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Abstract

Background: The global rise of metabolic associated fatty liver disease reflects the urgent need for accurate, noninvasive
diagnostic approaches. The invasive nature of liver biopsy and the limited sensitivity of ultrasound in detecting early steatosis
highlight a critical diagnostic gap. Artificial intelligence (AI) has emerged as a transformative tool, enabling the automated
detection and grading of hepatic steatosis (HS) from medical imaging data.

Objective: This review aims to quantitatively evaluate the diagnostic performance of Al models for HS, explore sources of
interstudy heterogeneity, and provide an appraisal of their clinical applicability, translational potential, and the major barriers
impeding widespread implementation.

Methods: PubMed, Cochrane Library, Embase, Web of Science, and IEEE Xplore databases were searched until September
24, 2025. Studies using Al for HS diagnosis, meeting predefined PIRT (Patient Selection, Index Test, Reference Standard,
Flow and Timing) framework and providing extractable data were included. Diagnostic performance indicators, including
sensitivity, specificity, and the area under the summary receiver operating characteristic curve (AUC), were extracted and
quantitatively synthesized. Meta-analyses were conducted using a bivariate random effects model. The methodological quality
and risk of bias were evaluated using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool. Heteroge-
neity was assessed through the I? statistic, bivariate box plots, 95% PIs, and threshold effect analysis. Clinical applicability was
examined using the Fagan nomogram and likelihood ratio tests.

Results: A total of 36 eligible studies were identified, of which 33 (comprising 36 cohorts) were included in the subgroup
analyses. Results demonstrated excellent diagnostic accuracy of AI models, with a summary sensitivity of 0.95 (95%
CI 0.93-0.96), specificity of 0.93 (95% CI 0.91-0.94), and an AUC of 0.98 (95% CI 0.96-0.99). Clinical applicability
analysis (positive likelihood ratio >10; negative likelihood ratio <0.1) supported AI’s strong potential for both confirming
and excluding HS. However, substantial heterogeneity was observed across studies (I2 >75%). According to QUADAS-2,
a high risk of bias, particularly in the Patient Selection domain (44.4%), may have contributed to the overestimation of
real-world performance. Subgroup analyses showed that deep learning models significantly outperformed traditional machine
learning approaches (AUC: 0.98 vs 0.94). Models using ultrasound or histopathology references, retrospective designs, transfer
learning, and public datasets achieved the highest accuracy (AUC 0.98-0.99) but contributed to interstudy heterogeneity.

Conclusions: Al demonstrates remarkable potential for noninvasive screening and assessment of HS, especially in primary
care. Nonetheless, clinical translation remains limited by performance variability, retrospective designs, lack of external
validation, practical barriers such as data privacy and workflow integration. Future studies should prioritize prospective
multicenter trials and standardized external validation to bridge the gap between current evidence and clinical application. The
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key innovation of this review lies in establishing a unified, modality-agnostic analytical framework that integrates evidence

beyond single-modality evaluations.

Trial Registration: PROSPERO CRD420251046862; https://www .crd.york.ac.uk/PROSPERO/view/CRD420251046862

J Med Internet Res 2026,28:¢78310; doi: 10.2196/78310
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Introduction

Metabolic-associated fatty liver disease (MAFLD) has
emerged as one of the most prevalent chronic liver diseases
worldwide, with its pathophysiology intrinsically linked to
metabolic syndrome. Affected individuals frequently exhibit
concomitant metabolic abnormalities such as central obesity,
type 2 diabetes mellitus, and insulin resistance. The disease
spectrum of MAFLD represents a continuum ranging from
simple hepatic steatosis (HS) to metabolic dysfunction-associ-
ated steatohepatitis (MASH), which may progress to hepatic
fibrosis, cirrhosis, or hepatocellular carcinoma (HCC) [1].
Therefore, MAFLD is a significant and growing global public
health threat [2].

In 2020, an international consensus panel proposed
renaming ‘“non-alcoholic fatty liver disease” to “MAFLD”
to better reflect its metabolic foundation [3,4]. To ensure
the present study focuses on the diagnostic performance of
artificial intelligence (AI) for the core pathological feature
of HS and to enhance its clinical generalizability, including
to populations with mixed etiologies such as concomitant
metabolic disorders and alcohol use, we adopted the broader
term “MAFLD.” This terminology aligns more closely
with real-world clinical practice and provides a consistent
framework for Al model training and validation. Epidemio-
logical data estimate the global prevalence of MAFLD at
approximately 38%, with substantial regional variation, the
highest burdens observed in Latin America, the Middle
East, and North Africa [5]. The disease is also increas-
ingly recognized among pediatric and adolescent populations,
particularly in individuals with obesity, where prevalence
rates have been reported to range from 7% to 14% or higher

[6].

Nevertheless, the reported MAFLD prevalence varies
markedly across studies, from 5% to 46% [7], reflecting
considerable heterogeneity. First, diagnostic methodologies
differ. Although liver biopsy remains the histopathological
gold standard, its invasiveness limits clinical use, shifting
reliance toward multimodal imaging. Noninvasive modali-
ties such as ultrasound and computed tomography (CT)
are widely used due to accessibility and low cost, but
they lack precision in quantifying HS. Quantitative imaging
techniques, including magnetic resonance imaging—proton
density fat fraction (MRI-PDFF) [8], controlled attenua-
tion parameter-based transient elastography, and noninvasive
analysis [9], offer superior accuracy but are constrained
by cost and limited availability. Clinical prediction mod-
els such as the Fatty Liver Index [10], Hepatic Steatosis
Index [11], and Liver Fat Equation [12] enable noninva-
sive diagnosis through integration of anthropometric and
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biochemical parameters. Nevertheless, they remain vulnera-
ble to measurement variability and lack use for longitudinal
monitoring. Second, the sensitivity of existing diagnostic
modalities in detecting early-stage steatosis (hepatic fat
content <5%) remains suboptimal. Conventional ultrasound,
in particular, has a high false-negative rate when hepatic fat
content falls below 20% [13], leading to underdiagnosis and
misdiagnosis in subclinical populations.

