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Abstract

Background: Accurately predicting ovarian response and determining the optimal starting dose of follicle-stimulating hormone
(FSH) remain critical yet challenging for effective ovarian stimulation. Currently, there is a lack of a comprehensive model
capable of simultaneously forecasting the number of oocytes retrieved (NOR) and assessing the risk of early-onset
moderate-to-severe ovarian hyperstimulation syndrome (OHSS).

Objective: This study aimed to establish an integrated mode capable of forecasting the NOR and assessing the risk of early-onset
moderate-to-severe OHSS across varying starting doses of FSH.

Methods: This prognostic study included patients undergoing their first ovarian stimulation cycles at 2 independent in vitro
fertilization clinics. Automated classifiers were used for variable selection. Machine learning models (11 for NOR and 11 for
OHSS) were developed and validated using internal (n=6401) and external (n=3805) datasets. Shapley additive explanation was
applied for variable interpretation. The best-performing models were incorporated into a web-based prediction tool.

Results: For NOR prediction, 17 variables were selected, with the gradient boosting regressor achieving the highest performance

(internal dataset: R2=0.7978; external dataset: R2=0.7924). For OHSS prediction, 19 variables were identified, and the LightGBM
model demonstrated superior performance (internal dataset: area under the receiver operating characteristic curve=0.7588; external
dataset: area under the receiver operating characteristic curve=0.7287). Shapley additive explanation analysis highlighted the
FSH starting dose to BMI ratio and baseline antral follicle count as key predictors for NOR and OHSS, respectively. Dose-response
curves were generated to visualize predicted outcomes with varying FSH starting doses. The models were implemented in a
user-friendly, research-oriented online prototype, individualized ovarian stimulation guide (InOvaSGuide).
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Conclusions: This study introduces an integrated framework for predicting NOR and early-onset moderate-to-severe OHSS
risk across different FSH doses. Future prospective evaluation is needed before clinical implementation.

(J Med Internet Res 2026;28:e78245) doi: 10.2196/78245
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Introduction

Over the past decade, individualized ovarian stimulation has
become a key strategy in in vitro fertilization (IVF). Determining
an appropriate starting dose of exogenous follicle-stimulating
hormone (FSH) is essential for balancing efficacy and safety.
Although earlier clinical practice emphasized maximizing oocyte
yield (the more, the better), current consensus favors achieving
a moderate ovarian response to optimize live birth rates while
minimizing patient discomfort and iatrogenic risks such as
ovarian hyperstimulation syndrome (OHSS). Therefore, accurate
prediction of ovarian response before stimulation is critical for
optimizing treatment outcomes [1-4].

Although biomarkers, including antral follicle count (AFC),
anti-Müllerian hormone (AMH) levels, and BMI, are well
associated with ovarian response, substantial interindividual
and intraindividual variability limits their predictive precision.
Tailoring FSH doses based solely on these indicators has not
consistently improved clinical outcomes [5,6], highlighting the
need for more comprehensive, data-driven approaches that
integrate a broader spectrum of clinical and biological factors.

Recent advances in artificial intelligence (AI) and machine
learning (ML) offer new opportunities for improving
decision-making in assisted reproduction, with applications
reported in semen analysis [7], blastocysts grading [8], and
trigger-day assessments [9]. Several ML models have also been
developed to predict the number of oocytes retrieved (NOR)
[10-13] or to classify ovarian responsiveness [10]; however,
most remain limited in scope. They typically rely on a narrow
set of baseline features, adopt single-model frameworks, and
focus predominantly on treatment efficacy such as oocyte yield,
with relatively limited attention to safety outcomes, including
OHSS. These limitations emphasize the need for predictive
frameworks that simultaneously incorporate both efficacy and
safety. Furthermore, despite multiple evidence-based algorithms
for FSH dosing, considerable variability in ovarian response
persists even among patients with comparable baseline
characteristics. A model that jointly predicts NOR and OHSS
risk across a range of FSH doses may provide useful predictive
information and support dose-specific decision-making, helping
clinicians consider the balance between efficacy and safety
when selecting individualized FSH doses.

