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Abstract

Background: Preeclampsia is a severe hypertensive disorder with rising global prevalence. While machine learning (ML)
models for predicting preeclampsia are increasingly published, existing evidence shows high heterogeneity, and the distinction
between internal performance and external transferability remains unclear.

Objective: This study aims to evaluate the performance of ML models in predicting preeclampsia through a systematic review
and meta-analysis, while also exploring their potential clinical application value, in order to specifically enhance the quality of
future research and the predictive capability of the models.

Methods: Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and PROSPERO
registration, we searched PubMed, Web of Science, IEEE Xplore, and CNKI (China National Knowledge Infrastructure) for
studies published through February 2025. We included studies using ML to predict preeclampsia in pregnant women. Bias was
assessed using PROBAST (Prediction model Risk of Bias Assessment Tool). We calculated summary estimates using random-effects
models and, crucially, computed 95% prediction intervals (PIs) to estimate performance in future clinical settings. Subgroup and
meta-regression analyses were conducted to explore heterogeneity.

Results: In total, 26 studies comprising 31 ML models were included. While the pooled area under the receiver operating

characteristic curve was high at 0.91 (95% CI 0.87-0.92), extreme heterogeneity was observed (I2>99%). The 95% PI for sensitivity
was wide (0.32-0.96), indicating that in some external settings, sensitivity could drop to 32%. Only 6 studies conducted external
validation; in these, the pooled sensitivity decreased to 0.68, with a PI of 0.25-0.94.Subgroup analysis suggested that models
incorporating laboratory biomarkers and neural networks outperformed others, though CIs overlapped.

Conclusions: Current evidence suggests that a high area under the curve in ML models is more likely to reflect the “performance”
of the model on the internal development dataset rather than its universal “effectiveness” and clinical utility in independent,
diverse populations. The apparent performance exhibits significant contextual dependence. Future studies should conduct
multicenter, prospective external validation and recalibration research to enhance transferability and reliability.

Trial Registration: PROSPERO CRD420251005830;https://www.crd.york.ac.uk/PROSPERO/view/CRD420251005830

(J Med Internet Res 2026;28:e78714) doi: 10.2196/78714
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Introduction

Preeclampsia is a pregnancy-related hypertensive condition
marked by the development of high blood pressure and protein
in the urine after 20 weeks of gestation. Due to its multiple
etiologies and complex pathogenesis, it poses significant risks
to both maternal and perinatal health [1]. This specific condition
negatively impacts maternal health and can also lead to serious
complications for the fetus, including placental abruption and
restricted fetal growth. According to global statistics, the
incidence of preeclampsia ranges from 3% to 9%, with even
higher rates observed in certain high-risk populations [2].
Furthermore, preeclampsia is one of the leading causes of
maternal mortality worldwide, particularly in low- and
middle-income countries. The prevalence of preeclampsia in
China has increased from 5.79% in 2005 to 9.5% in 2019 [3],
further underscoring the urgent need for early screening and
management. To date, the etiology and pathogenesis of
preeclampsia remain incompletely understood, and effective
treatment measures are lacking. Consequently, early detection
and enhanced management are essential clinical strategies.

Understanding the epidemiological characteristics of
preeclampsia is essential for developing effective public health
strategies. In the study of preeclampsia, traditional statistical
methods primarily emphasize linear models and hypothesis
testing, which are effective in uncovering singular relationships
between variables. However, the pathological mechanisms
underlying preeclampsia are highly complex, involving multiple
interacting factors, and traditional methods may face limitations
when addressing nonlinear and high-dimensional data. In
contrast, machine learning (ML) technology has shown
considerable promise in this domain.

A subset of artificial intelligence (AI), ML is a technology that
allows computers to independently learn from data and make
decisions or predictions using algorithms and models. Its
application in clinical settings can effectively prevent and
manage diseases. Currently, the usage of ML to develop
predictive models for preeclampsia is becoming increasingly
prevalent. For instance, Sylvain et al [4] noted that the
implementation of ML methods has significantly improved the
prediction accuracy of high-risk pregnancies, offering a novel
perspective for the early identification of preeclampsia.
Furthermore, Ranjbar et al [5] indicated that ML-based models
surpass traditional regression models in predicting the incidence
of preeclampsia. The multidimensional optimization capabilities
of these models allow them to account for interactions among
various clinical features and biomarkers, thereby enhancing
diagnostic accuracy.

By leveraging ML, researchers can explore both linear and
nonlinear relationships, as well as uncover deep-seated features
and patterns within the data. This method establishes a scientific
foundation for the prompt recognition and intervention of
preeclampsia.

Compared with prior systematic reviews and protocols on
pregnancy outcomes or preeclampsia, the incremental
contributions of this study are as follows: (1) we prespecified
and implemented subgroup analyses by outcome definition,

gestational window, data source, and validation type to avoid
indiscriminate pooling across highly heterogeneous models and
populations; (2) we treated area under the curve (AUC) as the
primary summary measure and applied robust univariate
random-effects models (Hartung-Knapp-Sidik-Jonkman method)
to pool sensitivity and specificity separately, accompanied by
95% prediction intervals (PIs) to estimate future performance;
and 3) we clearly separated performance in internal vs external
validation and documented whether decision-curve analysis
was conducted. Taken together, these methodological
enhancements aim to provide more interpretable evidence about
where deployment may be appropriate and where it remains
premature.

Methods

Research Design
This research was carried out in alignment with the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 standards [6] (Multimedia Appendix 1
[7]). Specific details regarding the search keywords can be found
in Textbox S1 of the Multimedia Appendix 2. Before the study
began, the protocol received approval and was registered with
the PROSPERO under the reference number
CRD420251005830.

Literature Search Strategy
Comprehensive searches were executed in several prestigious
databases, including PubMed, Web of Science, IEEE Xplore,
and the CNKI (China National Knowledge Infrastructure). These
searches focused on locating scholarly papers that were
published in either English or Chinese. The time frame for this
search encompassed works published until February 2025,
ensuring that the most recent and relevant literature was included
in the investigation. The search strategy was developed based
on the PICO (Population, Intervention, Comparison, and
Outcome) framework. In this study, “P” denotes the population
with PE, “I” refers to ML methods as the intervention, “C”
indicates the gold standard for comparison, and “O”
encompasses outcomes, such as sensitivity, specificity, and
accuracy for prediction and diagnosis (Table S1 in Multimedia
Appendix 2). Additionally, the reference lists from each
identified study underwent a manual review to uncover further
relevant research. Zotero (Center for History and New Media
at George Mason University) was used to organize the studies
and remove any duplicates.

The study’s inclusion criteria were formulated to guarantee the
rigor and relevance of the research. The criteria encompassed
(1) research papers published in English or Chinese; (2)
investigations involving pregnant women from the general
population that explicitly defined the diagnosis of preeclampsia;
(3) studies that used ML models for predicting preeclampsia,
along with a thorough explanation of these models; and (4)
investigations that showcased the performance of the ML
models, offering adequate data to determine both sensitivity
and specificity. These criteria aimed to strengthen the validity
of the results and ensure a thorough assessment of the existing
literature.
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The exclusion criteria for this study are as follows: (1) studies
that solely investigated risk factors without developing a
predictive model; (2) papers published in languages other than
English or of types other than original research, such as reports
and reviews; (3) duplicate publications; (4) studies that included
2 or fewer predictors in the constructed model; and (5) studies
for which the full text was not accessible.