Such diagnostic inaccuracies carry serious clinical
implications. Patients erroneously classified as having
“simple MASLD” but who also exhibit alcohol use disorder
have been shown to experience mortality risks exceeding
those of individuals with typical alcoholic liver disease [14].
As MAFLD incidence rises globally, associated cirrhosis
and HCC cases are also increasing. Failure to achieve
early and accurate diagnosis forfeits the therapeutic win-
dow during the reversible steatosis stage, allowing progres-
sion to MASH and fibrosis. Notably, MAFLD-related HCC
may arise in noncirrhotic livers [15], challenging conven-
tional surveillance strategies that primarily target cirrhotic
patients. Moreover, MAFLD is an established independent
risk factor for cardiovascular disease [16]. This elevated
cardiovascular risk persists throughout the disease course and
remains heightened even following liver transplantation [17],
underscoring the necessity of lifelong risk management.

Recent advances in Al have revolutionized medical image
analysis, and hepatology has been no exception. Al-based
approaches have demonstrated strong diagnostic perform-
ance across multiple hepatic pathologies. For instance,
Meng et al [18] developed a VGGNet-based multistage
fibrosis classifier, achieving high accuracy across 3 fib-
rosis grades. Wang et al [19] introduced the Explaina-
ble Diagnosis Recommender intelligent diagnostic system,
which uses deep learning (DL) to automatically detect
hepatic echinococcosis and cysts from CT scans. Xiao et
al [20] proposed a ResNet-101-based multimodal model
that classified 6 hepatobiliary diseases using slit-lamp and
fundus images, outperforming clinicians of varying experi-
ence levels. Calderaro et al [21] used a DL model to reclassify
combined hepatocellular-cholangiocarcinoma into pure HCC
or intrahepatic cholangiocarcinoma with high sensitivity and
specificity, yielding predictions consistent with clinical and
molecular profiles. Specifically for HS assessment, Yang
et al [22] developed a 2-stage DL model that classified
four steatosis grades with an overall accuracy of 76.3%
and an area under the summary receiver operating charac-
teristic (SROC) curve (AUC) of 0.88, surpassing traditional
clinical indices. Similarly, Wang et al [23] employed DL
to quantify hepatic fat content by inferring proton density
fat fraction (PDFF) from routine T1-weighted magnetic
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resonance imaging (MRI) images, surpassing the performance
of the conventional 2-point Dixon fat-fraction model.

Despite these promising developments, the application
of Al in the diagnosis and grading of MAFLD or HS
remains at an early stage [24]. Existing systematic reviews
have primarily assessed AI performance within individual
imaging modalities. A critical gap remains: a comprehensive
evaluation of AI’s overall diagnostic efficacy across diverse
imaging platforms and a systematic analysis of the key
technical and methodological determinants of performance
are still lacking.

Therefore, this study, for the first time, uses a bivari-
ate mixed effects model [25] to systematically assess the
overall diagnostic performance of Al in imaging-based
detection of HS. The primary objectives are: (1) to quanti-
tatively determine the aggregate diagnostic accuracy of Al
models in identifying HS; (2) to comprehensively explore
the sources of heterogeneity, with particular emphasis on
the influence of factors such as algorithm type, reference
standard, imaging modality, study design, and data acces-
sibility; and (3) to evaluate the clinical applicability and
translational potential of Al-based diagnostic systems, while
identifying major barriers to their broad clinical adoption.
Through these aims, the present study seeks to generate
robust, high-level evidence that transcends the limitations of
individual analytical approaches, thereby providing meaning-
ful guidance for future research and clinical practice.

Methods

Research Design and Clinical Questions

This study protocol was registered with the PROSPERO
International Prospective Register of Systematic Reviews
(Registration: CRD420251046862). The research was
conducted as per the PRISMA-DTA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses—Diagnostic
Test Accuracy) guidelines (Checklist 1) [26].

Search Strategy

This systematic search was independently designed and
conducted by two researchers as per the PRISMA-DTA
(Checklist 1) [26]. PubMed, the Cochrane Library, Embase,
Web of Science, and IEEE Xplore were retrieved until
September 24, 2025. The search strategy was structured
around three core concepts: (1) the disease (“HS,” “non-alco-
holic fatty liver disease,” and “MAFLD”); (2) the technol-
ogy (“Al,)” “machine learning [ML],” “DL”); and (3) the
diagnostic context (“diagnosis,” “detection”).

Keywords within each conceptual category were combined
via the OR operator (eg, Al OR DL OR ML), whereas
keywords across different categories were linked using the
AND operator (eg, Al AND MAFLD AND diagnosis).

The authors of the identified studies were not contac-
ted. Reference lists of all included studies were manually
reviewed to identify any additional eligible publications. No
restrictions on language or publication date were applied
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at the database level to maximize search sensitivity. How-
ever, non-English records were excluded during subsequent
screening. Gray literature, preprints, and unpublished studies
were not systematically searched. This decision was made
a priori to focus on peer-reviewed, full-text articles that
had undergone editorial review, thereby ensuring baseline
methodological quality and the availability of sufficient
details for data extraction. The complete, reproducible search
strings for all databases are provided in Table S1 in Multime-
dia Appendix 1.

Screening Process

Two independent reviewers initially screened all retrieved
titles and abstracts. After removing duplicate records, studies
were deemed eligible for inclusion if they met the following
criteria:

* Study content: the research conformed to the prede-
fined PIRT (Patient Selection, Index Test, Reference
Standard, Flow and Timing) framework:

° Patient Selection (P): patients undergoing
abdominal imaging or pathological examination
for HS assessment.

© Index Test (I): AI models based on DL or ML,
using input images derived from ultrasound, CT,
MRI, or pathology.

° Reference Standard (R): defined by the origi-
nal studies, including MRI-PDFF, liver biopsy
pathology, or expert-graded ultrasound. These
reference standards reflect real-world diagnostic
diversity and were recognized as potential sources
of heterogeneity.

