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Abstract

Background: Accurately predicting ovarian response and determining the optimal starting dose of follicle-stimulating hormone
(FSH) remain critical yet challenging for effective ovarian stimulation. Currently, there is a lack of a comprehensive model
capable of simultaneously forecasting the number of oocytes retrieved (NOR) and assessing the risk of early-onset
moderate-to-severe ovarian hyperstimulation syndrome (OHSS).

Objective: Thisstudy aimed to establish an integrated mode capabl e of forecasting the NOR and assessing the risk of early-onset
moderate-to-severe OHSS across varying starting doses of FSH.

Methods: This prognostic study included patients undergoing their first ovarian stimulation cycles at 2 independent in vitro
fertilization clinics. Automated classifiers were used for variable selection. Machine learning models (11 for NOR and 11 for
OHSS) were developed and validated using internal (n=6401) and external (n=3805) datasets. Shapley additive explanation was
applied for variable interpretation. The best-performing models were incorporated into a web-based prediction tool.

Results: For NOR prediction, 17 variables were sel ected, with the gradient boosting regressor achieving the highest performance

(internal dataset: R?=0.7978; external dataset: R?=0.7924). For OHSS prediction, 19 variableswereidentified, and the LightGBM
model demonstrated superior performance (internal dataset: areaunder the receiver operating characteristic curve=0.7588; external
dataset: area under the receiver operating characteristic curve=0.7287). Shapley additive explanation analysis highlighted the
FSH starting dose to BMI ratio and baseline antral follicle count askey predictorsfor NOR and OHSS, respectively. Dose-response
curves were generated to visualize predicted outcomes with varying FSH starting doses. The models were implemented in a
user-friendly, research-oriented online prototype, individualized ovarian stimulation guide (InOvaSGuide).
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This study introduces an integrated framework for predicting NOR and early-onset moderate-to-severe OHSS

risk across different FSH doses. Future prospective evaluation is needed before clinical implementation.

(J Med Internet Res 2026;28:€78245) doi: 10.2196/78245
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Introduction

Over the past decade, individualized ovarian stimulation has
becomeakey strategy ininvitrofertilization (IVF). Determining
an appropriate starting dose of exogenous follicle-stimulating
hormone (FSH) is essential for balancing efficacy and safety.
Although earlier clinica practice emphasized maximizing oocyte
yield (the more, the better), current consensus favors achieving
amoderate ovarian response to optimize live birth rates while
minimizing patient discomfort and iatrogenic risks such as
ovarian hyperstimulation syndrome (OHSS). Therefore, accurate
prediction of ovarian response before stimulation is critical for
optimizing treatment outcomes [1-4].

Although biomarkers, including antral follicle count (AFC),
anti-Mdullerian hormone (AMH) levels, and BMI, are well
associated with ovarian response, substantial interindividual
and intraindividual variability limits their predictive precision.
Tailoring FSH doses based solely on these indicators has not
consistently improved clinical outcomes[5,6], highlighting the
need for more comprehensive, data-driven approaches that
integrate a broader spectrum of clinical and biological factors.

Recent advances in artificial intelligence (Al) and machine
learning (ML) offer new opportunities for improving
decision-making in assisted reproduction, with applications
reported in semen analysis [7], blastocysts grading [8], and
trigger-day assessments[9]. Several ML models have also been
developed to predict the number of oocytes retrieved (NOR)
[10-13] or to classify ovarian responsiveness [10]; however,
most remain limited in scope. They typicaly rely on a narrow
set of baseline features, adopt single-model frameworks, and
focus predominantly on treatment efficacy such asoocyteyield,
with relatively limited attention to safety outcomes, including
OHSS. These limitations emphasize the need for predictive
frameworks that simultaneously incorporate both efficacy and
safety. Furthermore, despite multiple evidence-based algorithms
for FSH dosing, considerable variability in ovarian response
persists even among patients with comparable baseline
characteristics. A model that jointly predicts NOR and OHSS
risk across arange of FSH doses may provide useful predictive
information and support dose-specific decision-making, helping
clinicians consider the balance between efficacy and safety
when selecting individualized FSH doses.

In this study, ML models were developed to predict NOR and
early-onset moderate-to-severe OHSS using datasets from 2
IVF centers. Modelswith optimal performance wereintegrated
into a clinician-oriented decision support prototype, termed
individualized ovarian stimulation guide (“InOvaSGuide”),
complemented by aweb-based calculator. For each patient, the
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system providesindividualized dose-response curvesthat display
predicted NOR and early-onset moderate-to-severe OHSS
probabilities acrossvarying FSH starting doses, thus supporting
personalized ovarian stimulation.

