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Abstract
Background: Digital microscopy combined with artificial intelligence (AI) is increasingly being implemented in health care,
predominantly in advanced laboratory settings. However, AI-supported digital microscopy could be especially advantageous in
primary health care settings, since such methods could improve access to diagnostics via automation and a decreased need for
experts on-site. To our knowledge, no scoping or systematic review has previously examined the use of AI-supported digital
microscopy in primary health care laboratories, and a scoping review could guide future research by providing insights into the
challenges of implementing these novel methods.
Objective: This scoping review aimed to map published peer-reviewed studies on AI-supported digital microscopy in primary
health care laboratories to generate an overview of the subject.
Methods: A systematic search of the databases PubMed, Web of Science, Embase, and IEEE was conducted on October 2,
2024. The inclusion criteria in the scoping review were based on 3 concepts: using digital microscopy, AI, and comparison of
the results with a standard diagnostic system, and 1 context, being performed in primary health care laboratories. Additional
inclusion criteria were peer-reviewed diagnostic accuracy studies published in English, performed on humans and achieving a
sample-level diagnosis. The study selection and data extraction were performed by 2 independent researchers (JVB and AS),
and cases of disagreement were resolved through discussion with a third researcher (NL). The methodology is in accordance
with the Joanna Briggs Institute methodology for scoping reviews.
Results: A total of 3403 papers were screened during the paper identification process, of which 22 (0.6%) were included in
the scoping review. The samples analyzed were as follows: blood (n=12) for blood cell and malaria detection, urine (n=4) for
urinalysis and parasite detection, cytology of atypical oral (n=1) and cervical cells (n=2), stool (n=2) for parasite detection,
and sputum (n=1) for ferning patterns indicating inflammation. Both conventional (n=15) and specifically developed methods
(n=7) were used in sample preparation. The AI-supported digital microscopy achieved comparable diagnostic accuracy to the
reference standard for complete blood counts, malaria detection, identification of stool and genitourinary parasites, screening
for oral and cervical cellular atypia, detection of pulmonary inflammation, and urinalysis. Furthermore, AI-supported digital
microscopy achieved higher sensitivity than manual microscopy in 6/7 (85.7%) studies that used a reference standard that
allowed for this comparison.
Conclusions: AI-supported digital microscopy achieved comparable diagnostic accuracy to the reference standard for
diagnosing multiple targets in primary health care laboratories and may be particularly advantageous for improving diagnos-
tic sensitivity. With further research addressing challenges such as scalability and cost-effectiveness, AI-supported digital
microscopy could improve access to diagnostics, especially in expert-scarce and resource-limited settings.

JOURNAL OF MEDICAL INTERNET RESEARCH von Bahr et al

https://www.jmir.org/2026/1/e78500 J Med Internet Res 2026 | vol. 28 | e78500 | p. 1
(page number not for citation purposes)

https://www.jmir.org/2026/1/e78500


International Registered Report Identifier (IRRID): RR2-10.2196/58149

J Med Internet Res 2026;28:e78500; doi: 10.2196/78500
Keywords: AI; artificial intelligence; convolutional neural network; deep learning; diagnosis; digital diagnostics; machine
learning; pathology; primary health care; whole slide images

Introduction
Background
Artificial intelligence (AI) in the form of machine learn-
ing has successfully been applied to image-based diagnos-
tics within several medical fields [1]. In parallel, manual
microscopy remains a cornerstone of diagnostic practice
in resource-limited settings and at the primary health care
(PHC) level due to its low cost, versatility, and ability
to provide direct visualization of pathogens and cellular
changes. It is widely used for the diagnosis of infectious
diseases such as malaria and intestinal parasitic infections,
as well as for full blood counts and analysis of cervical
and oral cytological samples and fine needle aspirates [2].
Despite its usefulness and broad applicability, microscopy
is highly dependent on the availability of trained person-
nel and adequate infrastructure, which are often limited
in such settings, leading to variability in diagnostic qual-
ity and coverage [3]. These limitations have motivated the
development of AI-driven approaches, where deep learning
methods can assist or automate microscopy-based diagnos-
tics to improve accuracy and accessibility. Deep learn-
ing approaches, particularly convolutional neural networks
(CNNs) and vision transformers, have become the dominant
architectures for image classification and interpretation in
medical imaging [4]. CNNs extract visual features, enabling
recognition of complex structures such as cells, pathogens,
and tissue patterns, while vision transformers can capture
contextual relationships between distant structures [4,5].

Leveraging these methods for AI-based microscopy within
laboratory workflows has the potential to automate processes,
increase productivity, and improve diagnostic accuracy [6].
Multiple AI-based diagnostic systems have been approved
for clinical use, for example, for cervical cancer screen-
ing and prostate cancer diagnostics [6-8]. Most of these
AI-based diagnostic systems depend on expensive, high-end
digital imaging instruments and require advanced labora-
tory infrastructure and are therefore not feasible for use in
PHC laboratories [6,7]. However, the development of less
expensive, portable digital microscope scanners has enabled
research on the use of AI-supported diagnostic systems
suitable for PHC laboratories [9-11].

A PHC laboratory, also known as a tier 1 laboratory,
can be defined as a laboratory primarily serving outpatients
by providing point-of-care (POC) tests and manual micro-
scopy of specimens with simple preparations. An additional
responsibility is preparing fine needle aspirations and other
simple tissue specimens that are later dispatched to a tier
2 laboratory in a first-level hospital for analysis. The PHC
laboratories work with a small budget compared with more
advanced laboratories and are generally managed by a

laboratory technician supervised by a pathologist from a
distance [2].

The World Health Organization has emphasized the
importance of providing diagnostics near the patient to
enhance the accuracy and timeliness of diagnoses, improve
clinical decision-making, and reduce the risk of diagnos-
tic errors [12]. The implementation of AI-supported dig-
ital microscopy could help address these challenges at
PHC laboratories. To begin with, since PHC laboratories
lack access to pathology expertise, application of AI could
enable more analyses on-site, consequently increasing both
the availability and speed of diagnostics [2,13]. Increased
speed and access to diagnostics through AI and telemedicine
could reduce health inequities by strengthening diagnostic
capacity, particularly in low- and middle-income countries
(LMICs) and also in sparsely populated regions of high-
income countries [11,14,15]. In addition, a systematic review
showed that the implementation of AI-supported diagnos-
tics for microscopy increased the effectiveness of labora-
tory personnel [6]. Although there is a global shortage of
microscopy experts, the shortage of these specialists is more
severe in LMICs; therefore, AI-supported digital microscopy
may be especially advantageous in strengthening health
systems and reducing the diagnostic gaps in these settings
[11,16].