° Target Condition (T): Diagnosis and grading
of HS according to the thresholds and cri-
teria adopted in the included studies, allow-
ing cross-comparison of Al performance across
varying diagnostic definitions.

* Data availability: studies had to provide diagnostic
contingency data, true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN),
or sufficient information to derive diagnostic perform-
ance metrics, such as AUC with 95% Cls, sensitivity,
specificity, accuracy, and predictive values.

Exclusion criteria were: (1) language: non-English publica-
tions; (2) study type: letters, conference abstracts, reviews,
or academic papers lacking original data; (3) study subjects:
animal or nonhuman research, bioinformatics-based analyses,
and predictive modeling studies focused on indices, risks, or
associations rather than diagnosis; and (4) data sufficiency:
studies without key contingency data or insufficient informa-
tion to calculate diagnostic performance metrics.

Data Extraction

Two researchers independently extracted data based on the
following domains: (1) study characteristics: first author,
publication year, site of data collection, and duration of
the study period; (2) study population: total sample size,
and demographic characteristics (mean or median age); (3)
methodological parameters: accessibility of clinical sample
data, diagnostic reference standard, and validation strategy;
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(4) algorithmic architecture: type of algorithm, classifier
employed, and application of transfer learning (TL); and
(5) diagnostic efficacy: raw contingency table data, and
aggregated diagnostic performance metrics.

Diagnostic Performance Evaluation and
Quality Assessment

Pooled estimates of sensitivity, specificity, and AUC, together
with their 95% ClIs, were presented using forest plots.
Heterogeneity was quantified using the /? statistic. The AUC
was designated as the primary indicator for overall diagnos-
tic accuracy, as it integrates performance across all thresh-
olds and remains unaffected by any single cut-off point. A
SROC curve was constructed following an assessment of the
threshold effect using the Spearman correlation coefficient
between the logit of sensitivity and the logit of (1-specificity).
Heterogeneity and its implications were further visualized
via 95% PIs and bivariate boxplots. Potential small-study
effects were evaluated using the Deeks funnel plot asymmetry
test. Additional diagnostic indicators, including the diagnos-
tic odds ratio (DOR), positive likelihood ratio (LRP), and
negative likelihood ratio (LRN), were calculated. Clinical
applicability was further examined using a Fagan nomogram,
while the distribution of likelihood ratios across studies was
illustrated via scatterplots.

Two investigators assessed the risk of bias via the
QUADAS-2 (Quality Assessment of Diagnostic Accuracy
Studies 2) checklist (Checklist 2) in Rev-Man in terms
of PIRT framework [27]. The QUADAS-2 tool, recommen-
ded by the Cochrane collaboration, was used to assess the
methodological quality and risk of bias of included diagnostic
accuracy studies.

Quality Assurance and Dispute
Resolution

All screening, data extraction, and quality assessment
procedures were independently conducted by 2 reviewers.
Any discrepancies were first resolved through discussion to
reach a consensus. When consensus was not achieved, a third
senior investigator adjudicated the disagreement to make the
final determination. This multilevel process ensured that all
extracted data represented unanimous agreement within the
research team.

Subgroup Analysis

The following independent meta-analyses were conducted:
1. Al type (ML versus DL): DL models were defined

as those based on multilayer artificial neural net-
works, such as convolutional neural networks and
recurrent neural networks (RNNs). This category
included all studies that explicitly reported using DL
or identified architectures such as VGG, ResNet,
U-Net, DenseNet, or Inception. ML models referred
to traditional algorithms that learn from data with-
out relying primarily on deep neural architectures,
including support vector machines (SVM), random
forests, decision trees, and logistic regression. To
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explore the potential influence of different algorithmic
approaches on diagnostic performance.

2. Reference standards for steatosis grading (MRI-PDFF,
liver histopathology, or ultrasound): to determine
whether there was a performance gap between models
based on noninvasive imaging and those based on the
pathological “gold standard.”

3. Imaging modality (ultrasound, CT, or histopathol-
ogy): to assess how differences in imaging princi-
ples, invasiveness, and the diagnostic information
scale (macroscopic versus microscopic) affected model
performance.

4. Application of TL: TL was used when a study explicitly
reported the use of a model pretrained on a large-scale
dataset (eg, ImageNet) as the initial framework for
feature extraction or model fine-tuning. To evaluate
whether this specific technique could improve model
performance in small-sample medical datasets.

5. Study design (single-center versus multicenter): to
assess the generalizability of models across different
data distributions.

6. Study type (prospective vs retrospective): to explore
the temporal relationship between data collection and
model development and to evaluate the potential impact
of selection bias on performance assessment.

7. Data accessibility: to evaluate the effect of study
reproducibility and transparency on research outcomes.

Data Analysis

Given the substantial heterogeneity observed among included
studies with respect to patient populations, imaging devices,
and Al algorithms, a bivariate mixed effects model was
used to derive more accurate and reliable pooled estimates
[25]. To ensure the robustness of the meta-analytic results,
quantitative synthesis (eg, subgroup analysis) was performed
only when at least 3 independent studies, defined as studies
conducted by different authors, using distinct experimental
protocols, or involving separate participant cohorts, were
available. Multiple effect estimates from the same publication
were included when they originated from distinct participant
cohorts (eg, multicenter datasets or independent validation
sets). When multiple model outputs were reported, only the
best-performing model or that validated using an independent
dataset was retained. Subgroup analyses were not conducted
when fewer than three independent studies were available for
a given subgroup. All statistical analyses and visualizations
were performed via Stata MP 18 (StataCorp LLC). A 2-tailed
P value <.05 denoted statistical significance.

