. This review primarily focuses on
the theoretical principles and current applications of BCFL,
with relatively limited exploration of specific implementa-
tion details and performance evaluations. Additionally, most
existing BCFL studies rely on simulation experiments or
public datasets, lacking validation with large-scale real-world
medical data, which affects assessments of its practical
feasibility. As such, although BCFL shows promise in
supporting future intelligent diagnostics, precision medicine,
and collaborative health care systems, claims about clinical
readiness remain premature. Future work should focus on
prospective, large-scale validation studies, interdisciplinary
collaboration with health care providers, and the development
of standardized evaluation protocols to ensure that BCFL
solutions are clinically safe, ethically sound, and operation-
ally feasible.
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