In this study, ML models were developed to predict NOR and
early-onset moderate-to-severe OHSS using datasets from 2
IVF centers. Models with optimal performance were integrated
into a clinician-oriented decision support prototype, termed
individualized ovarian stimulation guide (“InOvaSGuide”),
complemented by a web-based calculator. For each patient, the

system provides individualized dose-response curves that display
predicted NOR and early-onset moderate-to-severe OHSS
probabilities across varying FSH starting doses, thus supporting
personalized ovarian stimulation.

Methods

Ethical Considerations
This prognostic study was designed as a retrospective analysis
and was approved by the Reproductive Medicine Ethics
Committee of Xiangya Hospital (2021010) and the Medicine
Ethics Committee of Shenzhen Luohu District People’s Hospital
(2024-LHQRMYY-KYLL-63). Informed consent was waived
because all data were retrospectively collected from routine
clinical records and anonymized before analysis. The study
adhered to the Declaration of Helsinki and followed the TRIPOD
(Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis; Table S1 in Multimedia
Appendix 1) reporting guideline [14]. All data analyses were
performed by an external team using anonymized data only,
ensuring full protection of participant privacy. No compensation
was provided to participants, as the study involved retrospective
and fully anonymized data.

Study Cohort
The inclusion criteria were (1) patients with the first ovarian
stimulation cycle conducted between January 1, 2018, and
September 30, 2022, at the Department of Reproductive
Medicine of Xiangya Hospital (internal dataset) and between
May 1, 2021, and December 30, 2023, at the Reproductive
Center of Shenzhen Luohu District People’s Hospital (external
dataset) and (2) patients aged 20 to 40 years. Exclusion criteria
were (1) patients with diminished ovarian reserve, diagnosed
by AMH ≤1.1 ng/mL or baseline AFC ≤7 [15]; (2) patients
using the microstimulation protocols for ovarian stimulation,
including progestin-primed ovarian stimulation protocol, natural
cycle protocol, etc; and (3) patients with more than 50%
missingness in key clinical variables. Notably, patients with
diminished ovarian reserve or those undergoing
microstimulation protocols were excluded because these groups
require highly individualized stimulation strategies, exhibit
markedly lower oocyte yield, and have a substantially reduced
risk of OHSS under comparable FSH exposure, which would
have created pronounced class imbalance and reduced model
robustness.

After screening, 6401 patients from Xiangya Hospital and 3805
from Shenzhen Luohu District People’s Hospital were included
in the internal and external datasets, respectively.

J Med Internet Res 2026 | vol. 28 | e78245 | p. 2https://www.jmir.org/2026/1/e78245
(page number not for citation purposes)

Chen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/78245
http://www.w3.org/Style/XSL
http://www.renderx.com/


Ovarian Stimulation Process and the Diagnosis of
Early-Onset Moderate-to-Severe OHSS
Before commencing the IVF and intracytoplasmic sperm
injection cycle, patients underwent a thorough physical
examination, including the assessment of basic physical
parameters (height, weight, and BMI), measurement of basal
hormone levels (FSH, luteinizing hormone [LH], estradiol,
testosterone, progesterone, prolactin, and AMH), biochemical
tests (fasting glucose, fasting insulin, lipid levels, and thyroid
hormones), and transvaginal ultrasonography for basal AFC.
Subsequently, experienced physicians personalized the ovarian
stimulation protocol and the starting dose of FSH based on
comprehensive clinical assessment. Throughout stimulation,
patients underwent monitoring via transvaginal ultrasonography
and serum hormone assessments, with gonadotropin dosage
adjustments made according to individual ovarian responses.
Human chorionic gonadotropin or gonadotropin-releasing
hormone agonist, alone or combined, triggered oocyte
maturation when 3 or more follicles measuring 17 mm or greater
were observed. Oocyte retrieval occurred 36 hours after
triggering, and the NOR was recorded. Eligible patients
underwent fresh embryo transfer with 1 or 2 embryos.

The study primarily focused on the occurrence of early-onset,
moderate-to-severe OHSS, which was diagnosed within 9 days
after triggering based on established guidelines [16], considering
both clinical and laboratory features. All relevant individual
and clinical variables during the process were obtained from
the clinical database for feature screening and selection.