Methods

Ethical Considerations

This prognostic study was designed as a retrospective analysis
and was approved by the Reproductive Medicine Ethics
Committee of Xiangya Hospital (2021010) and the Medicine
Ethics Committee of Shenzhen Luohu District People’sHospital
(2024-LHQRMY Y-KYLL-63). Informed consent was waived
because al data were retrospectively collected from routine
clinical records and anonymized before analysis. The study
adhered to the Declaration of Helsinki and followed the TRIPOD
(Transparent Reporting of aMultivariable Prediction Model for
Individual Prognosis or Diagnosis;, Table S1 in Multimedia
Appendix 1) reporting guideline [14]. All data analyses were
performed by an external team using anonymized data only,
ensuring full protection of participant privacy. No compensation
was provided to participants, asthe study involved retrospective
and fully anonymized data.

Study Cohort

The inclusion criteria were (1) patients with the first ovarian
stimulation cycle conducted between January 1, 2018, and
September 30, 2022, at the Department of Reproductive
Medicine of Xiangya Hospital (internal dataset) and between
May 1, 2021, and December 30, 2023, at the Reproductive
Center of Shenzhen Luohu District People’s Hospital (external
dataset) and (2) patients aged 20 to 40 years. Exclusion criteria
were (1) patients with diminished ovarian reserve, diagnosed
by AMH <1.1 ng/mL or baseline AFC <7 [15]; (2) patients
using the microstimulation protocols for ovarian stimulation,
including progestin-primed ovarian stimul ation protocol, natural
cycle protocol, etc; and (3) patients with more than 50%
missingness in key clinical variables. Notably, patients with
diminished ovarian reserve or those undergoing
microstimulation protocolswere excluded because these groups
require highly individualized stimulation strategies, exhibit
markedly lower oocyte yield, and have a substantially reduced
risk of OHSS under comparable FSH exposure, which would
have created pronounced class imbalance and reduced model
robustness.

After screening, 6401 patients from XiangyaHospital and 3805
from Shenzhen Luohu District People’s Hospital wereincluded
in theinternal and external datasets, respectively.
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Ovarian Stimulation Process and the Diagnosis of
Early-Onset M oderate-to-Severe OHSS

Before commencing the IVF and intracytoplasmic sperm
injection cycle, patients underwent a thorough physical
examination, including the assessment of basic physical
parameters (height, weight, and BMI), measurement of basal
hormone levels (FSH, luteinizing hormone [LH], estradiol,
testosterone, progesterone, prolactin, and AMH), biochemical
tests (fasting glucose, fasting insulin, lipid levels, and thyroid
hormones), and transvaginal ultrasonography for basal AFC.
Subsequently, experienced physicians personalized the ovarian
stimulation protocol and the starting dose of FSH based on
comprehensive clinical assessment. Throughout stimulation,
patients underwent monitoring viatransvagina ultrasonography
and serum hormone assessments, with gonadotropin dosage
adjustments made according to individual ovarian responses.
Human chorionic gonadotropin or gonadotropin-releasing
hormone agonist, alone or combined, triggered oocyte
maturation when 3 or morefolliclesmeasuring 17 mm or greater
were observed. Oocyte retrieval occurred 36 hours after
triggering, and the NOR was recorded. Eligible patients
underwent fresh embryo transfer with 1 or 2 embryos.

The study primarily focused on the occurrence of early-onset,
moderate-to-severe OHSS, which was diagnosed within 9 days
after triggering based on established guidelines[16], considering
both clinical and laboratory features. All relevant individual
and clinical variables during the process were obtained from
the clinical database for feature screening and selection.

Data Preprocessing and Featur e Selection

All data analysis was performed by an external team using
anonymized data, ensuring full protection of participant privacy.
To elucidate correl ations between predictive featuresand clinical
outcomes with an emphasis on medical interpretability, we
performed feature engineering on selected variables. This
process resulted in 2 additional variables: “FSH to LH ratio”
and “FSH starting dose to BMI ratio,” which improved
predictive accuracy while maintaining transparency and clinical
relevance. Furthermore, to address skewness and improve
distributional normality, a logarithmic transformation was
applied to AMH, triglycerides, and FSH/LH (Figures S1 and
S2in Multimedia Appendix 1). Missing datawere handled using
mean imputation, with feature-wise means computed exclusively
from the training set and subsequently applied to the test and
external validation sets, to prevent information leakage. The
overall proportion of missingness was low, and imputation did
not materially alter variable distributions.