There are several diseases where AI-supported digi-
tal microscopy diagnostics in PHC laboratories could be
advantageous, and studies have been performed on, for
example, screening of oral and cervical cancer as well as
targeting parasitic infections, such as schistosomiasis and
infections caused by soil-transmitted helminths [9,17-19].
Although the targeted diseases differed in these studies,
researchers often encountered similar challenges due to
commonalities in the methodologies applied, and a review
mapping these challenges could provide valuable insights.

A preliminary search of the databases PubMed and
Cochrane was performed to investigate whether any scoping
or systematic review had been performed on AI-suppor-
ted digital microscopy in PHC laboratories. A few related
reviews were found. One systematic review of AI diagnostics
for oral cancer [20] overlaps to some extent with our review;
however, since it focuses on a single disease, it does not
provide an overview of the development of AI-supported
digital microscopy in PHC laboratories. Another systematic
review evaluating the application of AI to whole slide images
of tissue samples stained with hematoxylin and eosin was
also identified [21]. This paper presents the current state
of knowledge on AI implementation in pathology within
high-end laboratories.

While these reviews are similar to this scoping review,
they do not provide an overview of which diseases have
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been investigated in AI-supported digital microscopy and
the disease-agnostic challenges faced in PHC laboratories.
Furthermore, the development of more affordable scanners
and improved AI, along with persistent workforce and
resource constraints, makes a scoping review timely. A
scoping review performed on AI-supported digital micro-
scopy in PHC laboratories would, therefore, provide a
valuable overview of the subject and collate knowledge that
could guide future implementation.

This scoping review aimed to systematically review
published peer-reviewed studies that have been performed
related to AI-supported digital microscopy in PHC labora-
tories and specifically address the following questions: (1)
In which diseases and for which conditions and targets has
AI-based microscopy been applied for diagnostics within
PHC laboratories? (2) What methods have been used in
acquiring microscopy images to train and analyze AI models
for diagnostics? (3) What AI models and training approaches
have been applied? (4) How has the AI-supported diagnostic
system performed compared with expert microscopists with
regard to diagnostic accuracy?

Review Question
What peer-reviewed studies have been published on
implementing AI-supported digital microscopy in PHC
laboratories? What methods have been used, what issues have
been faced, and what results have been achieved?

Methods
Study Design
The scoping review was conducted in accordance with the
Joanna Briggs Institute methodology for scoping reviews
updated in 2020 [22]. A PRISMA-ScR (Preferred Reporting
Items for Systematic reviews and Meta-Analyses extension
for Scoping Reviews) checklist is included [23]. A protocol
was initially published in the Open Science Framework and
later in the peer-reviewed journal JMIR Research Protocols
[24,25]. The inclusion and exclusion criteria are shown in
Table 1.

Table 1. Inclusion and exclusion criteria for identified studies.
Study characteristic Inclusion criteria Exclusion criteria
Language • English • Non-English
Study design • Published peer-reviewed studies

• Diagnostic test accuracy studies
• Non–peer reviewed studies
• Not diagnostic test accuracy studies

Population • Humans • Studies performed on animals
Concept • AIa techniques applied as a diagnostic tool on microscopy

• Final slide-level diagnosis was performed and compared with a
standard microscopist

• Outcome valuable for clinicians

• Studies that applied AI models on images not
conventionally analyzed in microscopy

• No final slide diagnosis

Context • Performed at primary health care laboratory (tier 1 laboratory)
• No pathologist needed on site
• Samples such as stool, urine, blood, cytology smears, and fine

needle aspirations of superficial tissue (eg, from breast lumps)
prepared with simple methods

• Studies performed in an advanced laboratory
setting

aAI: artificial intelligence.

Eligibility Criteria

Participants
This scoping review considered studies on human partici-
pants. No exclusion was made based on age, sex, economic
status, or nationality.
Concept
The studies included in this scoping review fulfilled 3 concept
criteria. First, the studies needed to be performed on images
obtained with an imaging instrument built to automatically
capture microscopy sample areas large enough for diagnostic
purposes. Furthermore, the imaging instrument used must be
operated in a way that does not require human expertise
to determine what areas of the slide should be captured.
Microscopy was defined as deploying a light source, optical
lenses, and a digital camera to acquire a magnified image
of a biological sample, generating an image conventionally
interpreted by a microscopist.

Second, the studies needed to use AI when analyzing the
microscopy images. AI was defined as a computer system
that is trained to perform a task that typically requires human
intelligence. No exclusion was made based on the architecture
of the AI model or the dataset used for training. This analysis
of the microscopy images could be performed on-site or in a
remote cloud environment.

Third, the studies needed to compare the AI-supported
diagnostic system with a standard diagnostic system. A
diagnostic system was defined as all the steps included in the
diagnostic process, from sample collection to the acquisition
of results. The result needed to be sufficient to reach a
diagnosis at the subject level.

Context
The included studies needed to be performed in a PHC
laboratory setting. To be defined as a PHC laboratory,
also known as a tier 1 laboratory, the laboratory needed
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to fulfill 2 criteria. First, regarding staffing, the laboratory
must be run by a laboratory technician, not requiring a
pathologist on-site. Second, the sample preparations could
not exceed the capabilities of a PHC laboratory. Accept-
able samples collected included stool, urine, blood, cytol-
ogy smears, and fine needle aspirations of superficial and
easily accessible tissues (eg, from breast lumps and superfi-
cial lymph nodes). The sample staining procedure must be
possible to perform manually without advanced laboratory
equipment such as a microtome or tissue processor [2].
Sample procedures that fulfill these criteria include Kato-Katz
thick stool smears, blood smears, centrifuged urine samples,
Papanicolaou-stained cervical or oral smears, and hematoxy-
lin and eosin–stained fine needle cytology smears [2]. Since
the context of PHC laboratories in this scoping review is
based on human medicine, the exclusion criteria and initial
search strategy were changed to exclude veterinary medicine,
which was included in the initial protocol published on Open
Science Framework [24]. This adjustment was made before
submitting the protocol to JMIR Research Protocols to focus
the scoping review specifically on challenges in implement-
ing AI-supported microscopy in human health care [25].

Types of Sources
All types of diagnostic test accuracy studies were included.
Because data collection in diagnostic test accuracy studies
can be both retrospective and prospective, studies using either
approach were included. In addition, studies using both paired
and random designs for reference standards were included
[26]. The included studies had to be published in English.

Search Strategy
The search strategy was designed to identify peer-reviewed
published papers. An initial limited search of PubMed and
Cochrane was undertaken to identify papers on the topic.
Search blocks were created for the final search based on
terms used in the identified papers. The search blocks were
developed to find papers containing the 2 concepts, micro-
scopy and AI, as well as the context specification of being in
a PHC setting, with 1 block created for each. The databases
searched were PubMed, Web of Science, Embase, and IEEE,
and a detailed description of the search strategy is given
in Multimedia Appendix 1. The search was performed on
October 2, 2024. The reference lists and all the papers citing
the included papers were gathered through the SpiderCite tool
on December 3, 2024, and included in the review process
[27].