Data Preprocessing and Feature Selection
All data analysis was performed by an external team using
anonymized data, ensuring full protection of participant privacy.
To elucidate correlations between predictive features and clinical
outcomes with an emphasis on medical interpretability, we
performed feature engineering on selected variables. This
process resulted in 2 additional variables: “FSH to LH ratio”
and “FSH starting dose to BMI ratio,” which improved
predictive accuracy while maintaining transparency and clinical
relevance. Furthermore, to address skewness and improve
distributional normality, a logarithmic transformation was
applied to AMH, triglycerides, and FSH/LH (Figures S1 and
S2 in Multimedia Appendix 1). Missing data were handled using
mean imputation, with feature-wise means computed exclusively
from the training set and subsequently applied to the test and
external validation sets, to prevent information leakage. The
overall proportion of missingness was low, and imputation did
not materially alter variable distributions.

To identify key variables, we applied feature importance–based
selection using the Boruta algorithm, performed exclusively
within the training dataset (Figures S3 and S4 in Multimedia
Appendix 1). This approach led to the selection of 17 variables
for the NOR prediction model and 19 variables for the OHSS
prediction model.

NOR Model Development
In the prediction of NOR, 17 features, including starting dose
of FSH to BMI ratio, BMI, log (AMH), and specifically the
ovarian stimulation protocol, were selected. The NOR divided

by the starting dose of FSH was used and logarithmically
transformed as the outcome variable with improved predictive
performance. For model training, the internal dataset was
divided into an 8:2 split, with 79.9% (5120/6401) of the data
randomly allocated to the training set and the remaining 20%
(1281/6401) assigned to the internal test set. All data from the
external dataset were held out entirely and used exclusively as
an external validation cohort, providing an independent
assessment of model generalizability across institutions. Eleven
ML algorithms, including a linear regression model, were trained
to predict the preprocessed NOR outcome. Hyperparameter
tuning was performed using 5-fold cross-validation within the
training set only, with all hyperparameters predefined and
summarized in Table S2 in Multimedia Appendix 1. Model

performance was assessed using 4 key metrics: R2, adjusted R2,
mean absolute error, and root mean square error.

OHSS Model Development
For OHSS prediction, the target variable was the occurrence of
early-onset moderate-to-severe OHSS. Given the low event rate
and resulting class imbalance, several commonly used
imbalances handling strategies (eg, oversampling,
undersampling, and ensemble-based resampling) were evaluated.
Cost-sensitive learning was ultimately adopted, assigning
differentiated penalties to misclassifications while preserving
all original clinical data distribution. To prevent overfitting,
model complexity was controlled by limiting the number of
parameters and applying regularization techniques, as
appropriate for each algorithm. Eleven ML algorithms were
implemented, with corresponding hyperparameters detailed in
Table S3 in Multimedia Appendix 1. As with the NOR model,
hyperparameter optimization was conducted exclusively within
the training set, and model performance was evaluated on both
the internal and the external datasets using the area under the
receiver operating characteristic curve (ROC-AUC), the
precision-recall area under the curve (PR-AUC), recall,
specificity, weighted F1-score, Cohen κ, and positive and
negative predictive values.

Shapley Additive Explanation Value
To further explore the significant features driving the model’s
predictions, we used the Shapley additive explanation (SHAP)
analysis to assess the importance of core features. SHAP serves
as an interpretative tool for ensemble tree models, offering a
detailed breakdown of the influence of input features on
predictions.

Creation of Dose-Response Curves
In this study, 2 distinct models were developed: a classification
model for predicting early-onset moderate-to-severe OHSS and
a regression model for forecasting NOR. Models of best
performance were incorporated into an integrated,
research-oriented computational system, complemented by a
web-based calculator. By inputting baseline patient
characteristics, the system generates predictions for NOR and
early-onset moderate-to-severe OHSS probability, presented as
a dose-response curve illustrating changes with increasing FSH
starting doses.
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Statistical Analysis
The baseline characteristics of patients between the internal
dataset and the external dataset were compared using the
chi-square test for categorical variables. For continuous
variables, we assessed normality using the Shapiro-Wilk W test.
Depending on the results, we used either the 2-tailed Student t
test or the Mann-Whitney U test for comparison. R Studio
(version 4.3.1; R Foundation for Statistical Computing), Python
(version 3.11.4; Python Software Foundation), the open-source
scikit-learn package (version 3.9.13; open-source
community-developed Python ML library), LightGBM (version
4.3.0; Microsoft Corporation), and XGBoost (version 2.0.0;
open-source project maintained by XGBoost contributors) were
used for model development and statistical analyses.