Toidentify key variables, we applied feature importance—based
selection using the Boruta algorithm, performed exclusively
within the training dataset (Figures S3 and S4 in Multimedia
Appendix 1). This approach led to the selection of 17 variables
for the NOR prediction model and 19 variables for the OHSS
prediction model.

NOR Model Development

In the prediction of NOR, 17 features, including starting dose
of FSH to BMI ratio, BMI, log (AMH), and specifically the
ovarian stimulation protocol, were selected. The NOR divided
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by the starting dose of FSH was used and logarithmically
transformed as the outcome variable with improved predictive
performance. For model training, the internal dataset was
divided into an 8:2 split, with 79.9% (5120/6401) of the data
randomly allocated to the training set and the remaining 20%
(1281/6401) assigned to the internal test set. All data from the
external dataset were held out entirely and used exclusively as
an external validation cohort, providing an independent
assessment of model generalizability acrossinstitutions. Eleven
ML agorithms, including alinear regression model, weretrained
to predict the preprocessed NOR outcome. Hyperparameter
tuning was performed using 5-fold cross-validation within the
training set only, with all hyperparameters predefined and
summarized in Table S2 in Multimedia Appendix 1. Model

performance was assessed using 4 key metrics: R?, adjusted R?,
mean absolute error, and root mean square error.

OHSS Modd Development

For OHSS prediction, the target variable was the occurrence of
early-onset moderate-to-severe OHSS. Given thelow event rate
and resulting class imbalance, severa commonly used
imbalances handling  strategies (eg, oversampling,
undersampling, and ensembl e-based resampling) were evaluated.
Cost-sensitive learning was ultimately adopted, assigning
differentiated penalties to misclassifications while preserving
all origina clinical data distribution. To prevent overfitting,
model complexity was controlled by limiting the number of
parameters and applying regularization techniques, as
appropriate for each algorithm. Eleven ML agorithms were
implemented, with corresponding hyperparameters detailed in
Table S3in Multimedia Appendix 1. Aswith the NOR model,
hyperparameter optimization was conducted exclusively within
the training set, and model performance was evaluated on both
the internal and the external datasets using the area under the
receiver operating characteristic curve (ROC-AUC), the
precision-recall area under the curve (PR-AUC), recall,
specificity, weighted F;-score, Cohen k, and positive and
negative predictive values.

Shapley Additive Explanation Value

To further explore the significant features driving the model’s
predictions, we used the Shapley additive explanation (SHAP)
analysisto assesstheimportance of corefeatures. SHAP serves
as an interpretative tool for ensemble tree models, offering a
detailed breakdown of the influence of input features on
predictions.

Creation of Dose-Response Curves

In this study, 2 distinct models were devel oped: aclassification
model for predicting early-onset moderate-to-severe OHSS and
a regression model for forecasting NOR. Models of best
performance were incorporated into an integrated,
research-oriented computational system, complemented by a
web-based calculator. By inputting baseline patient
characteristics, the system generates predictions for NOR and
early-onset moderate-to-severe OHSS probability, presented as
adose-response curveillustrating changeswith increasing FSH
starting doses.
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Statistical Analysis

The baseline characteristics of patients between the internal
dataset and the external dataset were compared using the
chi-square test for categorical variables. For continuous
variables, we assessed normality using the Shapiro-Wilk W test.
Depending on the results, we used either the 2-tailed Student t
test or the Mann-Whitney U test for comparison. R Studio
(version 4.3.1; R Foundation for Statistical Computing), Python
(version 3.11.4; Python Software Foundation), the open-source
scikit-learn  package (version  3.9.13;  open-source
community-developed Python ML library), LightGBM (version
4.3.0; Microsoft Corporation), and XGBoost (version 2.0.0;
open-source project maintained by X GBoost contributors) were
used for model development and statistical analyses.

https://www.jmir.org/2026/1/€78245
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Results

The Integrated Ovarian Response Prediction System

To addressthe challenges of individualized ovarian stimulation,
wedeveloped an integrated prediction system, “InOvaSGuide,”
designed to predict both the NOR and the probability of
early-onset moderate-to-severe  OHSS  before ovarian
stimulation. The system was built using datasets from 2 IVF
clinics and incorporates 2 distinct ML models for NOR and
OHSS predictions, respectively (Figure 1A). By analyzing
patients baseline characteristics, the system generates
dose-response curvesthat illustrate the predicted benefit (NOR)
and risk (early-onset moderate-to-severe OHSS) acrossvarying
FSH starting doses (Figures 1B and C). Additionaly, a
user-friendly web-based calculator was devel oped to enhance
accessibility and support exploratory usein clinically relevant
contexts (Figure S7 in Multimedia Appendix 1).
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Figure 1. Flowchart of the study: (A) the modeling process with internal and external datasets, (B) illustration of the primary goal of this study, and
(C) illustration of the clinical application of the individualized ovarian stimulation guide (INOvaSGuide) system. EHR: electronic health record; FSH:
follicle-stimulating hormone; NOR: number of oocytes retrieved; OHSS: ovarian hyperstimulation syndrome.
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Patient Characteristics