Results

Included Study Description

As of September 24, 2025, 2536 articles were retrieved.
After removing 864 duplicates, the titles and abstracts of
the rest were screened as per the predefined eligibility
criteria, resulting in the exclusion of 1596 articles. Specifi-
cally, 9 were non-English publications, 884 were of other
types, 673 involved inappropriate study subjects, and 30 used
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inaccessible. Ultimately, 36 studies were included in the final
analysis (Figure 1). The characteristics of the included studies
are summarized in Table 1, and the results of the subgroup
analyses are presented in Table 2.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses—Search Extension) flowchart depicting the study
selection process for the systematic review of artificial intelligence in diagnosing hepatic steatosis.
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Table 2. Summary of artificial intelligence (AI) performance for diagnosing hepatic steatosis (HS) based on different subgroups (number of studies
or cohorts; pooled sensitivity; specificity; area under the curve [AUC]; heterogeneity [I2, %]; Spearman correlation coefficient [for threshold effect];
and publication bias such as posttest probability positive or negative, positive likelihood ratio [LRP], and negative likelihood ratio [LRN]).

Pooled Pooled Spearman PosttesF .
Subgr(?up and subgroup sensitivity specificity correlation pmt,)ﬁ,lblhty
analysis (95% CI); P (95% CI); P Summary AUC  coefficient (P Publication ~ Positive (%)/
(studies/datasets) (%) (%) (95% CI) value) bias (P value) negative (%) LRP LRN
Al type
DL? (29/32) 0.96 (0.94- 094 (091- 098(0.97-099) 0.21(P=.05 46 94/4 >10 <0.1
0.98); 0.95);
95.87 97.69
ML (4/4) 0.87(0.78- 0.88 (0.80- 0.94 (091-0.96) -1 (P=.99) 49 88/13 <10  >0.1
0.93); 0.93);
32.63 63.45
Reference standard
MRI-PDFF¢ (7/7) 092 (0.86- 091 (0.86- 0.97(0.95-098) -0.36(P=.13) .15 91/8 >10 <0.1
0.95); 0.94);
95.70 98.43
Pathology (13/14) 097 (0.92- 0.92(0.86- 0.98(0.96-0.99) 0.12(P=.02) .29 92/3 >10  <0.1
0.99); 0.95);
97.86 85.60
Ultrasound (6/6) 098 (0.90- 0.96(0.94- 0.98(0.96-0.99) 1 (P=.99) 21 96/2 >10  <0.1
1.00); 0.98);
9432 85.23
Imaging modality
Ultrasound (20/22) 0.96 (0.93- 093 (0.90- 0.98(0.97-0.99) 0.21 (P=4) .50 94/4 >10  <0.1
0.98); 0.96);
94.86 96.16
CcT4(8/9) 093 (0.86- 093(0.87- 0.97(0.95-098) 0.20(P=.04) 24 93/7 >10  <0.1
0.96); 0.96);
9443 94.76
Pathology (4/4) 098 (091- 0.96(0.86- 0.99(0.98-0.99) -1 (P=.99) 00 96/2 >10 <0.1
1.00); 0.99);
79.53 0.00
TL®
Used (9/9) 0.99 (0.96- 0.93(0.88- 0.99(0.98-1.00) 0.2 (P=.04) 77 94/1 >10 <0.1
1.00); 0.97);
95.36 93.80
Not used (24/27) 093 (0.90- 0.93(0.90- 0.98(0.96-099) 0.22(P=.05) .53 93/7 >10 <0.1
0.96); 0.95);
84.22 96.71
Study design
Single-center (25/27) 094 (091- 093(091- 0.98(0.96-0.99) 0.25(P=.06) 98 93/6 >10 <0.1
0.96); 0.95);
94.44 97.33
Multicenter (8/9) 0.99 (0.94- 092(0.85- 0.97(0.96-099) 047 (P=22) .30 92/1 >10 <0.1
1.00); 0.96);
95.26 82.33
Study type
Retrospective (25/26) 0.95(0.92- 095(0.92- 098(0.97-099) 0.39 (P=.15) 53 95/5 >10 <0.1
0.97); 0.97);
96.58 98.15
Prospective (8/10) 097 (0.92- 0.87(0.84- 0.90(0.87-0.92) 1 (P=.99) 87 88/4 <10  <0.1
0.99); 0.89);
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g
Pooled Pooled Spearman PosttesF .
Subgrgup and subgroup sensitivity specificity correlation prol.)gblhty
analysis (95% C1); P (95% CI); P Summary AUC  coefficient (P Publication ~ Positive (%)/
(studies/datasets) (%) (%) (95% CI) value) bias (P value) negative (%) LRP LRN
82.76 53.89
Data availability
Available (9/10) 0.99 (096- 095(0.92- 0.99(0.97-099) -0.5P=25) .19 96/1 >10  <0.1
1.00); 0.97);
97.06 73.17
Unavailable (24/26) 092 (0.89- 0.92(0.89- 097(0.95-0.98) 0.09(P=.01) .30 92/8 >10 <0.1
0.95); 0.94);
81.89 96.62

4DL: deep learning.

PML: machine learning.

°MRI-PDFF: magnetic resonance imaging—proton density fat fraction.
dCT: computed tomography.

°TL: transfer learning

Diagnostic Performance and
Heterogeneity

Of the 36 included studies, 33 (comprising 36 datasets)
satisfied the criteria for subgroup analysis. The pooled results
(Figure 2) demonstrated a summary sensitivity of 0.96 (95%
CI 0.93-0.97), a specificity of 0.93 (95% CI 0.91-0.95),
and an AUC of 0.98 (95% CI 0.96-0.99), indicating excel-
lent diagnostic discrimination by the AI models. Substantial
heterogeneity was observed across studies (I2>75%). The
Spearman correlation coefficient (0.21, P=.05) suggested that