Results

The Integrated Ovarian Response Prediction System
To address the challenges of individualized ovarian stimulation,
we developed an integrated prediction system, “InOvaSGuide,”
designed to predict both the NOR and the probability of
early-onset moderate-to-severe OHSS before ovarian
stimulation. The system was built using datasets from 2 IVF
clinics and incorporates 2 distinct ML models for NOR and
OHSS predictions, respectively (Figure 1A). By analyzing
patients’ baseline characteristics, the system generates
dose-response curves that illustrate the predicted benefit (NOR)
and risk (early-onset moderate-to-severe OHSS) across varying
FSH starting doses (Figures 1B and C). Additionally, a
user-friendly web-based calculator was developed to enhance
accessibility and support exploratory use in clinically relevant
contexts (Figure S7 in Multimedia Appendix 1).
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Figure 1. Flowchart of the study: (A) the modeling process with internal and external datasets, (B) illustration of the primary goal of this study, and
(C) illustration of the clinical application of the individualized ovarian stimulation guide (InOvaSGuide) system. EHR: electronic health record; FSH:
follicle-stimulating hormone; NOR: number of oocytes retrieved; OHSS: ovarian hyperstimulation syndrome.

Patient Characteristics
A total of 6401 patients from the internal dataset and 3805
patients from the external dataset were included, with baseline
characteristics detailed in Table 1. The median age was 30.0
(IQR 27.0-33.0) years in the internal dataset and 32.0 (IQR
29.0-35.0) years in the external dataset. The
gonadotropin-releasing hormone antagonist protocol was the
most commonly used in both datasets (internal dataset:

2650/6401, 41.4%; external dataset: 1913/3805, 50.3%). The
median number of NOR was 13.0 (IQR 9.0-17.0) and 15.0 (IQR
10.0-20.0) for the internal and external dataset, respectively. In
the internal dataset, 55 (0.9%) patients were diagnosed with
moderate-to-severe OHSS, whereas 46 (1.2%) patients were
diagnosed in the external dataset. Further comparisons between
OHSS and non-OHSS cases in both datasets are detailed in
Tables S4 and S5 in Multimedia Appendix 1.
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Table 1. Baseline characteristics of the patients in the internal and external datasets.

P valueExternal dataset (n=3805)Internal dataset (n=6401)

<.00132.0 (29.0-35.0)30.0 (27.0-33.0)Age (y), median (IQR)

.0221.6 (19.8-23.6)21.7 (19.8-24.0)BMI (kg/m2), median (IQR)

<.0016.5 (5.5-7.5)6.2 (5.2-7.2)Baseline FSHa (mIU/mL), median (IQR)

.0065.2 (3.7-6.9)5.3 (3.8-7.1)Baseline luteinizing hormone (mIU/mL), median (IQR)

.203.8 (2.5-5.7)4.1 (2.6-5.4)Anti-Müllerian hormone (ng/mL), median (IQR)

<.0014.5 (4.3-4.8)5.3 (5.1-5.4)Fasting blood glucose (mmol/L), median (IQR)

<.00162.6 (62.6-62.6)11.0 (7.5-12.1)Fasting insulin (μU/mL), median (IQR)

<.00113.3 (13.3-13.3)2.5 (1.7-2.9)Homeostasis model assessment of insulin resistance, median (IQR)

<.00113.0 (10.0-19.0)20.0 (14.0-24.0)Baseline antral follicle count, median (IQR)

<.001Ovarian stimulation protocol, n (%)

0 (0)1211 (18.9)GnRHb agonist long protocol

1913 (50.3)2650 (41.4)GnRH antagonist protocol

1827 (48)2300 (35.9)Early-follicular phase long-acting GnRH agonist long protocol