A total of 6401 patients from the internal dataset and 3805
patients from the external dataset were included, with baseline
characteristics detailed in Table 1. The median age was 30.0
(IQR 27.0-33.0) years in the internal dataset and 32.0 (IQR
29.0-35.0) vyears in the extenad dataset. The
gonadotropin-releasing hormone antagonist protocol was the
most commonly used in both datasets (internal dataset:

https://www.jmir.org/2026/1/€78245

RenderX

Training cohort (n=5120)

Test cohort (n=1281)

First day of ovarian stimulation

[ - External cohort
> (n=3805)

Machine learning
algorithm

Model performance

2650/6401, 41.4%; external dataset: 1913/3805, 50.3%). The
median number of NOR was 13.0 (IQR 9.0-17.0) and 15.0 (IQR
10.0-20.0) for the internal and external dataset, respectively. In
the internal dataset, 55 (0.9%) patients were diagnosed with
moderate-to-severe OHSS, whereas 46 (1.2%) patients were
diagnosed inthe external dataset. Further comparisons between
OHSS and non-OHSS cases in both datasets are detailed in
Tables S4 and S5 in Multimedia Appendix 1.
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Table 1. Baseline characteristics of the patientsin the internal and external datasets.
Internal dataset (n=6401) External dataset (n=3805) P value

Age (y), median (IQR) 30.0 (27.0-33.0) 32.0(29.0-35.0) <.001
BMI (kg/mz), median (IQR) 21.7 (19.8-24.0) 21.6 (19.8-23.6) .02
Bassline FSH2 (mIU/mL), median (IQR) 6.2(5.2-7.2) 6.5 (5.5-7.5) <.001
Basdline luteinizing hormone (mlIU/mL), median (IQR) 5.3(3.8-7.1) 5.2(3.7-6.9) .006
Anti-Miillerian hormone (ng/mL ), median (IQR) 4.1(2.6-5.4) 3.8(25-5.7) .20
Fasting blood glucose (mmol/L), median (IQR) 5.3(5.1-5.4) 45 (4.3-4.8) <.001
Fasting insulin (uU/mL), median (IQR) 11.0(7.5-12.1) 62.6 (62.6-62.6) <.001
Homeostasismodel assessment of insulin resistance, median (IQR) 2.5 (1.7-2.9) 13.3(13.3-13.3) <.001
Baseline antral follicle count, median (IQR) 20.0 (14.0-24.0) 13.0 (10.0-19.0) <.001
Ovarian stimulation protocol, n (%) <.001

GnRHP agonist long protocol 1211 (18.9) 0(0)

GnRH antagonist protocol 2650 (41.4) 1913 (50.3)

Early-follicular phaselong-acting GnRH agonist long protocol 2300 (35.9) 1827 (48)

Ultralong GnRH agonist protocol 240 (3.8) 65 (1.7)
Starting dose of FSH (1U), median (IQR) 150.0 (150.0-187.5) 225.0 (150.0-300.0) <.001
Total dose of FSH (1U), median (IQR) 1950.0 (1500.0-2437.5) 2100.0 (1575.0-2750.0) <.001
Estradiol level on the day of triggering (pg/mL), median (IQR) 3269.3 (2580.0-3269.3) 2750.0 (1804.0-3961.0) <.001
Oocytes retrieved, median (IQR) 13.0(9.0-17.0) 15.0 (10.0-20.0) <.001
Degree of ovarian hyperstimulation syndrome, n (%) A1

Normal 6346 (99.1) 3759 (98.8)

Moderate to severe 55(0.9) 46 (1.2)

8FSH: follicle-stimulating hormone.
bGnRH: gonadotropin-releasing hormone.