Literature Screening and Data Extraction
Five researchers (LL, QZ, YZ, XC, and WZ) meticulously
followed the established inclusion and exclusion criteria to
screen the titles and abstracts of the literature. Studies that met
these criteria advanced to the full-text reading phase, where all
relevant studies were reviewed. Each article underwent a
minimum of 2 rounds of screening. Both the title and abstract
screening, as well as the full-text reading, were conducted
independently by the 2 researchers (LL and QZ). In instances
of disagreement between them, another researcher (JW) made
the final decision.

In total, 26 studies [8-33] were chosen for analysis. Data
extraction was independently performed by 2 researchers (LL
and QZ) following the standardized protocol established by the
TRIPOD (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis), as outlined in
the existing literature [34]. Data collected from each study
included the following: (1) demographic details, such as the
country of data collection, the study setting, the source of the
data, the design of the study, and the definition of outcomes;
(2) methods for data partitioning, feature selection algorithms,
types of ML prediction models, model validation, and
applications; (3) results of predictions, which involved accuracy,
sensitivity, specificity, and the AUC; and (4) sources of funding
and the approval of ethics. This study extracted sensitivity and
specificity data from each research report, all based on the
“optimal threshold” set in the respective original studies. This
research did not standardize or adjust for the differences in
thresholds among the various studies.

Bias and Applicability Assessment

Overview
We used PROBAST (Prediction Model Risk of Bias Assessment
Tool) as the primary instrument to preserve comparability with
prior preeclampsia meta-analyses (for detailed information, see
Multimedia Appendix 3). Because many included studies
predate PROBAST-AI and lack AI-specific reporting (eg,
leakage safeguards, hyperparameter tuning, calibration, and
thresholds), a full PROBAST-AI assessment would be
dominated by underreporting rather than demonstrated bias.
The PROBAST [35] was used to assess the risk of bias in the
included studies across 4 domains, namely participants,
predictors, outcomes, and analysis. Additionally, applicability
assessments were conducted for the domains of population,
predictors, and outcomes. Two researchers (LL and QZ)
independently reviewed the studies, undergoing consistency
training based on a preprepared and trialed scoring manual. The
discrepancies were resolved through discussion, and if
necessary, a third researcher (JW) acted as an adjudicator.

Bias Assessment
For all questions within a category, if the answers are “yes” or
“possibly,” the category is assessed as low risk. Conversely, if
any answer is “no” or “possibly not,” the category is classified
as high risk. In cases where there is insufficient information,
the category is deemed unclear. The overall risk of bias in the
study is determined according to the PROBAST guidelines: (1)
if all 4 domains are assessed as low risk, the overall risk of the
study is low; (2) if one or more domains are assessed as high
risk, the overall risk of the study is high; and (3) if one or more
domains are assessed as unclear (and there are no high-risk
domains), the overall risk of the study is unclear.

Applicability Assessment
The evaluation encompasses 3 categories, including study object,
predictor, and outcome. Each category is assessed based on 3
levels of applicability, namely good applicability, poor
applicability, and unclear applicability. If all 3 assessments are
classified as good, the overall applicability is determined to be
good. Conversely, if any one assessment is classified as poor,
the overall applicability is deemed poor. In cases where one
assessment is unclear while the other two are good, the overall
applicability is classified as unclear.

Statistical Analysis
The methods described in the guidelines for conducting
systematic reviews and meta-analyses concerning the
performance of prediction models, along with previous
meta-analyses of such models, indicate that the concordance
index of a model is similar to the AUC [36]. This index indicates
the diagnostic or prognostic discrimination ability, categorized
as none (AUC≤0.6), poor (0.6<AUC<0.7), moderate
(0.7<AUC<0.8), good (0.8<AUC<0.9), or excellent
(0.9<AUC<1). Model calibration acts as an indicator of how
well the model fits the data by evaluating the alignment between
the actual and forecasted results, while also demonstrating the
model’s reliability via calibration graphs. Additionally, the
diagnostic odds ratio (DOR) is calculated using the following
formula:

DOR=PLR/NLR

In this study, we use the positive likelihood ratio (PLR) and the
negative likelihood ratio (NLR) to evaluate the predictive
performance of our model for preeclampsia. The equations used
to calculate PLR and NLR express the frequency of
preeclampsia in individuals who are predicted by the model to
have preeclampsia compared to those who are predicted not to
have preeclampsia:

PLR=Sensitivity/(1-Specificity)

NLR=(1-Sensitivity)/Specificity

Considering the diversity in populations, predictors, and
algorithms across the included ML models, our objective was
to generalize findings to broader clinical contexts. Therefore,
following the recommendation of Borenstein et al [37], we a
priori selected the random-effects model for all meta-analyses,

irrespective of the magnitude of statistical heterogeneity (I2).
Specifica l ly,  we used the  more  robust
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Hartung-Knapp-Sidik-Jonkman (HKSJ) method for final pooled
estimates and interval calculations to ensure the robustness of
statistical inferences [38]. The ML models included in this study
exhibited substantial variations in sample size and population

characteristics, with the I2 statistic often approaching 100% in
larger samples, potentially limiting their ability to effectively
distinguish the actual clinical impact of heterogeneity. Therefore,
in addition to reporting the 95% CI for pooled effect sizes, this
study further calculated the 95% PI. Unlike CIs, which only
reflect the precision of the average effect, PIs estimate the
expected range of performance when the model is applied in a
new, similar clinical setting in the future. This approach provides
a more intuitive assessment of the model’s clinical applicability
and transferability [38]. Since the Meta-DiSC software (The
developer is the clinical biostatistics team at Ramón y Cajal
Hospital) cannot calculate PIs, we used the meta package
(version 7.0) [39] in R software (R Foundation for Statistical
Computing; version 4.4.2) with the HKSJ method to compute
95% PIs for area under the receiver operating characteristic
curve (AUROC), sensitivity, and specificity. For AUROC values
without reported SEs, we estimated them based on sample size
using the Hanley & McNeil [40] method. External validation
is regarded as the “gold standard” for assessing the
transportability of models. Therefore, a separate evaluation of
the performance of models that use external validation is
conducted. Subsequently, the 4 predictive models with the
highest and lowest values were excluded to conduct a sensitivity
analysis aimed at evaluating the impact of outliers on the
sensitivity and specificity of the summary. To reduce conceptual
heterogeneity and enhance the interpretability of results,
stratification is performed along the following dimensions:
sample size (less than 2000 and greater than or equal to 2000);
data source (electronic medical records; laboratory biomarkers;
omics or imaging; mixed); gestational age window (early
pregnancy; midpregnancy and late pregnancy or specific
gestational weeks); and validation methods (internal validation
and external validation); ML models (logistic regression [LR]
and nonlogistic regression), followed by more detailed subgroup
analysis (LR, extreme gradient boosting [XGBoost], random
forest [RF], and support vector machine [SVM]) based on

nonlogistic regression; types of predictive variables
(demographic information; biological genetic markers;
laboratory tests; demographic information and laboratory tests);
and the number of predictive variables (less than 10 and greater
than or equal to 10). Handling of missing data (extraction and
synthesis). For each study, we recorded how missing data were
handled and classified methods into 5 categories, namely listwise
deletion, single-value imputation (eg, mean and median),
multiple imputation, other (eg, random subset iterations), and
not reported. When multiple approaches were mentioned, we
coded the method used for the primary model. We summarize
the overall distribution in the results of “Inclusion of Study
Characteristics in the Paper” and discuss implications for
comparability and generalizability. Subgroup analyses will be
conducted on the included studies to evaluate the performance
of ML methods in predicting preeclampsia across different
clinical scenarios. Subgroup Analysis discusses the capabilities
of different ML algorithms in predicting preeclampsia.
Additionally, meta-regression was used to investigate the
sources of heterogeneity. Given the extreme heterogeneity

(I2>99%) observed across studies and the lack of standardized
threshold reporting (eg, fixed false-positive rates), hierarchical
or bivariate models often fail to converge or yield unstable
estimates. Therefore, we prioritized univariate random-effects
models using the HKSJ adjustment for pooling sensitivity and
specificity separately. This method is demonstrated to provide
more robust coverage probabilities for CIs in the presence of
substantial heterogeneity compared to standard
DerSimonian-Laird [41] methods.