65 (1.7)240 (3.8)Ultralong GnRH agonist protocol

<.001225.0 (150.0-300.0)150.0 (150.0-187.5)Starting dose of FSH (IU), median (IQR)

<.0012100.0 (1575.0-2750.0)1950.0 (1500.0-2437.5)Total dose of FSH (IU), median (IQR)

<.0012750.0 (1804.0-3961.0)3269.3 (2580.0-3269.3)Estradiol level on the day of triggering (pg/mL), median (IQR)

<.00115.0 (10.0-20.0)13.0 (9.0-17.0)Oocytes retrieved, median (IQR)

.11Degree of ovarian hyperstimulation syndrome, n (%)

3759 (98.8)6346 (99.1)Normal

46 (1.2)55 (0.9)Moderate to severe

aFSH: follicle-stimulating hormone.
bGnRH: gonadotropin-releasing hormone.

Model Performance
For NOR prediction, the gradient boosting regressor exhibited

the best performance, with an R2 value of 0.7978 in the internal
dataset and 0.7924 in the external dataset, indicating strong
explanatory power (Table 2). The model’s mean absolute error
was 0.0223 and the root mean square error was 0.0298,

collectively affirming the high accuracy and minimal bias. The
model’s predictions aligned closely with the actual outcomes,
demonstrating relatively high accuracy. The Quantile-Quantile
plot further confirmed that the residuals followed a normal
distribution, as they closely aligned with the diagonal line
(Figures 2A-2D).
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Table 2. Performance metrics of the number of oocytes retrieved prediction models in internal and external datasets.

External datasetInternal datasetMachine learning models

Root mean
square error

Mean absolute
error

Adjusted R2R 2Root mean
square error

Mean abso-
lute error

Adjusted R2R 2

0.03270.02430.79150.79240.02980.02230.79510.7978Gradient boosting regres-
sor

0.03340.02430.78170.78260.03030.02280.78800.7908Light gradient boosting
machine regressor

0.03280.02360.78980.79070.03050.02280.78610.7889Extreme gradient boost-
ing regressor

0.03190.02290.80120.80200.03080.02290.78200.7849Random forest regressor

0.05900.04700.31980.32280.03340.02530.74290.7463Ridge

0.05900.04690.32040.32350.03340.02530.74280.7463Linear regression

0.04470.03180.60900.61080.04470.03300.53910.5452Decision tree regressor

0.04900.03660.53000.53210.04640.03900.50410.5107Support vector regression

0.07780.0648−0.1826−0.17730.06640.0519−0.0158−0.0023Lasso

0.07780.0648−0.1826−0.17730.06640.0519−0.0158−0.0023Elastic net

1.34530.6948−352.9112−351.32960.08020.0523−0.4805−0.4608Multilayer perceptron re-
gressor
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Figure 2. Model performance in predicting the number of oocytes retrieved (NOR; A–D) and ovarian hyperstimulation syndrome (OHSS; E and F) in
the internal and external datasets. ADA: adaptive boost classifier; BNB: Bernoulli Naive Bayes; CatBoost: categorical boosting classifier; DT: decision
tree classifier; ET: extra trees classifier; GBC: gradient boosting classifier; GNB: Gaussian Naive Bayes; GPC: Gaussian process classifier; HGBC:
histogram-based gradient boosting classifier; LDA: linear discriminant analysis; LGB: light gradient boosting machine classifier; LR: logistic regression;
MLP: multilayer perceptron classifier; QDA: quadratic discriminant analysis; QQ: quantile-quantile; RF: random forest; ROC: receiver operating
characteristic; XGB: extreme gradient boosting classifier.

For early-onset moderate-to-severe OHSS prediction, the
LightGBM model consistently outperformed other algorithms,
achieving an ROC-AUC of 0.7588 in the internal dataset and
0.7287 in the external dataset (Figures 2E and 2F). While recall,
specificity, weighted F1-score, and Cohen κ score indicated

reasonable discriminative performance, precision-related
metrics, including positive predictive value, negative predictive
value, and PR-AUC, remained modest across all classifiers.
The results, along with the confusion matrices, are summarized
in Table 3 and Figures S5 and S6 in Multimedia Appendix 1.
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Table 3. Performance metrics of early-onset moderate-to-severe ovarian hyperstimulation syndrome prediction models in internal and external datasets.

