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Abstract

Background: The rapid proliferation of electronic devices has increased screen time, raising concerns about its potential health
effects, including chronic pain. However, existing studies have limitations in scope and causal inference, with inconsistent findings
and a lack of exploration of potential biological mechanisms.

Objective: The objective of our study was to investigate the causal associations and potential shared biological mechanisms
between different forms of screen time and various chronic pain phenotypes.

Methods: Leveraging genome-wide association study data, we investigated the association and potential shared biological
mechanisms between screen time (time spent watching television, time spent using computer, and length of mobile phone use)
and chronic pain phenotypes (including multisite chronic pain [MCP], back, knee, neck or shoulder, hip pain, and headaches).
Two-sample Mendelian randomization (MR), reverse MR and multivariable Mendelian randomization (MVMR) analysis were
performed to examine associations between screen time and chronic pain. Summary data–based Mendelian randomization (SMR),
transcriptome-wide association study (TWAS), and colocalization analysis were used to identify the shared genes and potential
biological mechanism.

Results: MR analysis revealed that time spent watching television and length of mobile phone use were positively associated
with several types of chronic pain, while time spent using computer showed a negative association. Specifically, time spent

watching television was positively associated with the risk of MCP (P=1.05×10–31; odds ratio [OR] 1.61, 95% CI 1.49-1.74),

back pain (P=2.41×10–8; OR 1.14, 95% CI 1.09-1.19), knee pain (P=7.10×10–6; OR 1.09, 95% CI 1.05-1.13), neck or shoulder

pain, and hip pain. Length of mobile phone use was positively associated with the risk of MCP (P=2.15×10–5; OR 1.22, 95% CI
1.11-1.34), headaches, and neck or shoulder pain. However, time spent using computer was negatively associated with the risk
of MCP (P<.001; OR 0.83, 95% CI 0.75-0.92), back pain, and knee pain. The reverse MR results showed that MCP was positively

associated with time spent watching television (P=4.8×10–7; OR 1.27, 95% CI 1.16-1.4) and length of mobile phone use

(P=3.38×10–5; OR 1.29, 95% CI 1.14-1.45), while the association with time spent using computer (P=.61; OR 0.97, 95% CI
0.87-1.09) was not statistically significant. The MVMR results failed to meet the criterion that all conditional F-statistics exceed
10. Integrative 3 analysis methods identified overlapping genes, with CEP170 emerging as a key gene consistently supported by
SMR, TWAS, and colocalization analysis in the relationship between time spent using computer and MCP.
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Conclusions: Our findings demonstrate an association between screen time and various aspects of chronic pain. The CEP170
gene might contribute to the shared biological mechanism between time spent using computer and MCP risk. However, due to
the absence of robust MVMR results, the potential influence of confounding factors cannot be ruled out.

(J Med Internet Res 2026;28:e78233) doi: 10.2196/78233
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Introduction

With the widespread popularity of electronic devices, the screen
time spent by people on phones, computers, and televisions has
increased significantly every day. Recently, an increasing
number of studies have shown that excessive screen time may
bring a series of health risks [1,2]. A study on children and
adolescents has shown that long-term screen time exposure is
closely related to obesity, restricted cognitive and language
development, decreased academic performance, and altered
sleep patterns [3,4]. Studies on adults have found that excessive
screen time is associated with reduced physical activity and
increased BMI [5]. Moreover, studies have found that the
incidence of headaches increases with increased screen time,
with similar trends observed in both adolescents and adults
[6-9]. Research has also shown that prolonged computer use
can contribute to pain in several areas, such as the neck,
shoulders, and back [10].

While some studies have explored the relationship between
screen time and chronic pain, the current evidence is still limited.
An important limitation is that existing studies have
shortcomings in assessment scope and underlying relationship
to fully reveal the association between the two. We found that
most studies have focused on the use of a single type of screen
time. One study only pointed out that prolonged computer use
can cause pain in multiple areas [10], but ignored the effects of
different types of screen time. Moreover, most studies on screen
time and chronic pain tend to focus on specific body regions,
such as lower back pain or headaches [11,12], while overlooking
the impact of screen time on multisite chronic pain (MCP) and
the combined effects of different types of chronic pain. In
addition, the results of existing studies are inconsistent, with
some studies finding an association between screen time and
chronic pain [13], while others fail to observe a significant
association [14]. This inconsistency may be caused by
confounding bias or a weaker ability to infer causality.