Results

Literature Screening
After removing duplicate entries, a total of 284 papers were
evaluated. Of these, 284 papers were evaluated through abstract
screening, which was subsequently followed by a full-text
evaluation of 88 papers. This process culminated in the
identification of 26 papers [8-33] that satisfied the overall
inclusion criteria. The literature screening procedure and its
outcomes are depicted in the related Figure 1.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection. CNKI: China National
Knowledge Infrastructure; PE: preeclampsia.

Inclusion of Study Characteristics in the Paper
The literature included in this study spans from 2019 to 2025
and consists of 23 English papers [8-10,12-26,28-30,32,33] and
3 Chinese papers [11,27,31]. When a study presented more than
2 models, the top 2 models demonstrating the best performance
were selected based on a comprehensive evaluation of metrics,
such as AUC, sensitivity, and specificity, culminating in the
inclusion of 31 models from 26 papers [8-33]. The data sources
for ML predominantly consisted of clinical electronic health
records, community research cohorts, and self-administered
questionnaires. The overall sample sizes in the studies examined
showed considerable variation, fluctuating between 53 and
62,562 cases, while the count of predictors in the ultimate
models ranged from 3 to 50. Among all the studies, 20
[8,11,13,14,16-18,20-32] conducted internal validation, while
6 [8,21,24,28,30,32] performed external validation. To assess
model performance, the AUC, sensitivity, and specificity
emerged as the most frequently used metrics. Among the 26
studies [8-33] reviewed, 5 (19.2%) studies [8,17,25,26,33] were
prospective cohort studies, 17 (65.4%) studies

[10,11,13-16,18,19,21-24,27-29,31,32] were retrospective cohort
studies, 2 (7.7%) studies [9,20] were case-control studies, 1
(3.8%) study [30] was a retrospective case-control study, and
1 (3.8%) study [12]was a multicenter study. Regarding model
approaches, of the 31 models included, 3 were LR. Among the
remaining 28 models, there were 5 RF, 4 XGBoost, 4
Elastic-net, 3 neural network (NN), 3 SVM, 2 light gradient
boosting, 2 AdaBoost, 1 k-nearest neighbor, 1 Naive Bayes, 1
stochastic gradient boosting, 1 CatBoost, and 1 voting classifier.
In terms of handling missing data, 8 studies [11,18,22,24-27,29]
opted to delete cases with missing data, 7 studies
[9,12,14-16,19,23] used mean imputation to address the missing
values, 3 studies [13,17,31] used multiple imputation techniques,
1 study [21] implemented random selection of data subsets for
multiple iterative analyses, while the remaining 7 studies
[8,10,20,28,30,32,33] did not explicitly report the presence of
missing values. Such variation limits comparability and external
transportability of performance metrics and increases uncertainty
around calibration and threshold transfer. The specific details
of the models are presented in Table 1.
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Table 1. Construction of the risk prediction model for preeclampsia.

PredictorsMissing dataSample size (modeling;
internal validation; ex-
ternal validation)

Model performanceLiterature and
modeling
method

Handling
method

Quantity

(PCSb)

SpecificitySensitivityAUCa

Ansbacher et al [8]

10 predictors: maternal age, maternal weight,
maternal height, interpregnancy interval,

——d30437/10000/203520.90.5330.816FfNNc

ethnicity, medical history (such as chronic
hypertension, diabetes, etc), uterine artery
pulsatility index, mean arterial pressure, pla-
cental growth factor, and pregnancy-associat-
ed plasma protein-A.

Araújo et al [9]

3 predictors: neutrophil count, mean corpus-
cular hemoglobin, and aggregate index of
systemic inflammation.

Mean impu-
tation

—132/—/—0.790.950.9LGBe

Chen et al [10]

7 predictors: IL-17, IL-21, IL-22, IL-10,
transforming growth factor-β, placental alka-

——166/—/—0.760.870.88SVMf

line phosphatase, and lysosome-associated
membrane protein 3.

Chen et al [11]

18 predictors: BMI, systolic blood pressure,
diastolic blood pressure, number of pregnan-

Delete—1325/398/—0.98480.88810.983CBg

cies, mean corpuscular hemoglobin concen-
tration, bacteria (urinalysis), glycocholic acid,
high-density lipoprotein, potassium, sodium,
phosphorus, uric acid, urine protein, creati-
nine, direct bilirubin, low-density lipoprotein,
gestational age≥34 weeks, and family history
of hypertension.

6 predictors: gestational age, history of
chronic hypertension, Soluble FMS-like Ty-

Mean impu-
tation

—597/—/—Giménez et al [12]

rosine Kinase-1, placental growth factor, N-
terminal pro-brain natriuretic peptide, and
uric acid.

0.910.7960.901PTB-RFh

0.9490.7750.941RFi

Jhee et al [13]

14 predictors: systolic blood pressure, serum
urea nitrogen, serum creatinine, platelet

Multiple
Imputation

257704/3302/—0.9910.6030.924SGBj

count, serum potassium level, white blood
cell count, serum calcium level, and urinary
protein.

Kaya et al [14]

8 predictors: maternal age, BMI, smoking
status, history of diabetes, history of gestation-

Mean impu-
tation

—53/20/—0.8330.60.767XG-

Boostk
al diabetes, mean arterial pressure, and histo-
ry of previous preeclampsia.

7 predictors: maternal age, BMI, systolic
blood pressure, diastolic blood pressure, uric

Mean impu-
tation

—1125/—/—Kovacheva et al [15]

acid, history of kidney disease, and SBP

PRSm.

J Med Internet Res 2026 | vol. 28 | e78714 | p. 6https://www.jmir.org/2026/1/e78714
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


PredictorsMissing dataSample size (modeling;
internal validation; ex-
ternal validation)

Model performanceLiterature and
modeling
method

Handling
method

Quantity

(PCSb)

SpecificitySensitivityAUCa

0.660.850.83LRl

0.440.960.91XGBoost

Li et al [16]

38 predictors: maternal age, BMI, mean blood
pressure, abdominal circumference, gravidity,
parity, history of preeclampsia, history of
previous cesarean section, interpregnancy
interval, primipara, multiple gestation, assist-
ed reproductive technology, heart disease,
pregestational diabetes, thyroid disease, kid-
ney disease, autoimmune disease, mental ill-
ness, uterine fibroids, adenomyosis, uterine
malformation, history of epilepsy, family
history of hypertension, hemoglobin, white
blood cell count, platelet count, creatinine,
fasting blood glucose, total cholesterol, high-
density lipoprotein, low-density lipoprotein,
total protein, albumin, bile acids, uric acid,
total bilirubin, direct bilirubin, and gamma-
glutamyl transferase.