https://www jmir.org/2026/1/e78310

threshold effects contributed minimally to overall heterogene-
ity. The broad 95% PI, however, indicated that differences
in diagnostic thresholds were a major source of variability.
No significant small-study effects were identified (P=.65). In
terms of clinical applicability, at a pretest probability of 50%,
a positive Al result increased the posttest probability to 93%,
whereas a negative result reduced it to 4%. Likelihood ratio
scattergram analysis confirmed that the pooled estimates were
located within the “confirm and exclude” quadrant (LRP >10
and LRN <0.1), underscoring the strong clinical value of Al
for both confirming and excluding HS.
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Figure 2. Diagnostic performance of artificial intelligence (Al) models for hepatic steatosis (HS) detection across 33 studies comprising 36 datasets
[28-35,37,39-52,54-63]. (A) Forest plots illustrating sensitivity and specificity for the subgroup of Al applications across 33 studies with 36 datasets.
(B) Summary receiver operating characteristic (SROC) curve depicting diagnostic performance of Al across 33 studies with 36 datasets, with
corresponding 95% Cls. The 95% prediction region reflects the expected range of true sensitivity and specificity in future studies. (C) Bivariate
boxplot illustrating the distribution and heterogeneity of Al performance across 33 studies with 36 datasets. (D) The Deeks funnel plot for evaluation
of potential publication bias. (E) The Fagan nomogram depicting posttest probabilities. (F) Clinical application plot showing positive likelihood
ratio (LRP) and negative likelihood ratio (LRN). LLQ: lower-left quadrant; LUQ: upper-left quadrant; RLQ: lower-right quadrant; RUQ: upper-right
quadrant; SROC: summary receiver operating characteristic.
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Risk of Bias Assessment

The QUADAS-2 quality assessment (Figure 3) revealed
that 44% (16/36) of studies exhibited a high risk of bias
in the patient selection domain, primarily due to selection
bias, limited representativeness of study populations, and
incomplete reporting of key clinical parameters. In the
Index test domain, 6% (2/36) of studies were rated as high
risk, largely attributable to the absence of image quality
control, subjective elements during image processing, and
nonstandardized training or validation procedures. In the

Song et al

reference standard domain, 17% (6/36) of studies demon-
strated a high risk of bias, most commonly due to devia-
tions from gold-standard reference methods, unclear blinding
procedures, or incomplete pathological sampling information.
The flow and timing domain exhibited unclear risk in 36%
(14/36) of studies, often due to insufficient reporting on
patient inclusion pathways and the interval between image
acquisition and diagnostic confirmation. These methodologi-
cal limitations may contribute to an overestimation of Al
model performance in real-world clinical practice.

Figure 3. Risk of bias assessment of the 36 included studies on artificial intelligence—based hepatic steatosis diagnosis using the QUADAS-2

(Quality Assessment of Diagnostic Accuracy Studies 2) tool [28-63].
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Subgroup Meta-Analyses

Subgroup analyses were conducted for 7 key variables
(Figures S1-S16 in Multimedia Appendix 1), with diagnos-
tic performance interpreted relative to clinical applicability
thresholds (LRP >10 for strong rule-in capability; LRN <0.1
for strong rule-out capability).

Algorithm Type

As shown in Figure 4 A-B, the DL models demon-
strated significantly higher diagnostic accuracy than ML

https://www.jmir.org/2026/1/e78310

models (AUC: 098 vs 0.94), exhibiting strong rule-in
and rule-out performance. However, DL models displayed
pronounced heterogeneity (2 >95%), likely influenced by
threshold effects (Spearman=0.21, P=.05), suggesting that
these findings should be generalized with caution. ML
models showed lower heterogeneity (sensitivity ?=32.63%;
specificity P=63.45%) but weaker discriminatory power (LRP
<10,LRN >0.1).

J Med Internet Res 2026 | vol. 28 178310 | p. 15
(page number not for citation purposes)


https://www.jmir.org/2026/1/e78310

JOURNAL OF MEDICAL INTERNET RESEARCH Song et al

Figure 4. Diagnostic performance stratified by algorithm type for hepatic steatosis (HS) detection. (A) Summary receiver operating characteristic
(SROC) curve for deep learning (DL) algorithms in 29 studies [28-33,37,39-43,45-51,54-63] comprising 32 datasets; (B) SROC curve for machine

learning (ML) algorithms in 4 studies [34,35,44,52] comprising 4 datasets.
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Reference Standard

As shown in Figure 5 A-C, studies using ultrasound and
histopathology as reference standards achieved comparable
AUCs (both were 0.98) with ideal likelihood ratios, although
ultrasound-based models exhibited higher pooled sensitivity
and specificity (0.98 and 0.96, respectively) than histo-
pathology-based models (0.97 and 0.92). The ultrasound
subgroup showed a perfect threshold effect (Spearman=1;

SROC with prediction and confidence contours
1.0 1 o
[e) (©]
0.8+
> 0.6
=
=
=
(0]
C
)
0.4+
O Observed data
Summary Operating Point
@ Sensitivity = 0.87 (0.78-0.93)
024 Specificity = 0.88 (0.80-0.93)
. __  SROC Curve
AUC =0.94 (0.91-0.96)
95% Confidence Contour
* 95% Prediction Contour
00 T T T T 1
1.0 0.8 0.6 0.4 0.2 0.0
Specificity

P=.99), indicating well-defined diagnostic criteria that may
be subjectively constrained. The histopathology subgroup
exhibited a minimal threshold effect (Spearman=0.12; P=.02),
suggesting that interstudy variations in sample handling and
scoring could significantly influence model performance. The
MRI-PDFF subgroup achieved a comparable AUC (0.97)
but demonstrated very high heterogeneity (12 >95%), limiting
result stability.

Figure 5. Diagnostic performance stratified by reference standard for hepatic steatosis (HS) detection. (A) Summary receiver operating characteristic
(SROC) curve for magnetic resonance imaging—proton density fat fraction (MRI-PDFF) in 7 studies [30,42,52,54,59,62,63] comprising 7 datasets;
(B) SROC curve for pathology in 13 studies [28,32,33,35,41,43-46,49,56,57,60] comprising 14 datasets; (C) SROC curve for ultrasound in 6 studies
[29,31,39,40.,48,58] comprising 6 datasets.
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with no detectable heterogeneity, suggesting robust and
consistent results. However, significant publication bias was
identified (P<.001), implying potential preferential publi-
cation of high-performing studies. AI models based on

Imaging Modality

As shown in Figure 6 A-C, histopathology-based models
achieved the highest diagnostic performance (AUC=0.99)
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ultrasound and CT achieved comparable accuracy (AUC: >94%). Only the CT subgroup showed a negligible threshold
0.98 vs 0.97), though both exhibited marked heterogeneity (I? effect (Spearman=0.20; P=.04).