Model Performance
For NOR prediction, the gradient boosting regressor exhibited

the best performance, with an R? value of 0.7978 in theinternal
dataset and 0.7924 in the external dataset, indicating strong
explanatory power (Table 2). The model’s mean absolute error
was 0.0223 and the root mean square error was 0.0298,
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collectively affirming the high accuracy and minimal bias. The
model’s predictions aligned closely with the actual outcomes,
demonstrating relatively high accuracy. The Quantile-Quantile
plot further confirmed that the residuals followed a normal
distribution, as they closely aligned with the diagonal line
(Figures 2A-2D).
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Table 2. Performance metrics of the number of oocytes retrieved prediction modelsin internal and external datasets.

Machinelearningmodels Internal dataset External dataset
R?2 Adjusted R Mean abso- Rootmean R2 Adjusted R2  Meanabsolute Root mean
lute error square error error square error
Gradient boostingregres-  0.7978 0.7951 0.0223 0.0298 0.7924 0.7915 0.0243 0.0327
sor
Light gradient boosting  0.7908 0.7880 0.0228 0.0303 0.7826 0.7817 0.0243 0.0334
machine regressor
Extreme gradient boost-  0.7889 0.7861 0.0228 0.0305 0.7907 0.7898 0.0236 0.0328
ing regressor
Random forest regressor  0.7849 0.7820 0.0229 0.0308 0.8020 0.8012 0.0229 0.0319
Ridge 0.7463 0.7429 0.0253 0.0334 0.3228 0.3198 0.0470 0.0590
Linear regression 0.7463 0.7428 0.0253 0.0334 0.3235 0.3204 0.0469 0.0590
Decision treeregressor ~ 0.5452 0.5391 0.0330 0.0447 0.6108 0.6090 0.0318 0.0447
Support vector regression  0.5107 0.5041 0.0390 0.0464 0.5321 0.5300 0.0366 0.0490
Lasso -0.0023 -0.0158 0.0519 0.0664 -0.1773 -0.1826 0.0648 0.0778
Elastic net -0.0023 —-0.0158 0.0519 0.0664 -0.1773 -0.1826 0.0648 0.0778
Multilayer perceptronre- -0.4608 —-0.4805 0.0523 0.0802 -351.3296 -352.9112 0.6948 1.3453
gressor
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Figure2. Model performance in predicting the number of oocytes retrieved (NOR; A-D) and ovarian hyperstimulation syndrome (OHSS; Eand F) in
theinternal and external datasets. ADA: adaptive boost classifier; BNB: Bernoulli Naive Bayes, CatBoost: categorical boosting classifier; DT: decision
tree classifier; ET: extra trees classifier; GBC: gradient boosting classifier; GNB: Gaussian Naive Bayes, GPC: Gaussian process classifier; HGBC:
histogram-based gradient boosting classifier; LDA: linear discriminant analysis; L GB: light gradient boosting machine classifier; LR: logistic regression;
MLP: multilayer perceptron classifier; QDA: quadratic discriminant analysis;, QQ: quantile-quantile; RF: random forest; ROC: receiver operating

characteristic; XGB: extreme gradient boosting classifier.
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For early-onset moderate-to-severe OHSS prediction, the
LightGBM model consistently outperformed other algorithms,
achieving an ROC-AUC of 0.7588 in the internal dataset and
0.7287 inthe external dataset (Figures 2E and 2F). Whilerecall,
specificity, weighted F;-score, and Cohen k score indicated
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reasonable discriminative performance, precision-related
metrics, including positive predictive value, negative predictive
value, and PR-AUC, remained modest across al classifiers.
Theresults, along with the confusion matrices, are summarized
in Table 3 and Figures S5 and S6 in Multimedia Appendix 1.
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Table3. Performance metrics of early-onset moderate-to-severe ovarian hyperstimulation syndrome prediction modelsin internal and external datasets.