Study Selection
Following the search, all identified papers were compiled
in a reference management software system, Zotero (ver-
sion 6.0.20, Digital Scholar; January 13, 2023, opensource)
and duplicates removed. Following the pilot test, titles and
abstracts were screened by 2 independent reviewers (JvB
and AS) for assessment against the inclusion and exclusion
criteria using Covidence systematic review software (Veritas
Health Innovation, 2024) [28]. During this step, the Cohen κ
agreement was 0.59. All disagreements between JvB and AS

were resolved by NL, who provided the deciding vote and
could consult the other screeners for their rationale. There-
after, the full texts of the remaining papers were assessed
in detail against the inclusion criteria by 2 independent
reviewers (JvB and AS). During full text screening, the
Cohen κ agreement was 0.75 for the database search and
0.36 for the citation search. Two reasons caused 17 out of
21 disagreements in the citation search and were resolved
through discussions between JvB, AS, JL, and NL. The first
issue concerned whether urine analyzers such as Iris iQ200 or
Sysmex UF-100 fulfilled the PHC criteria: it was concluded
that they did not, as these devices perform advanced sample
preprocessing within the machine [29]. The second issue
concerned whether handcrafted feature classification qualified
as AI: it was concluded that it did not, as it does not involve
AI training. With these 2 issues resolved, the citation search
had a Cohen κ agreement of 0.79.
Data Charting and Synthesis
Data were extracted from the studies included in the scoping
review by 2 reviewers (JvB and AS) using a data extraction
tool developed with Covidence systematic review software.
The predeveloped extraction tool can be found in Multimedia
Appendix 2. Initially, the extraction was performed by JvB.
Afterward, the extracted information was checked by AS. All
disagreements were resolved through discussion between JvB
and AS. When questions arose regarding an original paper,
the corresponding author of that manuscript was contacted.
The findings are presented narratively and additionally in
a table format based on the extraction tool. The informa-
tion from the extraction tool was split into 3 tables and 1
figure to increase readability. The figure contains a simplified
overview of the studies, the first table summarizes the process
from sample collection to scanning, the second table shows
information on the AI analysis pipeline and training data,
and the third table reports the study outcomes. Based on the
information extracted to the tables, a narrative description
was written to provide an overview of the mapped informa-
tion. The studies were grouped based on the sample type
investigated and the disease targeted as per the first objec-
tive of the study: to map in which diseases and for which
conditions and targets has AI-based microscopy been applied
for diagnostics within PHC laboratories.
Critical Appraisal of Results
The QUADAS-2 tool was applied to investigate the bias of
the included studies. This tool was developed to assess the
risk of bias for diagnostic accuracy studies in 4 areas: patient
selection, index test, reference standard, and flow and timing
[30]. The results are shown in the “Results” section, and the
form used can be found in Multimedia Appendix 3.

Results
Overview
In total, 3403 papers were screened during the paper
identification process, of which 22 (0.6%) were included in
the scoping review. The results of the search and the study
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inclusion process are reported in full in a PRISMA (Preferred
Reporting Items for Systematic reviews and Meta-Analyses)
flow diagram (Figure 1) [31].

Figure 1. Flowchart for study inclusion.

The oldest included study was published in 2014, while
the remaining studies were published in 2018 or later, with
9 out of the 22 (40.9%) studies published in 2024. The
papers were published in 15 different journals with the most
common being Malaria Journal (n=4) and PLOS One (n=4).
The most analyzed samples were blood (n=12), followed
by urine (n=4), cytology (n=3), stool (n=2), and sputum
(n=1). Different parasites (malaria, intestinal, or genitourinary
parasites) were the most common targets (n=13), followed
by blood cells (n=4), atypical cervical cells (n=2), atypical

oral cells (n=1), and urine particles, such as cells (n=1) and
crystalline ferning patterns in sputum (n=1). Detection of
these targets was used for multiple diseases and conditions;
complete blood counts (CBCs) and urinalysis were used for
both organ-specific and systemic diseases, parasite detection
for corresponding infections, atypical cells for screening
and detection of cancer, and ferning patterns for identifying
pulmonary inflammation in patients with COVID-19. An
overview of all studies is shown in Figure 2.

JOURNAL OF MEDICAL INTERNET RESEARCH von Bahr et al

https://www.jmir.org/2026/1/e78500 J Med Internet Res 2026 | vol. 28 | e78500 | p. 5
(page number not for citation purposes)

https://www.jmir.org/2026/1/e78500


Figure 2. Overview of the included studies. AI better than microscopy: White = No comparison, Yes = Higher/same sensitivity and specificity,
Mix = Higher sensitivity and lower specificity, and No = Lower sensitivity and specificity. Number of samples in the test set: k=1000. Conditional
formatting was applied to all numerical values, with high values shaded green and low values shaded yellow. AI: artificial intelligence; CBC:
complete blood count; D: Downey cells; F: Ferning patterns indicative of inflammation; S: sputum; U: urinalysis.

Sample Preparation and Scanning
Out of the 22 included studies, 12 relied solely on manual
preparation methods and 3 used centrifuges. The remaining
studies (n=7) used cartridges that simplified and elimina-
ted manual steps. Both in-house–built and commercially
available scanners such as Grundium, MiLab, and Motic
EasyScan GO were used. The lowest numerical aperture
used was 0.1 and the highest was 1.4. Several scanners

used both autofocus algorithms and z-stacking to avoid
out-of-focus areas. In the 5 studies reporting the time from
sample collection to diagnosis using AI-supported digital
microscopy, it was 20‐40 minutes, but there was also a
study reporting that it took more than 50 minutes for the
scanning and AI analysis (Table 2) and a more detailed table
in Multimedia Appendix 4.