Mean impu-
tation

—3759/191/—0.930.7890.955XGBoost

Li et al [17]

16 predictors: maternal age, height, prepreg-
nancy weight, primiparity, mode of concep-
tion, family history, smoking status, history
of preeclampsia, history of chronic hyperten-
sion, history of chronic kidney disease, histo-
ry of diabetes, history of systemic lupus ery-
thematosus/antiphospholipid syndrome, mean
arterial pressure, uterine artery pulsatility in-
dex, pregnancy-associated placental protein
a, and placental growth factor.

Multiple
Imputation

3715/929/—0.7690.770.831VCn

Lv et al [18]

6 predictors: prepregnancy BMI, gravidity,
mean arterial pressure, smoking, alpha-feto-
protein, and conception method.

Delete—832/208/—0.8940.9170.963XGBoost

Marić et al [19]

J Med Internet Res 2026 | vol. 28 | e78714 | p. 7https://www.jmir.org/2026/1/e78714
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


PredictorsMissing dataSample size (modeling;
internal validation; ex-
ternal validation)

Model performanceLiterature and
modeling
method

Handling
method

Quantity

(PCSb)

SpecificitySensitivityAUCa

55 predictors: maternal age, height, weight,
ethnicity, number of fetuses, mean systolic
blood pressure, mean diastolic blood pressure,
maximum systolic blood pressure, maximum
diastolic blood pressure, history of
preeclampsia, chronic hypertension, type 1
and type 1 diabetes, gestational diabetes,
obesity, assisted reproductive technology,
diagnosis of autoimmune diseases, kidney
disease, anemia, antiphospholipid syndrome,
sexually transmitted diseases, hyperemesis
gravidarum, headache, migraine, poor obstet-
ric history, high-risk pregnancy, protein and
glucose in urine, platelet count, red blood
cells, white blood cells, creatinine,
hemoglobin, hematocrit, monocytes, lympho-
cytes, eosinophils, neutrophils, basophils, Rh
blood type, gastric acid, rubella, chickenpox,
hepatitis B virus, syphilis, gonorrhea, aspirin,
nifedipine, aldomet, labetalol, insulin, gly-
buride, prednisone, azathioprine, Plaquenil,
heparin, levothyroxine, doxylamine, and
acyclovir.

Mean impu-
tation

—5245/—/—0.9190.4520.79ENo

Melinte-Popescu et al [20]

14 predictors: age, BMI, smoking status, in-
terpregnancy interval, use of assisted repro-
ductive technology, pregestational diabetes,
chronic hypertension, history of kidney dis-
ease, personal or family history of
preeclampsia, placental growth factor, preg-
nancy-associated plasma protein A, placental
protein 13, uterine artery pulsatility index,
and mean arterial pressure.

——163/70/—0.9640.9630.98NBp

Munchel et al [21]

49 predictors circulating transcripts in blood:
immunomodulatory, fetal development, an-
giogenesis, and extracellular matrix remodel-
ing.

Randomly
select a
subset of
data for
multiple it-
erative
analyses.

—113/11/4480.920.880.964ABq

Roque et al [22]

11 predictors: platelet count, white blood cell
count, lymphocyte percentage, monocyte
percentage, red blood cell count, red cell
distribution width, platelet distribution width,
band neutrophil percentage, red cell distribu-
tion width, hematocrit, and maternal age.

Delete—35706/8927/—0.9510.90.976LR

Sandström et al [23]
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PredictorsMissing dataSample size (modeling;
internal validation; ex-
ternal validation)

Model performanceLiterature and
modeling
method

Handling
method

Quantity

(PCSb)

SpecificitySensitivityAUCa

36 predictors: gestational age at first visit,
maternal age, BMI, mean arterial pressure,
capillary blood glucose level, urine protein,
hemoglobin level, history of miscarriage,
history of ectopic pregnancy, history of infer-
tility treatment, family status, country of
birth, smoking history, smoking status at
registration, use of snuff in the first trimester
of pregnancy, use of snuff during pregnancy,
alcohol consumption in the 3 months before
registration, alcohol consumption habits at
the time of pregnancy registration, family
history of preeclampsia, infertility, family
history of hypertension, previous diabetes,
chronic hypertension, chronic kidney disease,
cardiovascular disease, endocrine disease,
history of thrombosis, history of mental ill-
ness, history of epilepsy, Crohn/ulcerative
colitis, lung disease or asthma, hepatitis, gy-
necological disease or surgery, recurrent uri-
nary tract infections, and blood type.

Mean impu-
tation

—62562/6256/—0.90.2820.67LR

Sufriyana et al [24]

13 predictors: age, family role, parity, type
of work, infectious diseases, endocrine, nutri-
tional and metabolic diseases, circulatory
system diseases, immune-related diseases,
ophthalmic diseases, urogenital diseases, skin
and subcutaneous tissue–related diseases,
breast-related diseases, digestive system–re-
lated diseases, and skin-related diseases.

Delete30123201/20975/GEVr:1322,

TEVs: 90

0.890.70.86RF

Tiruneh et al [25]

13 predictors: maternal age, ethnicity,
prepregnancy/early pregnancy BMI, history
of preeclampsia in previous pregnancies,
primiparity, history of gestational diabetes,
pre-existing hypertension, diabetes, family
history of hypertension and diabetes, family
history of preeclampsia, renal disease,
smoking history, and polycystic ovary syn-
drome.

Delete6633767/14475/—0.790.760.84RF

13 predictors: placental growth factor, mean
arterial pressure, uterine artery pulsatility in-
dex, BMI, antiphospholipid syndrome, previ-
ous preeclampsia, previous diabetes, smoking
status, natural conception, Other drug use
(such as cocaine and heroin), systemic lupus
erythematosus, chronic hypertension, and
maternal age.

Delete781068/914/—Torres et al [26]

0.90.5010.778all-EN

0.90.8820.963EPE-ENt

0.90.7650.897PPE-ENu

Wang et al [27]

7 predictors: urine protein, urine conductivity,
alkaline phosphatase, serum uric acid, lactate
dehydrogenase, mean corpuscular
hemoglobin concentration, and amylase.

Delete—516/172/—0.9260.71420.9KNNv
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PredictorsMissing dataSample size (modeling;
internal validation; ex-
ternal validation)

Model performanceLiterature and
modeling
method

Handling
method

Quantity

(PCSb)

SpecificitySensitivityAUCa

Wang et al [28]

20 predictors: maternal age, maternal BMI,
regularity of maternal menstrual cycle, vom-
iting and nausea during pregnancy, previous
miscarriages, preterm births, history of hyper-
tension during pregnancy, hypertension, dia-
betes, chronic hypertension, history of drug
allergies, maternal smoking history, previous
delivery history, nutritional status during
pregnancy, maternal ethnic background, his-
tory of hypertension, history of diabetes,
glycated hemoglobin, and albumin.