Figure 6. Diagnostic performance stratified by imaging modality for hepatic steatosis (HS) detection. (A) Summary receiver operating characteristic
(SROC) curve for ultrasound imaging in 20 studies [29-35,39,40,43-45,47-49,51,57-59,63] comprising 22 datasets; (B) SROC curve for computed
tomography (CT) imaging in 8 studies [42,50,52,54,55,60-62] comprising 9 datasets; (C) SROC curve for pathology imaging in 4 studies [37,
41,46,56] comprising 4 datasets.
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Application of TL Nevertheless, both demonstrated considerable heterogeneity

) ) ) ) (I? >84%) and mild threshold effects (Spearman=0.20 vs 0.22;
As shown in the figure Figure 7A-B models employing TL  p_ 04 vs 05), reflecting the influence of interdomain data
achieved higher pooled sensitivity (0.99 vs 0.93) and stronger discrepancies.
rule-out capability (LRN: 0.01 vs 0.07). No significant
publication bias was detected in either subgroup (P >.05).

Figure 7. Diagnostic performance of transfer learning (TL) for hepatic steatosis (HS) detection. (A) Summary receiver operating characteristic
(SROC) curve for studies employing TL in 9 studies [28,39,40,43,45-49] comprising 9 datasets; (B) SROC curve for studies not employing TL in 24
studies [29-35,37 41,42 ,44,50-52,54-63] comprising 26 datasets.
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(I>=82.33%), indicating greater generalizability and stronger
rule-out potential (LRN: 0.01 vs 0.06). In contrast, single-

As shpwn in .F.ig.ure 8A-B, multicenter studies demonstlrat.ed center studies exhibited marginally higher specificity (0.93
superior sensitivity (0.99 vs 0.94) and lower heterogeneity

Study Design
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vs 0.92) but very high heterogeneity (? >94%), suggesting
limited external validity.

Song et al

Figure 8. Diagnostic performance of different research designs for hepatic steatosis (HS) detection. (A) Summary receiver operating characteristic
(SROC) curve for single-center studies in 25 studies [28-35,39-42 45-47,50-52,54,56-61] with 26 datasets; (B) SROC curve for multicenter studies in

8 studies [37,43.,44,48.49,55,62,63] with 9 datasets.
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As shown in Figure 9 A-B, retrospective studies achieved
higher overall accuracy (AUC: 0.98 versus 0.90) and stronger
rule-in ability (LRP: 9.5 versus 8.8), though with significant
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heterogeneity (I >96%). Prospective studies, which can better
reflect clinical reality, were affected by a perfect threshold
effect (Spearman=1) and exhibited weaker rule-in perform-
ance (LRP<10).

Figure 9. Diagnostic performance of different research types for hepatic steatosis (HS) detection. (A) Summary receiver operating characteristic
(SROC) curve for retrospective studies in 25 [28,29,31,32,34,37,41-46,48,50,52,54-62] studies with 26 datasets; (B) SROC curve for prospective

studies in 8 studies with 9 datasets. AUC: area under curve.
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Data Accessibility

As shown in Figure 10A-B studies using publicly availa-
ble datasets (n=9) achieved superior diagnostic accuracy
(AUC=0.99) and stronger clinical applicability (LRP=9.6;

Song et al

LRN=0.01). In contrast, studies using nonpublic data
performed comparably (AUC=0.97) but showed a significant
threshold effect (Spearman=0.09; P=.01), indicating reduced
result stability.

Figure 10. Diagnostic performance of data availability for hepatic steatosis (HS) detection. (A) Summary receiver operating characteristic (SROC)
curve for studies with available data in 9 studies [37.43,45,46.48,49,55,61,62] with 10 datasets; (B) SROC curve for studies with unavailable data in

24 studies [28-35,38-42.,44.,47,50-52,54,56-60,63] with 25 datasets.
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Subgroup definitions are detailed in the methods section.
Heterogeneity was categorized as follows: P<50% low

heterogeneity, 50%-75% moderate heterogeneity, and >75%
high heterogeneity.

Discussion

Principal Findings

This meta-analysis of 36 studies demonstrates the superior
diagnostic performance of Al in identifying HS, yielding
a pooled AUC of 0.98, surpassing that of conventional
ultrasound, CT, and MRI, whose pooled AUCs were
0.93, 0.975, and 0.97, respectively [64-66]. These findings
underscore AI’s potential to overcome the inherent physi-
cal constraints of individual imaging techniques, thereby
establishing it as a versatile and adaptive diagnostic approach.
This capability carries considerable clinical significance,
providing a strong rationale for further meta-analyses
dedicated to Al-based diagnostic technologies and inform-
ing the development of flexible, context-specific clinical
applications. By optimizing the use of the most accessible
and cost-effective diagnostic resources, Al could markedly
broaden the availability of early HS screening across diverse
health care settings.

Although the encouraging performance of Al in diagnos-
ing HS is promising, interpretation of these findings must
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be tempered by a critical appraisal of the methodological
limitations underlying this research. Our analysis revealed
substantial heterogeneity (/>>75%) and a high overall risk
of bias among included studies, particularly within the
patient selection domain, where 44% (16/36) were judged
to be at high risk. A major limitation lies in the pre-
dominance of retrospective, single-center designs (25/36,
69%). Such studies typically develop and validate mod-
els within controlled, idealized data environments, mean-
ing that reported metrics may reflect “best-case scenarios”
rather than true clinical performance across diverse devi-
ces, operators, and patient populations in routine practice.
Moreover, independent external validation and multicenter
prospective trials remain notably scarce, severely limiting the
assessment of these models’ generalizability. Therefore, while
existing evidence underscores Al’s considerable potential in
HS diagnosis, the current body of research remains insuffi-
cient to justify its widespread clinical adoption. Bridging the
translational gap from high-performing algorithms to reliable,
universally applicable clinical tools thus remains a substantial
challenge.