Table 2. Time for analysis and sample processing for the included studies.
Study Sample Target Sample preparation Sample scanning Time for analysis
Bachar et al (2021) [32] Blood CBCa Cartridge with 2

stains
No retrievable
magnification and
resolution

No retrievable
information

Gasparin et al (2023) [33] Blood CBC Dual-chamber
cartridge with 2
stains

No retrievable
magnification and
resolution

Total: 30‐40 minutes

Gasparin et al (2022) [34] Blood CBC Dual-chamber
cartridge with 2
stains

No retrievable
magnification and
resolution

Total: 30‐40 minutes

Akisin et al (2023) [35] Blood Downey cells Manual blood smears
stained with May-
Grünwald and
Giemsa

100× with oil
immersion

No retrievable
information

Hamid et al (2024) [36] Blood Malaria parasites Cartridge with
Giemsa staining

A resolution similar to
50× microscopy [37]

Total: <30 minutes

Holmström et al (2020) [38] Blood Malaria parasites Manual blood smears
stained with DAPIb

A resolution of 0.9 µm No retrievable
information

Bae et al (2024) [37] Blood Malaria parasites Cartridge with
Giemsa staining

A resolution similar to
50×

Total: <30 minutes
[36,39]; Scanning:
7‐10 minutes
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Study Sample Target Sample preparation Sample scanning Time for analysis
Ewnetu et al (2024) [39] Blood Malaria parasites Cartridge with

Giemsa staining
A resolution similar to
50× [37]

Total: circa 20
minutes

Das et al (2022) [40] Blood Malaria parasites Manual blood smears
stained with Giemsa

40× (NAc 0.75) Scanning and AId
analysis: 20‐30
minutes

Torres et al (2018) [41] Blood Malaria parasites Manual blood smears
stained with Giemsa

100× with oil
immersion (NA 1.25)

No retrievable
information

Linder et al (2014) [42] Blood Malaria parasites Thin blood smears
stained with Giemsa

63× with oil immersion
(NA 1.4)

No retrievable
information

Horning et al (2021) [43] Blood Malaria parasites Manual blood smears
stained with Giemsa

40x (NA 0.75) Scanning and AI
analysis 54 minutes

Stegmüller et al (2024) [44] Cervical
cytology

Cellular atypia SurePath procedure
with Papanicolaou
stain

40× (NA 0.75) No retrievable
information

Holmström et al (2021) [9] Cervical
cytology

Cellular atypia Conventional
Papanicolaou smears

20× (NA 0.4) Scanning: 5‐10
minutes; uploading
10‐40 minutes

Sunny et al (2019) [19] Oral cytology Cellular atypia Manual liquid-based
cytology, stained
with H&Ee [45]

20× (NA 0.4) [45] AI analysis: 10
minutes

Ghaderinia et al (2024) [46] Sputum Ferning patterns Sedimented unstained
sputum samples

40× magnification No retrievable
information

Soares et al (2024) [47] Stool Intestinal parasites Fecal samples with
centrifugation,
flotation, and
sedimentation [48]

No retrievable
magnification and
resolution

AI analysis: circa 3
minutes

Lundin et al (2024) [49] Stool Soil-transmitted
helminths

Kato-Katz thick
smears

20× (NA 0.4) Scanning 5‐10;
uploading 10‐20
minutes; AI analysis
5 minutes

Sahu et al (2024) [50] Urine Urinalysis Cartridge that
concentrates the urine
through 5 minutes of
sedimentation

40× (NA 0.65) No retrievable
information

Meulah et al (2022) [51] Urine Schistosoma A membrane
capturing filtered
urine particles

4× (NA 0.1) Scanning: 12
minutes; AI analysis:
5 minutes

Oyibo et al (2022) [52] Urine Schistosoma A membrane
capturing filtered
urine particles

4× (NA 0.1) Scanning: 12
minutes; AI analysis:
10‐12 minutes

Meulah et al (2024) [53] Urine Schistosoma A membrane
capturing filtered
urine particles

4× (NA 0.1) Scanning and AI
analysis: 25 minutes

aCBC: complete blood count.
bDAPI: 4',6-diamidino-2-phenylindole.
cNA: numerical aperture.
dAI: artificial intelligence.
eH&E: hematoxylin and eosin.

Training Data and AI Analysis Pipeline
For training AI models, most studies used in-house collected
and annotated datasets of varying sizes; some had hundreds
of target objects in their dataset, whereas others had hundreds
of thousands. Many studies reported using pretrained neural
networks with different datasets such as COCOtrain2017 and
ImageNet for training [47,53]. One study used unlabeled
data from their collection for unsupervised pretraining and
incorporated publicly available datasets [44].

The AI analysis pipeline for all included studies can
be summarized as follows: a digitized microscopy sample
was provided as input, fields-of-view (FOVs) were ana-
lyzed, FOV results were aggregated to produce a slide-level
diagnosis, and this diagnosis served as the output (Figure 3).
The digitized sample used as input could consist of either
whole-slide images or multiple FOVs captured from the
physical slide. The FOV analysis involved both the identifica-
tion and the classification of specific targets; however, not
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all studies used this first identification of suspicious FOVs
(regions of interest).

Figure 3. Visualization of the artificial intelligence analysis pipeline. As an illustrative case, the pipeline is applied to a digitized fecal smear with
Ascaris lumbricoides parasite eggs.

An initial detection of suspicious FOVs was described in half
of the studies; when this was applied, algorithmic approaches,
shallow CNNs, or support vector machines (SVMs) were
used. The purpose of performing this initial identification of
FOVs of interest was to reduce the number of FOVs that
needed to be analyzed by more computationally expensive AI
algorithms. An additional advantage of performing an initial
detection of suspicious FOVs was that the FOVs were more
homogeneous in content and quality, which can improve the
accuracy of the AI classifier. All studies used AI for the
FOV classification step, predominantly CNNs, except for the

oldest study that used an SVM [42]. One approach was to use
multiple classification steps, for example, by using SVM or
shallow CNNs to classify targets and then reclassifying those
with higher uncertainty with deeper CNNs [37,47].

To achieve the slide-level diagnosis from the FOV analysis
results, multiple methods were used; for example, classifying
slides with any number of positive targets as positive, using
different cutoffs based on confidence or number of findings,
or using AI-based methods such as SVMs and multiple
instance learning (Table 3).

Table 3. Artificial intelligence model training and architecture for the included studies.
Study Sample and target Samples in training set AIa model architecture and training
Bachar et al (2021)
[32]

Blood and CBCb No retrievable information AI model with separate pipelines for platelets, RBCsc, and
WBCsd (1) algorithmically identifies candidates, and (2)
candidates categorized by specialized CNNse and machine
learning algorithms

Gasparin et al (2023)
[33]

Blood and CBC Expert-verified training data
gathered throughout
development; no further
retrievable information

AI model with CNN architecture using the YOLOf framework

Gasparin et al (2022)
[34]

Blood and CBC Expert-verified training data
gathered throughout
development; no further
retrievable information [33]

AI model with CNN architecture using the YOLO framework

Akisin et al (2023)
[35]

Blood and Downey cells 15,885 expert-annotated WBCs
containing 172 Downey cells

AI model with YOLOv4-tiny-based framework with spatial
attention using average and maximum pooling along the
channel axis

Hamid et al (2024)
[36]

Blood and malaria
parasites

No retrievable information AI model with (1) U-Net segmenting RBCs, (2) a 3-layer CNN
removing normal RBCs, (3) a 23-layer CNN for detecting
parasites, and (4) 1 positive object sufficient for slide positivity
[37]