Classifier Internal dataset External dataset
ROC- Re-  Speci- W@t K ppvP Npy© Preci- ROC Re- Speci- WEgt K PPV NPV Preci-
Aucd cdl  ficity ed son- AUC cdl ficity ed sion-
Frsore recall Frsore recall-
Aucd AUC
LGBMClassfig® 0.7588 1000 09833 03466 0504 034 1000 00176 Q7287 0B%8 09859 04523 0600 0464 QR 0.0227
LinearDiscrimi-  0.7313 10000 0.5690 0.0281 0034 00197 1000 0.0162 064 06/ 0.9560 05966 032 036 0934 0.0196
nantAnalysis
CatBoost' 0.7059 1000 09584 0.1795 0X18 01724 1000 0.0173 067 083 09852 04045 0655 03B 090 0.0206
MLPClassifierd 06966 Q301 09784 02724 04177 026® 0971 00168 0632 0813 09996 02071 0XAH 0197 QBB 0.0236
GradientBoosting- 0.6930 1000 09610 0.1889 03B 01819 1000 0.0161 0625H 02074 09553 0.8757 0% 03337 0947 0.0157
Classifier
XGBClassifier! 06892 0723 0.9941 05199 06/ 05181 Q966 00152 0621 Q033 09944 04263 0584 04217 0%E3 0.0189
GaussianNB! 0.6808 1000 09755 0.2678 04111 0614 1000 00135 0616 0AB 09999 0.3548 05113 03B 0BB 0.0276
LogisticRegress 0.6791 10000 0.4837 0.0250 0034 0066 10000 0.0138 089 1000 0.9827 0.0121 0Q00B 00 0919 0.0182
sion
RandomForest 0.6178 Q7273 09909 04122 052 044 0943 00123 05¥5 0910 09865 0.2084 0D 0198 0P 0.0156
QuadraticDiscrim- 0.6142 Q7273 0.9943 05277 0636 0560 (096 0.0108 058 10000 1.0000 0.0121 QOB QOO0 0934 0.0267
inantAnalysis
ExtraTreesClass- 0.5937 06%4 0.9965 0.6097 0/4% 0604 09O 00102 0230 03217 09952 05708 Q712 05714 09O 0.0120
fier

8ROC-AUC: area under the receiver operating characteristic curve.
bppy: positive predictive value.

°NPV: negative predictive value.

dAUC: areaunder the curve.

€ GBMClassifier: light gradient boosting machine classifier.
fcatBoost: categorical boosting classifier.

9ML PClassifier: multilayer perceptron classifier.

PX GBClassifier: extreme gradient boosting classifier.

INB: Naive Bayes.

Modél Interpretation

SHAP values were used to assess feature importance for both
models, as shown in Figure 3. For NOR prediction, the features
with the highest mean absolute SHA P valueswere FSH starting
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doseto BMI ratio, BMI, log (AMH), baseline AFC, and baseline
FSH, indicating their significant contribution to the model. For
early-onset moderate-to-severe OHSS prediction, the most
important features identified were baseline AFC, followed by
baseline FSH, BMI, fasting blood glucose, and log (AMH).
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Figure 3. Shapley additive explanation (SHAP) values of the prediction models for (A) number of oocytes retrieved (NOR) and (B) ovarian
hyperstimulation syndrome (OHSS). FSH: follicle-stimulating hormone; BMI, body mass index; AMH: anti-Miillerian hormone; AFC: antral follicle
count; LH: luteinizing hormone; HOMA-IR: homeostatic model assessment of insulin resistance; HDL : high-density lipoprotein; E2: estradiol; INS:
fasting insulin; TG: triglycerides, TC: total cholesterol; LDL: low-density lipoprotein; GLU: fasting glucose; T: testosterone;.
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in both early-onset moderate-to-severe OHSS probability and
Integrated Dose-Response Curvesand Web Calculator predicted NOR for different patients. However, the probability

of OHSS occurrence varies among individuals. On the basis of
these personaized dose-response predictions, clinicians can

To facilitate individualized ovarian stimulation, we further
integrated the prediction models for both NOR and early-onset
moderate-to-severe OHSSinto dose-response curves. Examples  determine a suitable starting dose of FSH to achieve an optimal
of patientswith relatively high and low predicted risksof OHSS  NOR while maintaining a relatively low risk of early-onset
are presented in Figures 4A and 4B, respectively. As shown, moderate-to-severe OHSS.

increasing the starting dose of FSH leads to variable increases
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Figure 4. Model application and representative patient examples with predicted relatively high (A) and low (B) risks of ovarian hyperstimulation
syndrome (OHSS). FSH: fallicle-stimulating hormone; NOR: number of oocytes retrieved.
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Additionally, we developed a web-based calculator as a
research-oriented prototype to enhance accessibility and
facilitate exploratory use of the proposed models. Theintuitive
interface allows users to input relevant data and receive
immediate predictions from the models (Figure S7 in
Multimedia Appendix 1).

Discussion

Principal Findings

In this study, we developed an integrated ML-based system,
“InOvaSGuide,” capable of simultaneously predicting NOR
and the associated risk of early-onset moderate-to-severe OHSS
across a wide range of FSH starting doses. By generating
individualized dose-response curves, the model provides a
continuous view of expected oocyte yield and corresponding
safety profiles, providing clinicians with a structured visual
reference to support individualized FSH dose selection. A
web-based calculator was further implemented as a
research-oriented prototype to improve accessibility and
facilitate exploratory use of the models in clinicaly relevant
scenarios.