Subgroup analyses provide valuable insights for optimiz-
ing Al model design and informing clinical integration.
DL-based models demonstrate exceptionally high specific-
ity in diagnosing HS, offering a distinct clinical advant-
age by reducing unnecessary liver biopsies. However, these
models require higher-quality data annotation and greater
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computational resources. Model performance was also closely
associated with the reference standard and imaging modal-
ity used. Systems using histopathological images as input
achieved the highest diagnostic accuracy. Nevertheless, their
clinical applicability is restricted by procedural invasiveness
and sampling error [67]. The Al-assisted whole-slide analysis
model proposed by Roy et al [37] improves quantitative
consistency but faces practical barriers related to cost and
patient acceptance.

The choice of imaging modality inherently involves
trade-offs between diagnostic accuracy, accessibility, and
cost. MRI-PDFF, while providing precise, noninvasive
quantification, is affected by confounders such as iron
overload, edema, and concurrent pathologies [7], and its
high cost limits use in primary care. Ultrasound remains
the most accessible and economical option but suffers from
operator dependency, reduced sensitivity for mild steato-
sis, limited penetration in obese individuals [68,69], and
suboptimal accuracy in detecting fibrosis [70]. Al integration
could mitigate these limitations by standardizing acquisi-
tion and interpretation, though at the cost of increased
system complexity and computational demand. CT achieves
a sensitivity and specificity of 0.93 but is constrained by
ionizing radiation exposure and potential interference from
iodine-based contrast agents [71]. The dual-energy CT 3D
nnU-Net model developed by Yoo et al [54] achieved an
AUC of 0.97 for distinguishing steatotic from normal tissue,
yet its clinical application is constrained by limited equipment
availability.

To optimize model performance and data use, TL has
been widely adopted, an especially valuable strategy given
the substantial costs associated with medical data annotation.
Nonetheless, the effectiveness of TL depends critically on the
degree of similarity between the source and target domains;
substantial domain discrepancies may lead to “negative
transfer,” as illustrated by sensitivity variations of up to 10%
in the Inception-v3 model reported by Constantinescu et al
[40]. To address this limitation, emerging approaches such
as adversarial domain adaptation frameworks have achieved
near-human classification accuracy on heterogeneous MRI
datasets [72]. Similarly, hybrid pretraining strategies [73] and
federated learning techniques have reached up to 99% of
the performance attained through centralized training [74].
These approaches enhance model robustness while effectively
addressing data privacy and heterogeneity.

Beyond algorithmic optimization, the real-world imple-
mentation of Al is profoundly influenced by study design
and data governance. Retrospective studies, which constituted
the majority (25/36, 69%) of the included reports, demonstra-
ted significantly higher performance than prospective studies
(AUC: 098 vs 0.94), likely reflecting the high-quality and
well-curated imaging data typically available in retrospec-
tive cohorts. In contrast, prospective designs more faithfully
capture real-world clinical workflows but are inherently
subject to operational variability, such as inconsistent imaging
protocols and unpredictable patient factors, thereby leading to
attenuated performance.

https://www .jmir.org/2026/1/e78310
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Furthermore, data governance and accessibility are pivotal
in determining model generalizability. Multicenter collabo-
rations and data sharing can improve generalizability and
reproducibility, though they require standardized imaging
protocols, increased logistical coordination, and greater
resource investment, posing feasibility challenges in resource-
limited settings. Moreover, access to medical data for
Al development remains hindered by privacy regulations,
institutional policies, and technical interoperability barriers.
Privacy-preserving strategies, such as federated learning,
offer promising solutions by enabling multi-institutional
collaboration without direct data exchange, albeit at the cost
of increased computational demands and system complexity.
It should also be noted that publicly available datasets may
not fully represent the clinical heterogeneity encountered in
real-world practice, thereby introducing potential selection
bias. These factors, while critical for improving Al perform-
ance, also contribute substantially to heterogeneity, under-
scoring the necessity of comprehensive external validation
and context-specific adaptation before large-scale clinical
implementation.

Expanding Role in HS Management

The use of Al extends beyond diagnostic precision to
encompass the comprehensive management of HS. Accumu-
lating evidence indicates that AI not only enables accurate
quantification of hepatic fat but also integrates radiomic,
pathological, and clinical data to facilitate fibrosis staging,
predict HCC risk, assess posttransplant survival, and stratify
cardiovascular complications. For instance, a VGG16-based
ultrasound model outperformed human interpretation in
classifying borderline cases [75]. The integration of macro-
genomic sequencing with ML has proven effective for the
differential diagnosis of HS in obese pediatric populations
[76]. Similarly, an ML model based on MRI-derived liver
fat quantification markedly improved diagnostic accuracy for
liver fibrosis [77]. Al-powered digital pathology platforms
reduce the inherent subjectivity of conventional histologi-
cal assessment [78], while DL-based radiomics facilitates
the identification of critical pathological features such as
microvascular invasion [79]. A DL algorithm demonstra-
ted 99% accuracy in predicting postliver transplantation
survival [80]. In the context of MAFLD-related complica-
tions, Al algorithms have been employed to accurately
identify affected patients from electronic health records,
revealing type 2 diabetes mellitus as a significant predictor
of all-cause mortality (hazard ratio: 1.36) [81]. Moreover, a
dual model combining tongue imaging with clinical indicators
achieved precise prediction of coronary heart disease risk
among patients with fatty liver [82]. The foregoing advances
signal a diagnostic paradigm shift in HS management from
a traditional “liver-centric” approach towards a “patient-cen-
tric” model of multi-system risk management, paving the way
for early intervention and personalized therapy.

In summary, the advantages of Al in HS diagnosis are
threefold as follows:
1. Enhanced early detection: DL models can detect
subclinical pathological alterations, including hepatic
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fat infiltration below 5%, thereby reducing diagnostic
subjectivity and improving reproducibility [43,45,83].