Holmström et al
(2020) [38]

Blood and malaria
parasites

25 thin blood smears with
annotated trophozoites (n=5059)
and other fluorescence signals
(n=856)

AI model with (1) Circle Hough Transform identifying RBCs,
(2) fluorescence signals from within the detected RBCs are
used, and (3) RBCs with fluorescence signals were analyzed
with a CNN (GoogLeNet)

Bae et al (2024) [37] Blood and malaria
parasites

No retrievable information AI model with (1) U-Net segmenting RBCs, (2) a 3-layer CNN
removing normal RBCs, (3) a 23-layer CNN for detecting
parasites, and (4) 1 positive object sufficient for slide positivity

Ewnetu et al (2024)
[39]

Blood and malaria
parasites

No retrievable information AI model with (1) U-Net segmenting RBCs, (2) a 3-layer CNN
removing normal RBCs, (3) a 23-layer CNN for detecting
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Study Sample and target Samples in training set AIa model architecture and training

parasites, and (4) 1 positive object sufficient for slide positivity
[37]

Das et al (2022) [40] Blood and malaria
parasites

Subset of 1452 blood samples
and 956,531 annotated parasite
objects [54]

AI model analyzes only thick region with (1) potential parasites
identified through dynamic thresholding and SVMg, (2) CNN
(VGGh architecture) classifies parasites, and (3) a
predetermined threshold decides slide positivity [54]

Torres et al (2018)
[41]

Blood and malaria
parasites

Approximately 150 high-quality
thick films with 75,000 parasites

AI model for thick region with (1) local thresholding and low-
cost methods to identify potential parasites, (2) CNNs (VGG
architecture) classifies parasites and stage, and (3) number and
confidence of parasites determine slide-level diagnosis

Linder et al (2014)
[42]

Blood and malaria
parasites

A training set (n=10) with
parasites (n=8329) and a
validation set (n=6) parasites
(n=569)

AI model with (1) thresholding algorithm segments potential
parasites, and (2) mathematical feature extraction and
classification with SVM

Horning et al (2021)
[43]

Blood and malaria
parasites

Thick model: Subset of 1452
blood samples with 956,531
parasite objects [54].
Thin model: 798 blood samples
with more than 92,000 parasites
[55].
Tuning slides: 48 slides

Separate AI models for thin and thick regions:
Thick-AI model: (1) potential parasites identified through
dynamic thresholding and SVM. (2) CNNs (VGG architecture)
classify [54].
Thin AI model: (1) potential parasites detected with a gradient-
boosted tree classifier. (2) CNNs for classifying parasite stages
[55]

Stegmüller et al
(2024) [44]

Cervical cytology and
cellular atypia

A stratified 4-fold split approach
to partition the 307 slides with
1228 tile-level annotations into
training, validation, and test sets;
2 public datasets also used

AI model with (1) CNN (ResNet-50) with self-supervised
training (DINO) and then supervised training with cell pasting,
and (2) 8 most suspicious tiles used for slide classification with
multiple instance learning (CLAM)

Holmström et al
(2021) [9]

Cervical cytology and
cellular atypia

350 WSIsi were used for training
with 16,133 annotations made
by a pathologist

AI model with (1) a CNN that segments slide into high- and
low-grade atypia, and (2) a threshold that decides slide
positivity

Sunny et al (2019)
[19]

Oral cytology and
cellular atypia

252 atypical and 280 normal cell
images annotated (90% for
training and 10% for validation)

AI model with (1) cells segmented to single cells, (2) a CNN
(Inception V3) used for classification, and (3) cut-offs and
SVMs based on percentage and mean score of atypical cells
and mean cell score for slide diagnosis

Ghaderinia et al
(2024) [46]

Sputum and ferning
patterns (inflammation)

650 images (520 training and
130 validation) derived from 70
participants

AI model with (1) a CNN (EfficientNet-B0); and (2) CNN
output used to classify sample

Soares et al (2024)
[47]

Stool and intestinal
parasites (both
helminths and
protozoans)

51,919 images containing
12,225 annotations of 15
parasite species (ranging from
83 to 3297 per species) [56]

AI model with (1) classification with extracted features and
probabilistic SVM, and (2) uncertain objects analyzed with a
CNN (Vgg-16) [56]

Lundin et al (2024)
[49]

Stool and soil-
transmitted helminths

388 samples with 15,058
annotations: Ascaris
lumbricoides (n=2299),
Trichuris trichiura (n=2727),
hookworm (n=552), and artifacts
(n=9480)

AI model with (1) YOLOv2 used to detect potential parasites,
(2) a CNN (ResNet50) used for classification, and (3) 1
parasite sufficient for slide positivity

Sahu et al (2024)
[50]

Urine and urinalysis A dataset annotated by a
pathologist

AI model with (1) a single CNN (YOLOX) to detect objects,
and (2) object counts used to grade slide in tiers of positivity

Meulah et al (2022)
[51]

Urine and Schistosoma Both spiked laboratory samples
and 33 field samples [17]

AI model with (1) a CNN segmentation model (U-Net
architecture) [17]

Oyibo et al (2022)
[52]

Urine and Schistosoma 17,799 annotated Schistosoma
haematobium eggs in 2997 FOV
images; dataset split into 80%
training and 20% validation set

AI model with (1) a CNN (DeepLabv3-MobileNetV3), (2) egg-
shaped ellipses fitted to segmented regions for counting, and
(3) 1 parasite fulfilling criteria sufficient for slide positivity

Meulah et al (2024)
[53]

Urine and Schistosoma 17,799 annotated S. haema-
tobium eggs in 2997 FOVj
images; dataset split into 80%
training and 20% validation set
[52]

AI model with (1) a CNN (DeepLabv3-MobileNetV3), (2) egg-
shaped ellipses fitted to segmented regions for counting, and
(3) 1 parasite fulfilling criteria sufficient for slide positivity
[52]

aAI: artificial intelligence.
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bCBC: complete blood count.
cRBCs: red blood cells.
dWBCs: white blood cells.
eCNNs: convolutional neural networks.
fYOLO: You Only Look Once.
gSVM: support vector machine.
hVGG: Visual Geometry Group.
iWSIs: whole slide images.
jFOV: field of view.