——25709/77713/17600.90.72710.8775AB

Xue et al [29]

50 predictors: diabetes mellitus, thrombotic
diseases, systemic lupus erythematosus, an-
tiphospholipid syndrome, renal diseases, as-
sisted reproductive technology, obstructive
sleep apnea syndrome, prepregnancy BMI>30
kg/m², age>35 years, multiple pregnancy,
primipara, history of eclampsia or
preeclampsia, Albumin, Alanine aminotrans-
ferase, Aspartate aminotransferase, Alkaline
phosphatase, Complement C1q, Calcium,
Creatinine, C-reactive protein, Cystatin C,
Gamma-glutamyl transferase, Globulin,
Triglycerides, Total cholesterol, High-density
lipoprotein cholesterol, Low-density
lipoprotein cholesterol, Lipoprotein(a),
Apolipoprotein A1, Apolipoprotein B, Small
dense low-density lipoprotein, Total protein,
Total bile acid, Total bilirubin, Direct biliru-
bin, Uric acid, Urea, Phosphorus, Absolute
Lymphocyte count, Absolute neutrophil
count, Platelet count, NEU/LYM ratio,
PLT/LYM ratio, Prothrombin time, Prothrom-
bin activity, Activated partial thromboplastin
time, Fibrinogen, D-Dimer, Fibrin degrada-
tion products, Thrombin time.

Delete—800/160/—0.9990.670.93SVM

Yu et al [30]

12 predictors: maternal age, BMI, parity,
medical history (chronic hypertension,
preeclampsia, systemic lupus erythematosus,
antiphospholipid syndrome), mode of concep-
tion; cfDNA profile indicators: Fos-related
antigen 2 (FOSL2), calcium/calmodulin-de-
pendent protein kinase kinase 2 (CAMKK2),
G1/S-specific cyclin-D1 (CCND1), Inositol
1,4,5-trisphosphate receptor type 1 (ITPR1),
Protein kinase A catalytic subunit beta
(PRKACB), Protein Wnt-7b (WNT7B),
Voltage-dependent L-type calcium channel
subunit beta-2(CACNB2), Nuclear respirato-
ry factor 1 (NRF1), Fms-related tyrosine ki-
nase 3 ligand (FLT3LG), Epidermal growth
factor (EGF).

——404/1384/8990.910.870.96RF

Zheng et al [31]

J Med Internet Res 2026 | vol. 28 | e78714 | p. 10https://www.jmir.org/2026/1/e78714
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


PredictorsMissing dataSample size (modeling;
internal validation; ex-
ternal validation)

Model performanceLiterature and
modeling
method

Handling
method

Quantity

(PCSb)

SpecificitySensitivityAUCa

12 predictors: urine specific gravity, uric acid,
mean corpuscular hemoglobin concentration,
globulin, platelet distribution width, potassi-
um ion, age, family history of hypertension,
systolic blood pressure, diastolic blood pres-
sure, pulse, and gestational age≥34 weeks.

Multiple
imputation

—1609/483/—0.9270.8490.964LGB

19 predictors: mRNA markers: Albumin,
Fibrinogen Alpha Chain, Leptin, Insulin-Like
Growth Factor Binding Protein 5, Alpha-1
Antitrypsin, S100 Calcium Binding Protein
A9, Apolipoprotein A1, Thyroid Stimulating
Hormone Beta Subunit, miRNA markers:
MIR130A, MIR144, MIR19B1, MIR215,
MIR376C, MIR27A, MIR106A, MIR33A,
Inc ENA markers: Macrophage Migration
Inhibitory Factor, Assisted Reproductive
Technology, Mean Arterial Pressure.

——432/197/288Zhou et al [32]

0.930.630.91AvNNw

0.990.470.93SVM

Zhou et al [33]

8 predictors: Retinal fundus image score,
Prepregnancy BMI, maternal age, chronic
hypertension, diabetes, history of gestational
hypertension or preeclampsia, assisted repro-
ductive technology, and autoimmune dis-
eases.

——1138/—/—0.9340.7220.883CNNx

aAUC: area under the curve.
bPCS: pieces.
cFfNN: feed-forward neural network.
dnot reported.
eLGB: light gradient boosting.
fSVM: support vector machine.
gCB: CatBoost.
hPTB-RF: Premature birth - Random Forest.
iRF: random forest.
fKNN: k-nearest neighbor.
jSGB: stochastic gradient boosting.
kXGBoost: extreme gradient boosting.
lLR: logistic regression.
mSBP PRS: systolic blood pressure polygenic risk score.
nVC: Voting Classifier.
oEN: Elastic-net.
pNB: Naive Bayes.
qAB: AdaBoost.
rGEV: geographic external validation
sTEV: temporal external validation
tEPE-EN: early onset of preeclampsia Elastic-net.
uPPE-EN: Premature birth of preeclampsia Elastic-net.
vKNN: k-nearest neighbor.
wAvNN: Average Neural Network.
xCNN: Convolutional Neural Networks.
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Research Quality
We evaluated the potential for bias and the relevance of the
prediction models based on the PROBAST checklist, examining
a total of 26 [8-33] studies. Among these, 3 (12%) studies
[9,11,16] in the participant domain exhibited unclear risk of
bias, primarily due to their case-control design, which is
inherently associated with a higher risk of selection bias. In the
predictor domain, 1 (4%) study [21] was identified as having
unclear risk of bias because it used C-RNA transcriptome assays
that depend on transcriptome enrichment and high-throughput
sequencing, methods that are not typically used in routine
clinical testing. In the analysis of bias domains, 8 (31%) studies

[9,10,14,16,21,29,32,33] demonstrated unclear risk of bias,
mainly due to insufficient sample sizes, unclear methodologies
for addressing missing data, and uncertainties regarding the
management of overfitting risks. Furthermore, 1 (4%) study
[22] was classified with a high risk of bias as all data were
sourced from a single hospital, despite the volume of data,
failing to represent a multicenter or stratified analysis. Overall,
the bias risk was determined to be unclear for 9 (35%) studies
[9-11,14,16,21,29,32,33]. The applicability ratings were
moderate for 4 (15%) studies [10,11,21,33], high for 1（4%)
study [22], and low for the remaining studies [8,9,12-20,23-32],
as detailed in Table 2. For the remaining details, see Table S2
in the Multimedia Appendix 2. 
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Table 2. Risk of bias and applicability assessment using PROBAST (Prediction Model Risk of Bias Assessment Tool).

External valida-
tion

Overall applica-
bility rating

Overall bias
rating

ROBaStudy and year

AnalysisOutcomePredictorsParticipants

YesLowLowLowLowLowLowAnsbacher et al [8],
2022

NoLowUnclearUnclearLowLowUnclearAraújo et al [9], 2024

NoUnclearUnclearUnclearLowLowLowChen et al [10], 2022

NoUnclearUnclearLowLowLowUnclearChen et al [11], 2023

NoLowLowLowLowLowLowGarrido-Giménez et al
[12], 2023

NoLowLowLowLowLowLowJhee et al [13], 2019

NoLowUnclearUnclearLowLowLowKaya et al [14], 2024

NoLowLowLowLowLowLowKovacheva et al [15],
2023

NoLowUnclearUnclearLowLowUnclearLi et al [16], 2021

NoLowLowLowLowLowLowLi et al [17], 2024

NoLowLowLowLowLowLowLv et al [18], 2025

NoLowLowLowLowLowLowMarić et al [19], 2020

NoLowLowLowLowLowLowMelinte-Popescu et al
[20], 2023

YesUnclearUnclearUnclearLowUnclearLowMunchel et al [21],
2020

NoHighLowHighLowLowLowRoque et al [22], 2024

NoLowLowLowLowLowLowSandström et al [23],
2019

YesLowLowLowLowLowLowSufriyana et al [24],
2020

NoLowLowLowLowLowLowTiruneh et al [25], 2024

NoLowLowLowLowLowLowTorres et al [26], 2024

NoLowLowLowLowLowLowWang et al [27], 2022

YesLowLowLowLowLowLowWang et al [28], 2024

NoLowUnclearUnclearLowLowLowXue et al [29], 2023

YesLowLowLowLowLowLowYu et al [30], 2024

NoLowLowLowLowLowLowZheng et al [31], 2021

YesLowUnclearUnclearLowLowLowZhou et al [32], 2024

NoUnclearUnclearUnclearLowLowLowZhou et al [33], 2023

aROB: risk of bias.