2. Standardized quantitative analysis: End-to-end,
pixel-level segmentation enables automated calcula-
tion of HS, minimizing reliance on manual interpreta-
tion and potentially substituting for histopathological
assessment in resource-constrained settings.

3. Longitudinal predictive modeling: The integration
of time-series radiomic and metabolomic features
facilitates the construction of individualized models
predicting cirrhosis progression and MAFLD onset
within 3 years, providing actionable insights for
precision treatment planning.

Challenges and a Phased
Implementation Framework

Despite its promising outlook, the widespread clinical
adoption of Al in HS management faces multiple challenges.
Technically, data heterogeneity, stemming from variations in
imaging quality [84], scanner types, and reference standard
thresholds, impedes the development of universally robust
and generalizable models. Many high-performing algorithms
are derived from single-center, retrospective datasets (eg,
Yang et al [22], n=50, Beijing) with limited demographic
diversity, thereby compromising their external validity and
real-world applicability. Moreover, most existing models
primarily focus on imaging biomarkers for fat quantification
without adequately elucidating the complex pathophysiologi-
cal interplay among steatosis, metabolic comorbidities, and
fibrosis, limiting both clinical interpretability and holistic
disease assessment.

From a clinical integration perspective, the transition
from algorithmic development to real-world deployment
necessitates careful consideration of workflow compatibil-
ity, device dependency, and cost-effectiveness. Lightweight
Al models hold promise for incorporation into primary
care ultrasound systems, facilitating large-scale population
screening, whereas more advanced MRI- or CT-based models
may be more appropriately implemented in tertiary medical
centers. The overarching objective is seamless integration into
existing clinical workflows, ensuring that Al serves as an
assistive, rather than disruptive, technology that streamlines
radiological practice, conserves clinician time, and enhances
diagnostic efficiency [85]. Furthermore, issues concerning
data privacy [86], algorithmic bias [87], and accountability
[88] lack clear regulatory frameworks.

From a global health perspective, the clinical use of Al
in HS diagnosis varies according to resource availability.
To promote both efficiency and equity in HS diagnosis
and management, a phased implementation framework is
proposed:

1. Tiered deployment in specific scenarios: in resource-
limited settings, lightweight Al systems can be paired
with portable ultrasound to enable cost-effective
community screening and early detection. Suspected
cases may then be referred to higher-level hospi-
tals for precise stratified diagnosis (eg, MRI-PDFF),
thereby optimizing resource allocation and minimizing
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unnecessary biopsies. In high-resource environments,
Al-driven automated image processing facilitates
accurate fat quantification and disease staging, forming
a synergistic diagnostic—therapeutic feedback loop.

2. Establish cross-institutional collaborative data
platforms: the adoption of federated learning and
related technologies can enhance data diversity while
ensuring privacy protection. Such approaches enable
robust model development based on heterogeneous
real-world data, mitigate model bias and validation
gaps, eliminate the need for centralized storage of
sensitive information, and provide the foundation for
scalable, privacy-preserving deployment.

3. Transition from standalone tools to integrated manage-
ment platforms: the ultimate objective is to advance Al
from a single-function diagnostic aid to a comprehen-
sive, multi-task management system. By synchronously
quantifying steatosis, assessing fibrosis, and evaluat-
ing inflammatory markers through multimodal data
integration. Incorporating these outputs directly into
clinical decision-making workflows, Al could evolve
from diagnostic assistance to intelligent, holistic disease
management.

Limitations in the Literature

Several limitations warrant cautious interpretation. First,
considerable methodological and clinical heterogeneity was
observed across the included studies, constraining the
reliability of the conclusions. Despite extensive subgroup
analyses, variability arising from differences in patient
characteristics, imaging equipment, and diagnostic thresholds
could not be fully addressed. This residual heterogeneity
undermines the robustness of pooled estimates and suggests
the influence of unmeasured factors affecting Al perform-
ance.

Second, the analysis was limited by methodological
shortcomings inherent in the primary studies. Inadequate
reporting of key patient characteristics hindered subgroup
analyses by disease etiology, particularly distinguishing pure
MAFLD from mixed forms, a critical gap given the potential
impact of comorbidities on diagnostic accuracy. Furthermore,
wide variation in Al architectures and the limited number
of comparable models precluded meaningful comparisons
across technical approaches, leaving the effect of architectural
design on diagnostic performance unclear.

Third, the generalizability and real-world applicability of
the findings remain limited. Most studies were retrospective,
single-center designs prone to selection bias, with scarce
external or temporal validation. Thus, the high-perform-
ance metrics reported may represent an idealized best-case
scenario rather than outcomes achievable in prospective
clinical settings.

Additionally, although our restriction to peer-reviewed
full-text publications ensured a baseline level of meth-
odological rigor, the exclusion of relevant preprints and
gray literature may have introduced publication bias. Such
selective inclusion likely favored studies reporting positive
outcomes, potentially leading to overestimated performance
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measures. Moreover, key practical factors, such as computa-
tional burden, workflow integration, and technical expertise,
could not be quantitatively evaluated, despite their importance
for real-world implementation.

Conclusions

This meta-analysis highlights the substantial diagnostic
potential of AI, particularly DL, in assessing HS. Its key
contribution lies in establishing a unified, imaging-modality-
independent analytical framework that provides comprehen-
sive evidence beyond the constraints of individual imaging
techniques. Nonetheless, these results reflect technical
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promise rather than confirmed clinical use. The translation
from high-performing algorithms to reliable clinical tools
remains hindered by performance heterogeneity, retrospective
study designs, and insufficient external validation. While the
technological foundation of Al in HS is encouraging, clinical
maturity has yet to be achieved. Bridging this translational
gap will require prospective multicenter studies, standar-
dized reporting protocols, and rigorous external validation.
Ultimately, successful clinical adoption will depend on
demonstrating not only algorithmic robustness but also
tangible improvements in patient outcomes and workflow
efficiency across real-world health care settings.
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