Another important limitation in the current research concerns
the mechanisms associated with screen time and chronic pain.
Some studies have suggested that the brightness or light wave
frequency of screens may trigger migraine attacks, while
prolonged exposure to screens may lower the threshold for
migraines [15-17], making them more likely to be triggered by
other factors. However, this explanation lacks a detailed
understanding of the biological mechanisms involved. To date,
the underlying biological mechanisms linking screen time and
chronic pain have remained largely unexplored, highlighting
the need for future research to address this issue and explore

whether different devices cause chronic pain through common
or different mechanisms.

The genome-wide association studies (GWASs) of MCP [18],
the development of genetic epidemiology, and multiomics
integration analysis methods provide new opportunities to
address these limitations [19,20]. Two-sample Mendelian
randomization (MR) analysis can be used to examine the
potential relationship between screen time and chronic pain.
MR analysis uses genetic variants significantly associated with
exposure as instrumental variables (IVs) to infer causality,
thereby minimizing confusion and reverse causality [21]. In
addition, summary data–based Mendelian randomization (SMR)
and transcriptome-wide association study (TWAS) analysis can
help identify overlapping genes between the two. In addition,
colocalization analysis can assess whether these associations
share causal genetic variation, thereby strengthening the
evidence for shared biological mechanisms. By using multiple
genetic epidemiological methods, we can explore the biological
relationship between screen time and chronic pain.

In this study, we aimed to address these limitations. First, we
examined whether screen time was associated with MCP and
chronic pain in 5 other body parts. Next, we identified
overlapping genes through genetic epidemiological methods
approach and explored their potentially shared biological
mechanism, aiming to provide new insights into the complexity
of chronic pain.

Methods

Study Overview
As shown in Figure 1, this study follows a 3-stage approach. In
Phase 1, we performed a 2-sample MR analysis and reverse MR
to investigate the phenotypic association between screen time
and chronic pain. Considering the mutual influence among
multiple exposures, we conducted a multivariate Mendelian
randomization (MVMR) analysis. In Phase 2, we first performed
SMR analysis combined with expression Quantitative Trait
Locus (eQTL) summary datasets to explore associations between
gene expression and phenotypic traits. We then performed
TWAS analysis to identify gene expression associated with
screen time and chronic pain, and assessed whether the same
genetic variants were shared through colocalization analysis,
providing stronger genetic evidence. In Phase 3, we further
integrated the results of SMR, TWAS, and colocalization
analysis. We aimed to identify genes that were consistently
supported across these methods. The overlapping genes provide
more robust evidence of shared biological mechanisms in the
association between screen time and chronic pain.
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Figure 1. Flowchart of the overall study design. eQTL: expression Quantitative Trait Locus; FDR: false discovery rate; GTEx: Genotype-Tissue
Expression; GWAS: genome-wide association study; IV: instrumental variable; IVW: inverse variance weighted; LD: linkage disequilibrium; MCP:
multisite chronic pain; MR: Mendelian randomization; MVMR: multivariate Mendelian randomization; OR: odds ratio; SMR: summary data–based
Mendelian randomization analysis; SNP: single-nucleotide polymorphism; TWAS: transcriptome-wide association study; TV: television.

Data Sources for Exposures, Outcomes, and eQTL
Summary Data

Exposures
The exposure phenotype in this study was screen time, which
included time spent watching television, time spent using
computer, and length of mobile phone use. These phenotypes
were derived from the UK Biobank touchscreen questionnaire.
The question for time spent using computer explicitly stated,
“Do not include using a computer at work,” whereas the
questions for television watching and mobile phone use captured
overall daily use. We provided detailed data sources about

screen time in Multimedia Appendix 1. To address the issue of
weak instrument bias, a genome-wide significance threshold of

P<5×10–8 was used as the default criterion for identifying
single-nucleotide polymorphisms (SNPs); simultaneously, to
optimize the results and eliminate SNPs in strong linkage
disequilibrium (LD), an LD clustering method was adopted,

with thresholds of r2=0.001 and kilobase, kb=10,000 to ensure

accurate and precise clustering. r2 is the squared correlation
coefficient between 2 SNPs’ allele counts, used to quantify LD.
In the 2-sample MR analysis, we selected 112, 82, and 32
independently significant SNPs located on the autosomes as
IVs of time spent watching television, time spent using
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computer, and length of mobile phone use, respectively. Details
of these SNPs are presented in Multimedia Appendices 2-4.