The Performance of ML Models in Preeclampsia
Prediction
A total of 26 (31 models) studies [8-33] were included. While
the pooled estimates demonstrated high average discriminative
potential of ML models, substantial between-study heterogeneity
was observed, indicating significant context-dependency of
model performance. The overall pooled AUROC was 0.91 (95%
CI 0.87-0.92; Figure 2). However, its 95% PI ranged from 0.75
to 1.00, suggesting that AUC might decrease to 0.75 in some
external validation settings. The pooled sensitivity was 0.81

(95% CI 0.70-0.83; P<.001; I2=99.6%) In the Figure 3 [8-33],
the first author of each study is listed along the Y-axis, the
circles represent the point estimates of sensitivity for each
model, with the size of the circles being proportional to the
weight of the study; the horizontal lines indicate their 95% CIs.
The letter Q represents the intersection point of the SROC curve
with the inverse diagonal line where “Sensitivity = Specificity.”
The diamonds represent the aggregated sensitivity estimates of
the models, with their width corresponding to the 95% CI of
the aggregated values. The vertical red dashed line represents
the 95% CI of the pooled sensitivity. However, this only
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represents an average level; the wide 95% PI of 0.32-0.96]
reveals potential clinical risks. In certain specific studies or
future applications, the sensitivity may be as low as 32%,
indicating a substantial risk of missed diagnoses. Similarly,
although the pooled specificity was 0.88 (95% CI 0.84-0.94;

P<.001; I2=99.7%; Figure 4 [8-33]), its PI across different
contexts was 0.49-0.99, demonstrating a similar lack of
consistency in specificity. The other summary metrics were as
follows: DOR was 37.67 (95% CI 23.46-60.48); PLR was 8.52

(95% CI 6.43-11.29); NLR was 0.24 (95% CI
0.18-0.34). Additionally, we calculated the Spearman correlation
coefficient between the log of sensitivity and the log of
(1-specificity), which yielded a result of 0.254 (P=.17),
indicating no significant threshold effect in the included
studies. This suggests that the observed high heterogeneity (as
well as the broad PIs mentioned above) primarily stems from
nonthreshold factors (such as differences in predictor selection
or population characteristics), rather than merely from variations
in cutoff value selection.

Figure 2. Summary Receiver Operating Characteristic (SROC) plot illustrating the dispersion of study results. AUC: area under the curve; SROC:
Summary Receiver Operating Characteristic.
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Figure 3. Overall sensitivity of machine learning models for the prediction of preeclampsia [13-17, 19-39].
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Figure 4. Overall summary specificity of machine learning for the prediction of preeclampsia. [13-17, 19-39].

Performance Analysis of External Validation Models
A total of 6 (comprising 7 models) studies [8,17,24,28,30,32]
underwent external validation. The analysis revealed that when
applied to independent external populations, the models
exhibited performance decline with persistent high
heterogeneity. Specifically, the pooled AUC was 0.91 (95% CI
0.85-0.95; Figure 5). However, its 95% PI was 0.76-1.00,
indicating that the model’s discriminative ability might be
suboptimal in certain external settings. The pooled sensitivity
significantly decreased to 0.68 (95% CI 0.54-0.83; P<.001;

I2=99.6%; Figure 6 [8,21,24,28,30,32]), with a 95% PI of

0.25-0.94. The lower limit of 0.25 indicates that in the
worst-case external validation scenario, the model may miss
75% (23/31) of patients, posing an extremely high risk of missed
diagnosis. The pooled specificity was 0.90 (95% CI 0.86-0.96;

P<.001; I2=99.7%; Figure 7 [8,21,24,28,30,32]), with a 95%
PI of 0.62-0.99. Other indicators included: DOR of 28.21 (95%

CI 18.10-43.98; I2=97.6%); PLR of 7.51; NLR of 0.32. The
decrease in sensitivity (from 0.81 in the primary analysis to
0.68) and the extremely low limit of the PI (0.25) strongly
confirmed the limited transportability of the model across
populations, indicating that direct clinical application requires
extreme caution.
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Figure 5. Summary Receiver Operating Characteristic (SROC) plot for external validation models. AUC: area under the curve; SROC: Summary
Receiver Operating Characteristic.

Figure 6. Summary sensitivity of machine learning models for predicting preeclampsia based on external validation [13,27,30,34,36,38].
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Figure 7. Overall summary specificity of machine learning for predicting preeclampsia [13,27,30,34,36,38].

Sensitivity Analysis
After conducting a sensitivity analysis excluding case-control
studies in a leave-one-domain-out with 4 (15%) models, the
overall summary AUROC is 0.9109 (95% CI 0.8642-0.9390).
The summary sensitivity estimate derived from the
random-effects meta-analysis is 0.81 (95% CI 0.70-0.83;

P<.001; I2=99.7%), and the summary specificity is 0.88 (95%

CI 0.84-0.94; P<.001; I2=99.7%), as detailed in Figure 8 [8-33].
Consequently, it was concluded that the pooled estimates
remained unaffected by the exclusion of outlier values. With
an AUC>0.8, the model demonstrated good discriminative

ability, but an I2>75% indicated substantial heterogeneity within
most subgroups. To address this issue and gain deeper insights,
we undertook a subgroup analysis to investigate the potential
sources of this heterogeneity across the studies that were

included in our review. Accordingly, we do not interpret a single
pooled estimate as “average clinical performance” and instead
prioritize subgroup results. In addition, to eliminate the impact
of multiple models (derived from the same population) within
a single study on statistical independence (unit-of-analysis
error), we conducted additional sensitivity analyses by retaining
only the model with the highest AUROC from each study
(N=26). The results showed that the pooled sensitivity after
deduplication was 0.81 (95% CI 0.73-0.87), specificity was
0.88 (95% CI 0.83-0.91), and AUROC was 0.90 (95% CI
0.87-0.93). The above results were highly consistent with the
primary analysis (N=31), with no significant differences
observed in the CIs, indicating that incorporating different
models from the same study did not lead to inflated results or
underestimated variance. Therefore, we retained all models in
the primary analysis to demonstrate the performance differences
among various predictor combinations.