Study Outcomes
When the study outcomes were mapped, differences were
observed in the reference standards, study sizes, and
performance metrics used. For the 3 studies investigating
CBCs, the Pearson correlation coefficient was compared with
high-end analyzers and was above 0.9 for all cells except
basophils, where the value ranged from 0.6 to 0.8 in all
studies [32-34]. Nine studies used manual microscopy of the
same samples as the reference standard and reported results
with sensitivity and specificity (for malaria, soil-transmitted
helminths, Schistosoma, and cervical cell atypia). Across
these 9 studies, all reported a sensitivity and specificity of
at least 80% except for 1 with a lower sensitivity of 57%
[35] and 3 with lower specificity (75.6%, 78.4%, and 48.9%)
[9,40,51]. One study included results with and without
human expert verification: human verification of AI model
findings increased specificity by 29.5% but conversely led

to a sensitivity decrease of 0.9% for malaria detection [36].
Seven studies used reference standards such as polymerase
chain reaction (PCR) or histology and included compari-
sons between AI-supported digital microscopy and manual
microscopy; in 4 of these 7 studies, a higher sensitivity
but lower specificity was reported for AI-supported digi-
tal microscopy. Of the remaining 3 studies, 1 evaluated
urinalysis, in which manual analysis had higher sensitivity,
specificity, or both across all targets [50], 1 for intestinal
parasites where the AI had higher sensitivity and the same
specificity [47], and 1 for oral atypia where the AI had
both higher sensitivity and specificity [19]. The number of
samples included in the diagnostic evaluations ranged from
27 to 2250. Most studies (n=15) achieved a low risk for
bias according to QUADAS-2; however, some studies either
lacked the information needed to properly evaluate bias or
had methodological issues (n=7) (Table 4).

Table 4. Results for the included studies.

Study Sample and target
Human
verification Outcome

Manual
microscopy

Number of
samples

Reference
standard QUADAS-2a

Bachar et al (2021)
[32]

Blood and CBCb No rc≥0.94 (except
basophils=0.6)

NRd 679 Hematology
analyzer

Low

Gasparin et al (2023)
[33]

Blood and CBC Yes r≥0.94 (except
eosinophils/
basophils=0.81)

NR 550 Hematology
analyzer

Low

Gasparin et al (2022)
[34]

Blood and CBC Yes r≥0.91 (except
eosinophils/
basophils=0.80)

NR 450 Hematology
analyzer

Low

4: Akisin et al (2023)
[35]

Blood and
Downey cells

No See 57%, Spf 100% NR 31 Manual
microscopy

Mostly low

Hamid et al (2024)
[36]

Blood and malaria Yes Se 90.2%, Sp 96.2% Se 89.3%, Sp
100%

190 PCRg Low

Holmström et al
(2020) [38]

Blood and malaria No r=0.90 for parasite
counts

NR 27 PCR Mostly low

Bae et al (2024) [37] Blood and malaria No Se 95.1%, Sp 91.4% NR 488 Microscopy
and RDTsh

Low

Ewnetu et al (2024)
[39]

Blood and malaria Yes Se 83%‐93.9%, Sp
94%‐97.6%

Se 67%‐
69.9%, Sp
97%‐98.7%

1165 PCR Low

Das et al (2022) [40] Blood and malaria No Se 91.1%, Sp 75.6% NR 2250 Microscopy Low
Torres et al (2018)
[41]

Blood and malaria No Site 1: Se 72%, Sp
85%
Site 2: Se 52%, Sp
70%

Site 1: Se
68%, Sp
100%
Site 2: Se
42%, Sp 97%

Site 1: 400
Site 2: 300

PCR Low

Linder et al (2014)
[42]

Blood and malaria Yes Se 95%, Sp 100% NR 31 Microscopy Low
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Study Sample and target
Human
verification Outcome

Manual
microscopy

Number of
samples

Reference
standard QUADAS-2a

Horning et al (2021)
[43]

Blood and malaria No Se 86.7%, Sp 100% NR 35 Microscopy Low

Stegmüller et al (2024)
[44]

Cervical cytology
and cellular atypia

No Mean area under
curve 77.5

NR 307 (4-fold
split)

Microscopy Low

Holmström et al
(2021) [9]

Cervical cytology
and cellular atypia

No Se 100%, Sp 78.4% NR 361 Microscopy Mostly low

Sunny et al (2019)
[19]

Oral cytology and
cellular atypia

No Se 89%, Sp 100% Se 59%, Sp
67%

30 Histology Low

Ghaderinia et al
(2024) [46]

Sputum and
ferning patterns
(inflammation)

No Se 94.3%, Sp 95.9% NR 160 CTi Mostly low

Soares et al (2024)
[47]

Stool and
intestinal
parasites (both
helminths and
protozoans)

No Se 86%, Sp 100% Se 81%, Sp
100%

73 Manual and AIj
microscopy

Mostly low

Lundin et al (2024)
[49]

Stool and soil-
transmitted
helminths

No Se 76.4%‐91.9% Sp
89.7%‐98.2%

NR 792 Microscopy Low

Sahu et al (2024) [50] Urine and
urinalysis

No Se ≥81% except for
bacteria (76%) and
casts (71%), Sp
≥88%

Se ≥94% and
Sp ≥93%

240 Microscopy Mostly low

Meulah et al (2022)
[51]

Urine and
Schistosoma

No Se 87.3%, Sp 48.9% NR 487 Microscopy Low

Oyibo et al (2022) [52] Urine and
Schistosoma

No Se 93.8%, Sp 93.9% NR 65 Microscopy Mostly low

Meulah et al (2024)
[53]

Urine and
Schistosoma

No Se 62.9%, Sp 78.8
%

Se 61.9%, Sp
96.4%

339 PCR and
particle lateral
flow test

Low

aQUADAS-2: Quality assessment of diagnostic accuracy studies 2.
bCBC: complete blood count.
cr: Pearson correlation coefficient.
dNR: Not reported.
eSe: sensitivity.
fSp: specificity.
gPCR: polymerase chain reaction.
hRDT: rapid diagnostic test.
iCT: computed tomographic scan.
jAI: artificial intelligence.

Discussion
Summary
This scoping review included 22 publications deploying
AI-supported digital microscopy in PHC laboratories for
multiple targets, published in 15 different journals. These
studies fulfilled the concepts of using AI and digital
microscopy to achieve a slide-level diagnosis in PHC
laboratories. The number of included studies was low, given
the extensive research on AI in medical imaging. The
exclusion of 58 papers due to the absence of sample-level
diagnoses and of 71 papers due to not being conducted in
PHC laboratories suggests that most research has focused on
target detection or advanced laboratory settings, rather than
evaluating end-to-end diagnostic systems for PHC use. This
is notable, given the potential benefits of such technologies

in PHC laboratories. However, 9 of the 22 included studies
were published in 2024 indicating an upward trend in studies
focused on AI-supported digital microscopy at the PHC level.