Oocyte yield remains a key determinant of both efficacy and
safety in assisted reproduction. Retrieval of fewer than 4 oocytes
has been associated with poor reproductive prognosis [17],
whereas obtaining more than 15 oocytesincrease thelikelihood
of OHSS and may dlightly compromise live birth outcomes
[18,19]. Accordingly, a target range of 5 to 15 oocytes is
generally recommended to balance benefit and risk [19]. The
dose-response curve framework aligns conceptually with these
clinical principles, asit illustrates how predicted NOR changes
withincreasing FSH doses, thereby supporting informed dosing
discussions rather than prescriptive decision-making.

Existing ML-based NOR models generaly focus either on
approximating actual or optimal oocyte yield [11-13,20] or on
producing individualized curves based on alimited number of
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clinical features [10]. In contrast, our approach used feature
importance scores from automated classifiers for selection and
compared 11 regression algorithms across 2 independent
datasets. Thisallowed the construction of robust dose-response
curvesthat illustrate how predicted NOR varieswith incremental
FSH doses, providing additional insight beyond traditional
single-point estimates by visualizing predictions across a
continuum of FSH doses.

We further developed ML modelsto predict OHSS, addressing
agapinexisting clinical toolsthat predominantly rely onlogistic
regression [21,22] or receiver operating characteristic—based
analyses [23,24]. Although contemporary strategies, including
gonadotropin-releasing hormone antagonist protocols, dual
triggering, and “freeze-all” approaches, have substantialy
reduced the incidence of early-onset OHSS, it remains a
persistent concern even among presumed normal responders
and has not been fully eliminated from clinical practice[25-27].
Our models demonstrated acceptable and consistent
discriminatory ability across both internal and external cohorts,
despite the limited number of OHSS events.

Importantly, the Ilow prevalence of early-onset
moderate-to-severe  OHSS  introduces substantial  and
unavoidable classimbalance, which has direct implications for
model performance metrics. In particular, precision is
structurally constrained in low-prevalence settings; therefore,
PR-AUC values should be interpreted with caution. Although
ROC-AUC indicated reasonable discrimination, PR-AUC is
highly sensitive to outcome prevalence. When event rates fall
below 1%, even well-calibrated models will inherently yield
modest precision. In addition, our modeling strategy deliberately
prioritized sensitivity to enhance clinical safety, an approach
that increases false-positive predictions and further reduces
precision and PR-AUC but minimizes the risk of missing true
high-risk cases.

Within this context, the OHSS model should be viewed
primarily as a screening and risk-stratification aid rather than a
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diagnostic or decision-making tool. Its intended roleisto flag
patients with potentially elevated risk who may warrant closer
monitoring or consideration of preventive strategies, rather than
to definitively predict OHSS occurrence or guide autonomous
clinical actions.

Feature importance analyses largely reflected established
biological associations. For NOR, the FSH starting doseto BMI
ratio, BMI, and log (AMH) emerged as the most influential
predictors. While most features were consistent with clinical
practice, the contribution of metabolic markers, such asglucose,
lipids, and metabolic indicators, warrants further investigation.
For early-onset moderate-to-severe OHSS, AFC, baseline FSH,
BMI, and log (AMH) emerged as dominant predictors, aligning
with known determinants of ovarian reserve and ovarian
sensitivity [23,28]. Associations involving testosterone or
glucose were less pronounced, highlighting the multifactorial
nature of OHSS risk, particularly in women with polycystic
ovary syndrome [29]. Overall, these findings illustrate the
capability of ML approaches to integrate diverse clinical
variables and improve predictive performance.

A key practical advantage of this study is the integration of
NOR and early-onset moderate-to-severe OHSS predictions
into a unified, visualy intuitive research-oriented system.
InOvaSGuide enables cliniciansto assessthe potential trade-offs
between stimulation efficacy and safety across a continuum of
FSH doses. The web-based interface supports exploratory
analysis and clinician-patient discussion; however, the system
does not generate prescriptive dosing recommendations and is
not intended for autonomous clinical use. Importantly,
prospective validation is essential before any consideration of
clinical deployment.

Beyond model performance, the development and potential
deployment of Al-based, clinician-in-the-loop decision support
toolsin reproductive medicine entail careful ethical, legal, and
implementation considerations [30,31]. Given the sensitivity
of reproductive health data, rigorous safeguards for privacy
protection and informed consent are essential [32]. Algorithmic
transparency is equally important to support clinician
interpretation and reduce risks of automation bias [33], while
potential bias across patient subgroups remains an important
consideration for future validation. In addition, Al-driven
clinical tools may fall under medical software regulation,
requiring evidence of safety and clinical validity before clinical
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implementation. Finally, effective integration into clinical
practicewill depend on usability, compatibility with established
workflows, and clearly assigned clinical accountability [30].
Addressing these factors will be necessary before the system
can be responsibly adopted in real-world settings.