External datasetInternal datasetClassifier

Preci-
sion-
recall-
AUC

NPVPPVκWeight-
ed
F1-score

Speci-
ficity

Re-
call

ROC-
AUC

Preci-
sion-
recall

AUCd

NPVcPPVbκWeight-
ed
F1-score

Speci-
ficity

Re-
call

ROC-

AUCa

0.02270.99820.44640.60990.45230.98590.93480.72870.01761.00000.34090.50440.34660.98331.00000.7588LGBMClassifiere

0.01960.99340.59560.73620.59660.95600.67390.65740.01621.00000.01970.03840.02810.56901.00000.7313LinearDiscrimi-
nantAnalysis

0.02060.99400.39960.56350.40450.98520.80430.65270.01731.00000.17240.29180.17950.95841.00000.7059CatBoostf

0.02360.98930.19870.32750.20710.99960.89130.63220.01680.99710.26690.41770.27240.97840.90910.6966MLPClassifierg

0.01570.99470.88370.92270.87570.95530.21740.62350.01611.00000.18190.30530.18890.96101.00000.6930GradientBoosting-
Classifier

0.01890.99330.42170.58540.42630.99440.80430.62210.01520.99550.51810.67590.51990.99410.72730.6892XGBClassifierh

0.02760.98830.34980.51130.35480.99990.76090.61860.01351.00000.26140.41110.26780.97551.00000.6808GaussianNBi

0.01820.99190.00000.00030.01210.98271.00000.60190.01381.00000.01650.03240.02500.48371.00000.6791LogisticRegres-
sion

0.01560.99440.19980.32900.20840.98650.91300.59450.01230.99430.40940.57520.41220.99090.72730.6178RandomForest

0.02670.98840.00000.00030.01211.00001.00000.58990.01080.99550.52600.68260.52770.99430.72730.6142QuadraticDiscrim-
inantAnalysis

0.01200.98990.57140.71620.57080.99520.52170.52800.01020.99490.60940.74960.60970.99650.63640.5937ExtraTreesClassi-
fier

aROC-AUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dAUC: area under the curve.
eLGBMClassifier: light gradient boosting machine classifier.
fCatBoost: categorical boosting classifier.
gMLPClassifier: multilayer perceptron classifier.
hXGBClassifier: extreme gradient boosting classifier.
iNB: Naive Bayes.

Model Interpretation
SHAP values were used to assess feature importance for both
models, as shown in Figure 3. For NOR prediction, the features
with the highest mean absolute SHAP values were FSH starting

dose to BMI ratio, BMI, log (AMH), baseline AFC, and baseline
FSH, indicating their significant contribution to the model. For
early-onset moderate-to-severe OHSS prediction, the most
important features identified were baseline AFC, followed by
baseline FSH, BMI, fasting blood glucose, and log (AMH).
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Figure 3. Shapley additive explanation (SHAP) values of the prediction models for (A) number of oocytes retrieved (NOR) and (B) ovarian
hyperstimulation syndrome (OHSS). FSH: follicle-stimulating hormone; BMI, body mass index; AMH: anti-Müllerian hormone; AFC: antral follicle
count; LH: luteinizing hormone; HOMA-IR: homeostatic model assessment of insulin resistance; HDL: high-density lipoprotein; E2: estradiol; INS:
fasting insulin; TG: triglycerides; TC: total cholesterol; LDL: low-density lipoprotein; GLU: fasting glucose; T: testosterone;.

Integrated Dose-Response Curves and Web Calculator
To facilitate individualized ovarian stimulation, we further
integrated the prediction models for both NOR and early-onset
moderate-to-severe OHSS into dose-response curves. Examples
of patients with relatively high and low predicted risks of OHSS
are presented in Figures 4A and 4B, respectively. As shown,
increasing the starting dose of FSH leads to variable increases

in both early-onset moderate-to-severe OHSS probability and
predicted NOR for different patients. However, the probability
of OHSS occurrence varies among individuals. On the basis of
these personalized dose-response predictions, clinicians can
determine a suitable starting dose of FSH to achieve an optimal
NOR while maintaining a relatively low risk of early-onset
moderate-to-severe OHSS.
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Figure 4. Model application and representative patient examples with predicted relatively high (A) and low (B) risks of ovarian hyperstimulation
syndrome (OHSS). FSH: follicle-stimulating hormone; NOR: number of oocytes retrieved.