Figure 8. Forest plots of diagnostic performance [13-17, 19-39].
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Subgroup Analysis
The comparative results of the subgroup analysis on
preeclampsia prediction performance are presented in Table 3;
types of ML models, forest plots are shown in Figures S1-S22
in Multimedia Appendix 2. The comparison between subgroups
was determined by examining whether the 95% CI of the AUC
overlapped. Nonoverlapping intervals indicated statistical
significance while overlapping intervals indicated no statistical
significance. Data were derived from electronic health records,
high-throughput omics, and hybrid sources. Subgroup analysis
indicated that models based on hybrid data demonstrated
superior performance, followed by those using electronic health
records and high-throughput omics. However, considerable
heterogeneity was observed, and the 95% CIs extensively
overlapped across the 3 data types, suggesting no statistically
significant differences among them. The “pregnancy window”
refers to the index timing window during which predictors were
collected or model discrimination was performed. Models
constructed using third-trimester data showed better performance
with low heterogeneity. Nonetheless, overlapping 95% CIs
across models indicated no statistically significant differences
among pregnancy window subgroups. Regarding validation
strategies, internally validated models outperformed externally
validated ones, albeit with high heterogeneity. Subgroup analysis
revealed overlapping 95% CIs between the 2 validation types,

implying that the difference was not statistically significant.
Regarding sample size, the subgroup analysis results showed
that models with smaller sample sizes outperformed those with
larger sample sizes, exhibiting lower heterogeneity. However,
since the 95% CI overlapped, the differences between sample
size subgroups were not statistically significant. Regarding the
adopted model, nonlogistic regression prediction models
outperformed logistic regression prediction models. Further
analysis was conducted on nonlogistic regression models with
3 or more instances in each model category, revealing that neural
networks exhibited the best predictive performance with an
AUC of 0.9966 (95% CI 0.9772-1.0000) and the lowest
heterogeneity. The difference in model performance was
statistically significant when compared to elastic net models,
but not statistically significant when compared to other models.
Regarding the type of predictive variables, prediction models
constructed solely using laboratory test indicators achieved the
highest predictive performance with an AUC of 0.9463 (95%
CI 0.9097-0.9820) and the lowest heterogeneity. Nevertheless,
when compared to models built with alternative indicators, the
difference in performance was not statistically significant. For
the number of predictor variables used in model building,
models with 10 or more variables exhibited higher predictive
performance with an AUC of 0.9204 (95% CI 0.8671-0.9737),
but the difference was not statistically significant compared to
models with fewer than 10 variables.
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Table 3. Subgroup analysis results.

P valueI2 (%)AUCb (95% CI)Number of predic-

tion models (PCSa)

Grouping

<.00199.60.9168 (0.891-0.950)31Entire study

Sample size

<.00190.90.9361 (0.9079-0.9643)16<2000

<.00199.80.9109 (0.8501-0.9717)15≥2000

Data source

<.00199.60.9154 (0.8713-0.9595)14Mixed

<.00199.40.9126 (0.8430-0.982)12EHRc

<.00195.30.9406 (0.8898-0.9914)4Omics

Pregnancy window

<.00195.20.9406 (0.7853-1.0000)10Early

.00477.20.9304 (0.8965-0.9643)4Mid

.0371.40.9665 (0.9314-1.0000)3Late

<.00199.10.9138 (0.8805-0.9471)14Specific

Machine learning model

<.001100.00.9044 (0.6857-1.0000)3Logistic regression

<.00197.60.9171 (0.8871-0.9471)28Nonlogistic regression

<.00195.80.8917 (0.7950-0.9884)5RFd

<.00188.20.9068 (0.7623-1.0000)3SVMe

<.00189.90.9177 (0.8500-0.9854)4XGBoostf

<.00193.90.9419 (0.9125-0.9713)4ENg

.00184.70.9966 (0.9772-1.0000)3NNh

Predictor variable type

<.00199.40.8754 (0.8315-0.9193)10Demographic information

<.00196.80.9300 (0.8375-1.0000)3Biological genetic marker

<.00198.40.9275 (0.8665-0.9885)13Demographic information and laboratory
tests

<.00195.80.9463 (0.9097-0.9820)5Laboratory testing

Number of predictor variables

<.00186.60.9124 (0.8855-0.9393)10<10

<.00199.80.9196 (0.8665-0.9727)21≥10

aPCS: piece.
bAUC: area under the curve.
cEHR: electronic health record.
dRF: random forest.
eSVM: support vector machine.
fXGBoost: extreme gradient boosting.
gEN: elastic network.
hNN: neural network.

Meta-Regression Analysis
Due to the significant heterogeneity observed among the studies,
a meta-regression analysis was conducted. The meta-analysis

focused on various factors, including sample size, country of
publication, type of ML model, year of publication, study design,
study quality, and predictors, as detailed in Table 4. Variables
were systematically removed based on the magnitude of their
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P values, and separate meta-regression analyses were performed
for each variable. The results indicated that the source of

heterogeneity among the studies was primarily associated with
the research quality, as illustrated in Table 5.

Table 4. Meta-regression analysis.

RDORa(95% CI)P valueβ coefficient (SE)Variable

—b.013.547 (1.3356)Constant

0.34 (0.11-1.05).061.075 (0.5388)Sample size

0.72 (0.27-1.94).50–0.322 (0.4741)Country

1.80 (0.39-8.37).430.588 (0.7387)MLc method

1.01 (0.39-2.61).990.007 (0.4578)Year

0.24 (0.04-1.27).09–1.435 (0.8047)Design

1.96 (0.84-4.57).110.672 (0.4076)Quality

2.17 (0.61-7.67).220.773 (0.6075)Predictive

0.73 (0.27-1.97).51–0.318 (0.4797)Validation type

aRDOR: relative diagnostic odds ratio.
bNot applicable.
cML: machine learning.

Table 5. Meta-regression analysis after excluding P values from largest to smallest.

RDORa (95% CI)P valueβ coefficient (SE)Variable

—b<.0012.398 (0.5879)Constant

2.23 (0.99-5.00).050.800 (0.3951)Quality

aRDOR: relative diagnostic odds ratio.
bNot applicable.

Discussion

Principal Findings
This systematic review identified 31 ML models for
preeclampsia prediction. Our primary finding highlights a
critical paradox. While models demonstrate high average
discriminative potential (pooled AUROC 0.91), they exhibit

extreme heterogeneity (I2>99%) and limited transportability.
The wide 95% PI for sensitivity (0.32-0.96) warns that a model
performing perfectly in development may miss nearly 70% of
cases when applied to a new population. This “context
dependence” is further confirmed by the performance drop in
external validation studies (pooled sensitivity of 0.68),
suggesting that current high AUROCs largely reflect internal
fit rather than universal clinical effectiveness.

To investigate the sources contributing to this heterogeneity (as
well as the wide PIs), our subgroup analysis revealed several
key factors. In the subgroup analysis of all 31 models, we
observed that their predictive performance was better when the
sample size was small (less than 2000 cases), which contradicts
the conventional understanding that “larger sample sizes lead
to better predictive performance” [42]. The analysis may be
significantly influenced by confounding factors, such as study
design (eg, case-control studies) and research type—especially
considering the very high AUC of the elastic net (AUC=0.963

for Torres et al [26]; AUC=0.96 for Yu et al [30]). Therefore,
careful discernment is required, and one should not hastily
interpret this as indicating superior predictive performance of
models with smaller sample sizes. Regarding predictor types,
laboratory test indicators exhibit superior predictive
performance, as the core pathological mechanisms of
preeclampsia include placental perfusion disorders, endothelial
dysfunction, oxidative stress, and inflammatory responses [43].
Laboratory indicators can directly reflect pathological states,
while demographic information provides only indirect risk
assessments.