Outcomes
The outcomes included 6 chronic pain phenotypes, namely
MCP, back pain for ≥3 months, knee pain for ≥3 months, neck
or shoulder pain for ≥3 months, headaches for ≥3 months, and
hip pain for ≥3 months. Among them, MCP is by far the largest
GWAS summary statistic for all chronic pain phenotypes,
involving 387,649 people from the UK Biobank [18]. Data for
the remaining 5 types of chronic pain came from the Integrative
Epidemiology Unit (IEU) OpenGWAS, which covered a total
of about 9,851,867 SNPs in both male and female individuals
[22]. Multimedia Appendix 1 presents the sources of these
outcome data. The participants were all European populations
to reduce bias caused by population heterogeneity. In reverse
MR analysis, Multimedia Appendix 5 shows that 31
independently significant SNPs located on the autosomes as
IVs of MCP.

eQTL Data
The Genotype-Tissue Expression (GTEx) project was
established to characterize the genetic influence on
transcriptomic variation across human tissues and to link
regulatory mechanisms to traits and diseases. GTEx v8 provides
15,201 RNA-sequencing samples from 49 tissues [23], collected
from 838 postmortem donors. The dataset comprehensively
characterizes cis- and trans-eQTLs, revealing regulatory
associations for nearly all genes and offering insights into allele
heterogeneity, pleiotropy, and tissue-specific genetic effects.
For SMR analysis, we used 8 eQTL summary data from GTEx
(v8): Adipose Subcutaneous, Adipose Visceral Omentum, Brain
Cerebellum, Brain Cortex, Brain Spinal cord cervical c-1,
Muscle Skeletal, Nerve Tibial, and Whole Blood [23]. This is
a set of cis-eQTL summary data for 8 human tissues from GTEx
v8.

For colocalization analysis, we additionally used eQTL data
from the eQTLGen Consortium [24]. eQTLGen provides a
larger scale of eQTL data than GTEx, which can improve the
confidence of colocalization analysis.

Statistical Analysis

2-Sample MR Analysis
2-sample MR analysis was conducted for exposure and outcome.

The strength of IVs was assessed using the F-statistics: F = R2×

(N – 2)/(1 – R2), where R2 represents the proportion of variation
in the exposure variable explained by IVs [21]. The calculation

of R2 involved multiplying beta (the estimated genetic
association of each SNP with the trait) by minor allele frequency

(MAF), using the formula 2 × MAF (1 – MAF) β2. An F-statistic
>10 indicates a robust instrument [21]. IVs with F-statistics
below 10 were considered weak instruments and excluded from
analysis. We applied inverse variance weighted (IVW)
regression as the primary method to estimate the effects of
screen time on chronic pain [25]. In order to assess the
robustness of the results, we also performed different sensitivity
analyses. First, we complement the IVW MR with the weighted
median, MR-Egger methods. The weighted median method can

robustly estimate the causal relationship even when less than
50% of the genetic variants are invalid IVs [26]. The MR-Egger
method includes an intercept term to account for directional
pleiotropy [27]. Pleiotropy means that SNPs not only affect
outcomes through exposures but also directly influence
outcomes through other independent pathways. However, the
slope of the MR-Egger regression provides valid MR estimates
in the presence of horizontal pleiotropy [27,28]. It should be
noted that when the number of SNPs is small, the statistical
ability of MR-Egger is limited, making its results less reliable
[27]. Second, we used Mendelian Randomization Pleiotropy
Residual Sum and Outlier (MR-PRESSO) to detect the presence
of outliers and to reassess the effect after removing the detected
outlier SNPs [29]. Finally, we performed a leave-one-out
analysis to reevaluate the IVW effect by excluding SNPs one
by one [30]. To investigate potential bias due to sample overlap
between screen time and chronic pain, we further conducted
the MRlap method [31]. We examined the Pdifference of MRlap
results, which is the P value used to test for differences between
the observed (uncorrected) and corrected effects. We used the
Bonferroni correction to account for multiple tests in the IVW
result. An association was considered significant if the P value

in the primary analysis was below 2.778×10–3 (.05/18) and the
direction of effect estimates remained consistent across all
methods. Correspondingly, suggestive evidence was considered
if the P value for the IVW result was between .003 and .05.

To ensure methodological rigor and robustness, we also
conducted a reverse MR, which is similar to the approach of
2-sample MR.

MVMR Analysis
To clarify the independent effects of each type of screen time
on chronic pain, we performed MVMR analysis. The MVMR
takes into account the combined effects of multiple related
exposures, thereby adjusting for potential confounders and
providing a more precise estimate of the independent
contribution of each exposure. In the MVMR analysis, 3
phenotypes related to screen time exposures (time spent
watching television, time spent using computer, and length of
mobile phone use) were used as common exposure variables,

and SNPs with P<5×10–8 genomic significance were used as
IVs. At the same time, SNPs in strong LD with exposure

variables were removed through LD clustering (r2=0.001,
kb=10,000). Next, we merged the SNPs of 3 exposures and
deleted the duplicate SNPs. To ensure validity, only SNPs
present in the result data were retained and any SNPs that did
not match were excluded. The IVW method was used for main
effect estimation. We evaluated the strength of the IVs using
the conditional F-statistics, which measure the strength of each
exposure conditional on the others in the model. If the
conditional F-statistics for all exposures exceeded the
rule-of-thumb value of 10, the IVs were considered adequately
strong for the purposes of MVMR [32].