Additionally, we developed a web-based calculator as a
research-oriented prototype to enhance accessibility and
facilitate exploratory use of the proposed models. The intuitive
interface allows users to input relevant data and receive
immediate predictions from the models (Figure S7 in
Multimedia Appendix 1).

Discussion

Principal Findings
In this study, we developed an integrated ML-based system,
“InOvaSGuide,” capable of simultaneously predicting NOR
and the associated risk of early-onset moderate-to-severe OHSS
across a wide range of FSH starting doses. By generating
individualized dose-response curves, the model provides a
continuous view of expected oocyte yield and corresponding
safety profiles, providing clinicians with a structured visual
reference to support individualized FSH dose selection. A
web-based calculator was further implemented as a
research-oriented prototype to improve accessibility and
facilitate exploratory use of the models in clinically relevant
scenarios.

Oocyte yield remains a key determinant of both efficacy and
safety in assisted reproduction. Retrieval of fewer than 4 oocytes
has been associated with poor reproductive prognosis [17],
whereas obtaining more than 15 oocytes increase the likelihood
of OHSS and may slightly compromise live birth outcomes
[18,19]. Accordingly, a target range of 5 to 15 oocytes is
generally recommended to balance benefit and risk [19]. The
dose-response curve framework aligns conceptually with these
clinical principles, as it illustrates how predicted NOR changes
with increasing FSH doses, thereby supporting informed dosing
discussions rather than prescriptive decision-making.

Existing ML-based NOR models generally focus either on
approximating actual or optimal oocyte yield [11-13,20] or on
producing individualized curves based on a limited number of

clinical features [10]. In contrast, our approach used feature
importance scores from automated classifiers for selection and
compared 11 regression algorithms across 2 independent
datasets. This allowed the construction of robust dose-response
curves that illustrate how predicted NOR varies with incremental
FSH doses, providing additional insight beyond traditional
single-point estimates by visualizing predictions across a
continuum of FSH doses.

We further developed ML models to predict OHSS, addressing
a gap in existing clinical tools that predominantly rely on logistic
regression [21,22] or receiver operating characteristic–based
analyses [23,24]. Although contemporary strategies, including
gonadotropin-releasing hormone antagonist protocols, dual
triggering, and “freeze-all” approaches, have substantially
reduced the incidence of early-onset OHSS, it remains a
persistent concern even among presumed normal responders
and has not been fully eliminated from clinical practice [25-27].
Our models demonstrated acceptable and consistent
discriminatory ability across both internal and external cohorts,
despite the limited number of OHSS events.

Importantly, the low prevalence of early-onset
moderate-to-severe OHSS introduces substantial and
unavoidable class imbalance, which has direct implications for
model performance metrics. In particular, precision is
structurally constrained in low-prevalence settings; therefore,
PR-AUC values should be interpreted with caution. Although
ROC-AUC indicated reasonable discrimination, PR-AUC is
highly sensitive to outcome prevalence. When event rates fall
below 1%, even well-calibrated models will inherently yield
modest precision. In addition, our modeling strategy deliberately
prioritized sensitivity to enhance clinical safety, an approach
that increases false-positive predictions and further reduces
precision and PR-AUC but minimizes the risk of missing true
high-risk cases.

Within this context, the OHSS model should be viewed
primarily as a screening and risk-stratification aid rather than a
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diagnostic or decision-making tool. Its intended role is to flag
patients with potentially elevated risk who may warrant closer
monitoring or consideration of preventive strategies, rather than
to definitively predict OHSS occurrence or guide autonomous
clinical actions.