The studies targeting specific diseases primarily focused
on conditions that disproportionally affect vulnerable
populations. The results from the included studies in this
scoping review indicate that AI-supported digital micro-
scopy can achieve accuracy comparable to that of stand-
ard microscopy for malaria, intestinal parasites, cell atypia,
and urinalysis; to that of computed tomography for detect-
ing pulmonary inflammation in patients with COVID-19;
and to that of conventional hematology analyzers for CBC.
Diagnostic accuracy comparable to the reference standard
was defined as sensitivity and specificity of >80% or a
Pearson correlation of >0.90. The reported results also
indicate that AI-supported digital microscopy could be
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particularly advantageous for increasing sensitivity, as 6 out
of 7 (85.7%) studies comparing it with manual microscopy
reported higher sensitivity for AI-supported digital micro-
scopy. Furthermore, the objective of the scoping review was
to map target-agnostic challenges and solutions regarding
sample preparation, scanning, AI methods, and human
integration and discuss future implications for AI-supported
digital microscopy in PHC laboratories.
Sample Preparation
Variability in target morphology and artifacts may reduce AI
performance and can be introduced in all steps from sample
collection to scanning. Manual steps in sample preparation
are prone to introducing variability, and all included studies
involved such steps, with 12 relying on entirely manual
preparation. Decreased specificity due to sample variability
was observed in one study, where poorly prepared samples
led to the introduction of artifacts [41], and in another study
where synthetically prepared samples in the training dataset
lacked artifacts present in real-world samples [51]. Sensitivity
can also be affected by variability in preparation, as demon-
strated in one study on soil-transmitted helminths [49]. This
indicates that variability introduced during sample preparation
may be a major hurdle when developing AI-supported digital
microscopy for PHC laboratories as more steps are performed
manually.

There are possible solutions to sample variability. For
example, improving consistency through good laboratory
practices and standard operating procedures is one way to
minimize sample variability; however, this requires system-
specific training for personnel, good laboratory infrastructure,
and quality controls, which might reduce the feasibility of
implementation in PHC laboratories. The use of equipment
such as cartridges to limit manual steps is another approach to
minimize variability [33,36,50]. This may lower the demands
on personnel; however, using disease-specific consumables
may introduce issues, for example, increased costs. Another
potential approach to minimize variability is to simplify
sample preparation, for example, by removing staining or
smearing steps [57]. Although this could reduce variability, it
may also lead to a loss of valuable diagnostic information, in
turn decreasing the AI model performance.
Scanning
The scanner needs to capture sufficient information to allow
AI model classification of targets, but scanning large sample
areas at high magnification is time-consuming. The scan-
ning time can be decreased by analyzing a smaller sample
area. However, this can lead to a reduced ability to detect
low-density targets, highlighting a trade-off between faster
diagnostics and high sensitivity for these cases. This is
exemplified by one solution for malaria, where clinicians
are able to increase the area analyzed to detect low-density
infections [39]. Another solution to decrease scanning time is
to use a lower magnification than what is conventionally used
by microscopists: this approach achieved diagnostic accuracy
comparable to manual microscopy for cytology [19], malaria
[36], and parasitic infections [49,53]. Nonetheless, the use

of lower magnification could result in information loss that
reduces the AI model performance.
Training Data
All studies that specified the AI-training methods used
variants of supervised learning which require annotated data.
Annotating data is time-consuming and requires digitized
samples that are rarely produced in PHC laboratories due
to limited access to scanners. Therefore, many studies
had to collect and annotate their own datasets rather than
access existing data. One study also used laboratory-enriched
samples to increase the number of targets [51]. In some
cases, certain targets were underrepresented in the data-
set, which caused the AI models to perform poorly on
those [32,43], emphasizing the challenges of limited training
data. To overcome limited datasets, approaches, such as
using data augmentation, publicly available datasets, CNNs
with pretrained weights, and unsupervised learning, were
deployed [38,44,52]. Although there are many ways to
limit the effect of small datasets, the improved diagnostic
performance in studies, iteratively collecting larger datasets,
highlights that insufficient training data remain a limiting
factor when developing AI-supported digital microscopy for
PHC laboratories [17,33,34,52]. Larger studies and collabora-
tions that allow data sharing could provide solutions to the
issue of limited training data.
AI Analysis Pipeline
The AI analysis pipelines used can be broadly divided into
3 main steps: FOV identification, FOV classification, and
aggregation for sample-level diagnosis (Figure 3). Given
that the analysis of a single sample took more than 30
minutes in some studies and that access to graphics process-
ing units may be limited in PHC laboratories, efficiency
becomes important. One strategy to minimize computational
demands is to combine identification and classification,
as implemented in the You Only Look Once framework,
which uses a single CNN [34,50,58]. Another strategy is to
first identify targets using fast and computationally efficient
methods and subsequently feed the suspicious FOVs into
more computationally intensive algorithms for classification.
Using an initial object identification step may also enhance
the uniformity of the data entering the classification stage,
which may be particularly beneficial due to the variability in
manually prepared samples that are commonly used in PHC
laboratories [19].

For the third step, slide-level classification, different
approaches were used: slides were classified as positive if
a single positive target was detected; others applied cutoffs to
reduce noise and false positives. In addition, certain stud-
ies used methods such as SVMs [19] or multiple instance
learning [44] to aggregate slide-level results. While these
methods may improve classification, they carry a risk of
overfitting, especially since the number of training samples
at the slide level is much smaller than at the object level.
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Manual Verification
One study investigated AI-supported digital microscopy
with and without human verification. In the study, human
verification was performed on targets initially classified as
positive by the AI models, which led to a 0.9% drop in
sensitivity but a 29.5% increase in specificity [36]. This
demonstrates that, with human intelligence, AI errors can be
identified and removed without a substantial loss of sensi-
tivity. This is in line with the high specificity presented in
studies using human verification, which all showed specificity
of >90% [39,42]. Expanding human verification to include
borderline cases classified as negative may also be used to
reduce false negatives and increase sensitivity.
Reported Diagnostic Performance
The reported diagnostic performance of the studies included
in the scoping review indicates that AI-supported digital
microscopy may achieve comparable diagnostic accuracy in
PHC laboratories; however, it is important to account for
methodological choices when interpreting the results and due
to the heterogeneity in study designs, comparisons between
studies and diseases become challenging. One example of
methodological choices is that most studies used manual
microscopy as the reference standard. Since microscopy itself
is an imperfect diagnostic test, it can affect the performance
of the index test and may result in over- or underestima-
tion of the diagnostic accuracy of AI-supported microscopy.
Two studies argued that this limitation may have reduced
the apparent diagnostic accuracy of AI-supported digital
microscopy [49,50]. Another aspect to consider is the number
of samples on which the method was evaluated. For exam-
ple, the study in which the AI-supported digital microscopy
had higher sensitivity and specificity than manual microscopy
analyzed 30 samples [19]. Generally, the QUADAS-2 tool
indicated a low risk of bias. However, it did not capture the
issue of AI models being trained on samples from the same
collection, which is a potential source of poor generalizability
for AI. This can occur even when the detection algorithms
are trained on different datasets, for example, when thresh-
olds or rules for deriving slide-level diagnoses are developed
using the same slides on which diagnostic performance is
later evaluated, leading to inflated estimates of diagnostic
accuracy. However, some studies avoided training on the
data from the same collection, included more than 100 test
samples, had low risk of QUADAS-2 bias, and used a more
advanced reference standard and still achieved comparable or
better results than manual microscopy [33,36,39,53].
Limitations
A limitation of the extraction process was the lack of
consistent terminology used in the field. This was exemplified
in the search block aimed at identifying PHC. Terms such as
“low-cost” and “PHC” were included but not “remote,” which
was used to describe one study that fulfilled the inclusion
criteria [59]. Another limitation was the broad definition of
PHC laboratories adopted from Fleming et al, which led
to the inclusion of studies using relatively advanced meth-
ods, such as oil immersion scanning at 100× magnification