Among the ML models analyzed in this study, including RF,
SVM, NN, and Elastic-net, the NN model demonstrated the
highest predictive performance (AUC=0.99, 95% CI 0.98-1.00),
surpassing traditional ML methods, such as LR, RF, and extreme
gradient boosting. This analysis may be attributed to the
complex etiology of preeclampsia, a pregnancy complication
characterized by multiple pathological processes. The intricate,
multidimensional interactions inherent in preeclampsia are
challenging to capture comprehensively using linear models.
In contrast, NN models are well-equipped to model nonlinear
relationships and higher-order variable interactions, which more
accurately reflect the pathological characteristics of
preeclampsia [44]. Compared to traditional methods, NN can
automatically extract features and assign weights to input
variables without the need for extensive manual variable
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screening, demonstrating particular advantages in handling
high-dimensional data [45]. Moreover, NN models can integrate
multisource heterogeneous data, such as demographic
information, laboratory indicators, and biological genetic
markers, thereby adapting to the increasingly complex trends
in clinical data.

Higher predictive performance is observed when the number
of predictors is equal to or greater than 10. This indicates that
using a greater number of predictors helps to more
comprehensively reflect disease status, significantly enhancing
the model’s predictive performance. This is especially true for
nonlinear algorithms, which are better equipped to capture
interaction effects and underlying patterns.

Nonstandardized handling of missing data means that AUC;
concordance index and calibration may not be directly
comparable across studies; in particular, listwise deletion or
simple imputation combined with restricted case-mix and
threshold tuning can inflate discrimination and understate
uncertainty. We therefore recommend at minimum (1)
transparent reporting of missingness (overall and by variable)
and the primary imputation strategy; (2) preferential use of
multiple imputation or model-based methods, with minimal
recalibration (slope and Brier) and decision-curve analysis
during external validation; and (3) reporting confusion matrices
under fixed thresholds and top-N% triage plus subgroup
robustness (GA window; outcome definitions and sites) to
enhance interpretability for clinical and digital health use.

Strengths and Limitations
First, regarding methodological rigor and transparency, we
strictly adhered to the PRISMA guidelines for reporting, and
the research protocol has been preregistered in the international
prospective systematic review registry PROSPERO
(CRD420251005830). This ensures that the research objectives
and methods are predetermined, thereby minimizing reporting
bias. Second, concerning the comprehensiveness of the literature
search, our search strategy exhibits significant interdisciplinary
characteristics. We not only searched mainstream medical
databases such as PubMed and CNKI, but also included IEEE
Xplore and Web of Science to ensure a comprehensive capture
of ML models published in the fields of engineering technology
and computer science. This is critical for a topic that bridges
clinical medicine and artificial intelligence, avoiding potential
omissions of models that might occur if only medical databases
were searched. Third, regarding the reliability of data processing,
the entire process of literature screening and data extraction in
this study was conducted independently by 2 researchers, with
any discrepancies resolved through discussion or by involving
a third researcher as an adjudicator. This “dual review” process
is considered the gold standard for systematic reviews, ensuring
the accuracy of data extraction. Fourth, in terms of the
professionalism of quality assessment, we used the PROBAST
tool, which is currently recommended by international
authorities and specifically designed for predictive model
research, rather than traditional diagnostic test evaluation tools,
such as QUADAS-2 (Whiting and colleagues [46]). PROBAST
enables us to thoroughly assess the risk of bias and applicability
of the models across 4 key domains, including participants,

predictive factors, outcomes, and analysis, which is more
in-depth and relevant than previous reviews. Finally, regarding
the prudence of analysis, this study recognizes the common
pitfall of “performance overestimation” in meta-analyses of
predictive models. Therefore, we clearly identified models
lacking external validation and conducted an independent
meta-analysis of studies that reported external validation. This
approach allowed us to more accurately assess the
transportability of the models in real-world applications, leading
to the conclusion that they are “highly context-dependent,”
which is a more cautious and clinically realistic interpretation,
avoiding overinterpretation of the aggregated AUROC.

Our study has several limitations that should be considered
when interpreting the findings. First, and most critically, is the
issue of threshold heterogeneity and optimistic bias. As detailed
in the “Methods” section, the performance metrics were
synthesized from study-specific “optimal thresholds.” This
precluded the use of threshold-independent summary measures
from a bivariate model and means our pooled sensitivity and
specificity are likely inflated compared to what would be
achieved with a prespecified, clinically relevant cutoff. The
wide PIs we report are, in part, a quantification of this inflation
risk. Future primary studies should report performance at
multiple, clinically justified thresholds to facilitate more
meaningful meta-analysis. Second, related to the above, our
statistical synthesis approach was necessitated by the data
characteristics. The extreme heterogeneity and lack of threshold
standardization made the preferred bivariate modeling approach
unfeasible. While our use of univariate HKSJ models with PIs
is a robust alternative that honestly communicates uncertainty,
it does not model the correlation between sensitivity and
specificity. Our subgroup and meta-regression analyses help
explore sources of heterogeneity, but residual confounding is
likely. Third, our search, though comprehensive, may have
missed studies in other languages or in nonindexed repositories.
Furthermore, we did not formally assess for publication bias
using funnel plots or statistical tests, as these methods are less
established and interpretable for diagnostic accuracy data with
high heterogeneity. Therefore, our results may be influenced
by the preferential publication of studies with positive or
high-performance results.

Clinical Significance
The methodological choices in this meta-analysis directly inform
its central message. The decision to extract data at study-specific
“optimal thresholds” inherently captures the optimistic bias
prevalent in ML model development. The strikingly wide 95%
PI for sensitivity (0.32-0.96), calculated from these potentially
inflated estimates, therefore represents a conservative and
realistic warning. The true performance in a new setting, after
necessary recalibration to a local threshold, could fall to
clinically unacceptable levels. This finding powerfully reinforces
the principle that external validation is not a mere formality but
a fundamental requirement to bridge the gap between
algorithmic promise and clinical utility.

Clinical implementation of these models requires a shift from
“universal application” to “local adaptation.” Given the wide
PIs, hospitals should not adopt published models directly.
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Instead, we recommend a workflow of local validation and
recalibration. Future research should prioritize multicenter
external validation over developing new models. Where data
sharing is restricted, federated learning offers a promising
pathway to train robust models across diverse populations
without compromising privacy.

Conclusions
In summary, ML models demonstrate promising potential for
predicting preeclampsia, rather than serving as ready-made
universal solutions. While pooled analyses indicate high
discriminative performance, the substantial heterogeneity
(I²>99%) and wide 95% PIs (sensitivity 0.32-0.96) reveal
significant instability in model performance across different

clinical contexts. This “context dependency” was further
corroborated in external validation analyses. When applied to
independent populations, the model not only exhibited decreased
aggregate sensitivity but also the lower bound of its PI dropped
to 0.25, quantifying the substantial transplantation risk
encountered in cross-center applications. Current evidence
therefore supports considering ML as a potential screening
adjunct, but does not yet justify its use as a universal clinical
diagnostic tool. Future research should shift focus from solely
pursuing new models with high AUC values to conducting
rigorous multicenter external validation and recalibration of
existing models, in order to establish their applicable boundaries
within real-world clinical pathways.
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