Feature importance analyses largely reflected established
biological associations. For NOR, the FSH starting dose to BMI
ratio, BMI, and log (AMH) emerged as the most influential
predictors. While most features were consistent with clinical
practice, the contribution of metabolic markers, such as glucose,
lipids, and metabolic indicators, warrants further investigation.
For early-onset moderate-to-severe OHSS, AFC, baseline FSH,
BMI, and log (AMH) emerged as dominant predictors, aligning
with known determinants of ovarian reserve and ovarian
sensitivity [23,28]. Associations involving testosterone or
glucose were less pronounced, highlighting the multifactorial
nature of OHSS risk, particularly in women with polycystic
ovary syndrome [29]. Overall, these findings illustrate the
capability of ML approaches to integrate diverse clinical
variables and improve predictive performance.

A key practical advantage of this study is the integration of
NOR and early-onset moderate-to-severe OHSS predictions
into a unified, visually intuitive research-oriented system.
InOvaSGuide enables clinicians to assess the potential trade-offs
between stimulation efficacy and safety across a continuum of
FSH doses. The web-based interface supports exploratory
analysis and clinician-patient discussion; however, the system
does not generate prescriptive dosing recommendations and is
not intended for autonomous clinical use. Importantly,
prospective validation is essential before any consideration of
clinical deployment.

Beyond model performance, the development and potential
deployment of AI-based, clinician-in-the-loop decision support
tools in reproductive medicine entail careful ethical, legal, and
implementation considerations [30,31]. Given the sensitivity
of reproductive health data, rigorous safeguards for privacy
protection and informed consent are essential [32]. Algorithmic
transparency is equally important to support clinician
interpretation and reduce risks of automation bias [33], while
potential bias across patient subgroups remains an important
consideration for future validation. In addition, AI-driven
clinical tools may fall under medical software regulation,
requiring evidence of safety and clinical validity before clinical

implementation. Finally, effective integration into clinical
practice will depend on usability, compatibility with established
workflows, and clearly assigned clinical accountability [30].
Addressing these factors will be necessary before the system
can be responsibly adopted in real-world settings.

Limitations
Our study had several limitations. First, it focused on early-onset
moderate-to-severe OHSS, excluding mild cases that may
self-resolve and late-onset OHSS more commonly associated
with embryo transfer. Patients with a predicted poor prognosis
were also excluded under the assumption that they are less likely
to develop OHSS. These exclusions introduced a structural
selection bias that narrowed the population represented and
limited the generalizability of the model in broader clinical
settings. Second, the relatively small number of OHSS cases
limited the model’s ability to fully characterize patients who
are affected. This scarcity, together with the substantial class
imbalance, also constrained the effectiveness of
resampling-based strategies. Although multiple resampling
methods were evaluated, only cost-sensitive learning may allow
a more reliable assessment of alternative methods. Third, the
retrospective nature of the study restricted the availability of
certain relevant factors, such as previous OHSS history and
genetic susceptibility, and may also introduce selection bias
and unmeasured confounding that cannot be fully controlled.
Finally, although the system provides individualized
dose-response curves for clinical reference, it does not generate
a prescriptive starting dose. Moreover, the model has not yet
undergone prospective evaluation, which limits its current
clinical applicability. A prospective validation study is planned
as a necessary next step to assess real-world performance. Future
large-scale, multicenter validation in broader patient populations
will be essential for improving model stability and
generalizability.

Conclusions
We developed and externally validated InOvaSGuide, a ML
system that simultaneously predicts NOR and early-onset
moderate-to-severe OHSS risk across a continuum of FSH doses.
By linking efficacy and safety within a single dose-response
framework, the tool highlights the broader potential of
model-informed dosing to standardize ovarian stimulation and
enhance patient safety. Prospective trials are needed to establish
real-world utility.
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Abbreviations
AFC: antral follicle count
AI: artificial intelligence
AMH: anti-Müllerian hormone
ROC-AUC: area under the receiver operating characteristic curve
FSH: follicle-stimulating hormone
InOvaSGuide: individualized ovarian stimulation guide
IVF: in vitro fertilization
LH: luteinizing hormone
NOR: number of oocytes retrieved
OHSS: ovarian hyperstimulation syndrome
PR-AUC: precision-recall area under the curve
SHAP: Shapley additive explanation
TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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