and specially designed cartridges for sample preparation [2,
33,41,42]. These methods may be difficult to implement in
some PHC laboratories, but to achieve a more comprehensive
overview of the field, the inclusion of these studies was
deemed advantageous [25]. A third limitation stems from
the lack of standardized methodological descriptions in the
included studies. In some cases, key information, such as
scanner magnification, was missing or reported inconsistently
across studies, which complicated comparisons in the scoping
review.
Steps Needed to Achieve Clinical
Implementation
In this scoping review, we identified hurdles that were
shared across several studies and that must be overcome
before implementing AI-supported digital microscopy. Many
developers have recognized a need to iteratively improve
their AI-supported digital microscopy; thus, a framework that
enables continuous improvements might be advantageous for
supporting the development of more accurate AI models. This
requires health policy guidelines and frameworks that give
details on how these processes should be conducted [60].
Another hurdle in the implementation of AI-supported digital
microscopy is cost. The development of lower-cost scanners
has reduced expenses; however, most commercially available
scanners remain more expensive than traditional microscopes
[38,61]. Microscopes typically function reliably over long
periods, and scanners may need comparable longevity for
AI-supported digital microscopy to be cost-effective. One
potential solution to this is modular scanner construction,
which may improve its lifespan through component updates
and thereby its sustainability. Some systems in this review
were developed for specific diseases, which increases the
cost of implementing them in PHC laboratories, as multiple
systems would have to be acquired to replace microscopes.
To make it economically feasible to implement AI-suppor-
ted digital microscopy, it may, therefore, be necessary to
adopt a multipurpose approach where systems are devel-
oped for multiple diseases. Some studies show that scanners
can digitize different samples and similar approaches can
be applied to different diseases [9,37,49]. Systems devel-
oped for specific diseases may instead be useful in large
screening programs or epidemiological surveys, for example,
for soil-transmitted helminths, malaria, or cancer screening.
Cost-effectiveness trials could provide guidance for the
feasibility of AI-supported digital microscopy and evaluate
single-disease systems against multipurpose platforms.
Potential Implications for PHC
Diagnostics
AI-supported digital microscopy has potential advantages
compared with manual microscopy in PHC laboratories. First,
it could improve diagnostic accuracy, especially sensitivity,
and this may be further enhanced by incorporating human
verification [39,53]. Second, it might increase the access and
timeliness of diagnostics by allowing diagnostic procedures to
be performed at the POC in PHC laboratories and eliminate
the need to send samples elsewhere for analysis [9,19]. Third,
it could alleviate the workload of personnel through task
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shifting. This could increase the productivity of experts and
thereby access to image-based diagnosis [36,39].

Other POC diagnostic technologies, including rapid
diagnostic tests (RDTs) and PCR-based methods, provide
alternative means of diagnosing some conditions discussed
in this scoping review [62,63]. One included study compared
AI-supported digital microscopy with another POC-diagnos-
tic method: a malaria study comparing it with RDTs [39]. The
AI-supported digital microscopy had higher sensitivity and
specificity than RDTs for some malaria species and settings
but lower in others. One review proposed that AI-suppor-
ted digital microscopy holds more promise than RDTs for
malaria diagnosis [64]. However, other studies highlight the
possibilities of other methods, such as RDTs and PCR, for
POC diagnostics [62].

Implementation of AI-supported digital microscopy could
strengthen health systems and increase health equity,
particularly where resources are limited such as in scarcely
populated areas and LMICs. This may be possible since, in
addition to comparable diagnostic accuracy to microscopy,
slides can be scanned and analyzed within approximately
30 minutes for multiple diseases [34,39,53]. As the process
eliminates the need for microscopy expertise on-site, it could
enable timely and accurate diagnostics in PHC laboratories
that currently lack this capacity: even if manual verification
is required, it can be performed remotely. Moreover, by
decentralizing diagnostics, it may reduce referrals to higher-
tier health care facilities, alleviating their work and minimiz-
ing the risk of referral-related dropouts [12].
Knowledge Gaps and Research Priorities
This scoping review identified evidence of the feasibility
of AI-supported digital microscopy for multiple targets
in PHC laboratories. Drawing on the evidence mapped
here, future research should prioritize studying scalable and
robust systems that can be transferred and implemented
in new laboratories and settings. Achieving scalability

requires research into AI-supported digital microscopy with
an end-to-end perspective, where everything from sam-
ple preparation, scanning, and AI analysis until the final
diagnosis is accounted for and easily reproducible. Adding
to this, research that examines how predeveloped AI-based
systems are transferred and implemented in new clinical
settings would provide valuable insights into real-world
robustness, which was done by some of the included studies.
To enable this kind of research, large multisite collaborations
are important, which could be facilitated by improved health
policy guidelines and frameworks, as well as initiatives led by
key stakeholders including governments and nongovernmen-
tal organizations. Furthermore, important research priorities
include assessing cost-effectiveness and exploring perceived
barriers to implementation among patients and health care
professionals. Finally, the scoping review’s screening process
identified additional potential applications for AI-supported
digital microscopy, including tuberculosis, other parasitic
diseases, respiratory cytology, sperm motility, and sickle cell
anemia, which warrant further investigation in PHC settings
[65-69].
Conclusions
This scoping review identified 22 studies deploying AI-sup-
ported digital microscopy in PHC laboratories. For multi-
ple diagnostic purposes, AI-supported digital microscopy
achieved comparable results to the reference standard and
could be particularly advantageous for increasing sensitivity
in diagnosis. Further research is needed on challenges such
as generalizability, scalability, and cost-effectiveness. Such
evidence is critical to stimulate product development, enable
regulatory approval, and support reimbursement and adoption
by health care authorities. If the methods can be demonstrated
to be feasible in real-life clinical PHC settings, translated into
medical device products, and carefully integrated into health
care systems, they are likely to improve access to diagnostics,
particularly in LMICs and scarcely populated regions.
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