Limitations

Our study had several limitations. Firgt, it focused on early-onset
moderate-to-severe OHSS, excluding mild cases that may
self-resolve and late-onset OHSS more commonly associated
with embryo transfer. Patients with a predicted poor prognosis
were also excluded under the assumption that they arelesslikely
to develop OHSS. These exclusions introduced a structural
selection bias that narrowed the population represented and
limited the generalizability of the model in broader clinical
settings. Second, the relatively small number of OHSS cases
limited the model’s ability to fully characterize patients who
are affected. This scarcity, together with the substantial class
imbalance, also constrained the effectiveness of
resampling-based strategies. Although multiple resampling
methods were evaluated, only cost-sensitive learning may allow
a more reliable assessment of aternative methods. Third, the
retrospective nature of the study restricted the availability of
certain relevant factors, such as previous OHSS history and
genetic susceptibility, and may also introduce selection bias
and unmeasured confounding that cannot be fully controlled.
Finaly, athough the system provides individualized
dose-response curvesfor clinical reference, it does not generate
a prescriptive starting dose. Moreover, the model has not yet
undergone prospective evauation, which limits its current
clinical applicability. A prospective validation study is planned
asanecessary next step to assess real-world performance. Future
large-scale, multicenter validation in broader patient populations
will be essentia for improving model stability and
generalizability.

Conclusions

We developed and externally validated InOvaSGuide, a ML
system that simultaneously predicts NOR and early-onset
moderate-to-severe OHSS risk across acontinuum of FSH doses.
By linking efficacy and safety within a single dose-response
framework, the tool highlights the broader potential of
model-informed dosing to standardize ovarian stimulation and
enhance patient safety. Prospectivetrials are needed to establish
real-world utility.
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Datasupporting model development and validation, including the distribution and transformation of key variables, feature selection
for number of oocytesretrieved and ovarian hyperstimul ation syndrome prediction, confusion matrices, the web-based cal culator
interface, and detailed patient baseline characteristics, together with the completed TRIPOD+AI checklist.
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Abbreviations

AFC: antra follicle count

Al: artificial intelligence

AMH: anti-Mdllerian hormone

ROC-AUC: areaunder the receiver operating characteristic curve
FSH: follicle-stimulating hormone

InOvaSGuide: individualized ovarian stimulation guide

IVF: invitrofertilization

LH: luteinizing hormone

NOR: number of oocytes retrieved

OHSS: ovarian hyperstimulation syndrome

PR-AUC: precision-recall area under the curve

SHAP: Shapley additive explanation

TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

Edited by J Sarvestan; submitted 30.May.2025; peer-reviewed by F Sun, K-H Lin; comments to author 29.Sep.2025; revised version
received 22.Dec.2025; accepted 23.Dec.2025; published 03.Feb.2026

Please cite as:

Chen J, Zhao J, QiuH, Liu Y, Zhang Y, Sun Q, Yi Y, Tang H, Zhao J, Xu B, Zhang Q, Yang G, Li H, Liu J, Yang Z, Liang S, Li Y, Fu
J

Integrated Prediction Systemfor Individualized Ovarian Stimulation and Ovarian Hyper stimulation Syndrome Prevention: Algorithm
Development and Validation

J Med Internet Res 2026; 28:€78245

URL: https.//wwww.jmir.org/2026/1/e78245

doi: 10.2196/78245

PMID:

©Jingjing Chen, Jianjuan Zhao, Huiyu Qiu, Yanhui Liu, Yungi Zhang, Qicheng Sun, Yan Yi, Hongying Tang, Jing Zhao, Bin
Xu, Qiong Zhang, Ge Yang, Hui Li, Junjie Liu, Zhongzhou Yang, Shaolin Liang, Yanping Li, Jing Fu. Originally published in
the Journal of Medical Internet Research (https://www.jmir.org), 03.Feb.2026. This is an open-access article distributed under
theterms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet
Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on
https.//www.jmir.org/, as well as this copyright and license information must be included.

https://www.jmir.org/2026/1/€78245 JMed Internet Res 2026 | vol. 28 | €78245 | p. 15
(page number not for citation purposes)

RenderX


https://www.jmir.org/2026/1/e78245
http://dx.doi.org/10.2196/78245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