SMR Analysis
We performed SMR analysis to explore whether gene expression
is causally linked to both screen time and chronic pain [20],
thereby identifying potential functional genes involved in the
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relationship. SMR integrates GWAS and eQTL data, enabling
the investigation of associations between gene expression and
phenotypic traits. In the SMR analysis, exposures and outcomes
were analyzed separately with each eQTL summary data to
assess whether gene expression is linked to both screen time
and chronic pain. During the analysis, SNPs significantly
associated with gene expression in cis-eQTL summary data
were used as IVs, as they serve as genetic proxies for gene
expression levels. These SNPs were selected based on their
genome-wide significant association with gene expression in
eQTL summary data. False discovery rate (FDR) correction
was applied to control the FDR of multiple tests. Additionally,
to verify whether the observed associations could be caused by
a single causal variable, we evaluated the association results
using the heterogeneity in dependent instruments (HEIDI) test
implemented in the SMR tool, retaining only probes with PHEIDI

values indicating low heterogeneity [33]. Ultimately, the SMR
analysis results for screen time and chronic pain were integrated
to identify overlapping genes and further explore their potential
roles in the association between screen time and chronic pain.

TWAS Analysis
We conducted TWAS to identify genes whose expression may
mediate the relationship between screen time and chronic pain.
GWAS datasets were obtained from IEU OpenGWAS, and
using the FUSION tool developed by Gusev et al [34], we
performed single-trait TWAS using the 3 cross-tissue weights
for cross-tissue features generated through sparse canonical
correlation analysis (sCCA) on GTEx v8 gene expression
(including sCCA1, sCCA2, and sCCA3) to identify regulatory
genes that may be involved in chronic pain pathways [19]. To
control for type I error rates, Bonferroni correction was applied
to each exposure and result to interpret multiple tests, setting
the significance level for each trait or tissue to P=.05/number
of genes (adjusted for the number of genes on each chromosome
in the 3 GTEx v8 weights). We then extracted significant GWAS
of exposure and outcome, performed joint and conditional tests
on loci with multiple related features to assess whether loci
contain signals independent of expression. Finally, we sought
overlapping genes between exposures and outcomes in joint
tests.

Colocalization Analysis
To further verify the reliability of the SMR analysis results and
determine whether screen time and pain are driven by the same
genetic variation, we used colocalization analysis. First, we
determined all independent signals of GWAS across the genome
through LD independence analysis. Genes within a 1000-kb
window of each independent locus were subjected to
colocalization analysis [35]. Within these windows, we
combined the corresponding genes with eQTL data, which is
cis-eQTL data in SMR format, and then conducted
colocalization analysis. We performed colocalization analysis

using the default priors of P1=1×10–4, P2=1×10–4, and

P12=1×10–5 [36]. Colocalization analysis assesses whether 2
traits may be driven by the same causal variant by estimating
the joint posterior probability (PP) of GWAS and eQTL signals
at the same locus. This method assumes a maximum of one
causal variant per trait in a gene region and uses approximate

Bayesian factor calculations to derive the PP for 4 mutually
exclusive hypotheses (H0-H4), representing all possible
association configurations between 2 traits: (1) H0: neither trait
has a genetic association in the region; (2) H1 or H2: only trait
1 or trait 2 has a genetic association in the region; (3) H3: both
traits are associated, but with different causal variants; and (4)
H4: both traits are associated and share a single causal variant.
The PP of each configuration is denoted as PPH0, PPH1, PPH2,
PPH3, and PPH4, respectively [37]. We used PPH4 to
characterize the possibility of colocalization. The probability
value of .5< PPHb <.8 suggests a moderate support for
colocalization, whereas PPH4≥.8 indicates a strong support for
colocalization, indicating that the 2 signals share a causal variant
at this locus [38]. Using eQTL data, colocalization analysis was
conducted separately for exposure and outcome traits, and genes
showing evidence of colocalization were subsequently
overlapped at the gene level.

Finally, to ensure the robustness of the analysis results, we
further screened and consolidated the results of 3 analysis
methods. We compared the colocalized genes with the
overlapping genes identified in SMR and TWAS analysis to
enhance the understanding of the potential biological
mechanisms of these genes in the relationship between screen
time and chronic pain.

Ethical Considerations
All data used in this study were deidentified publicly available
data; therefore, no ethical approval was required for this study.
All original studies received ethical approval from their
respective institutional review boards, and all participants
provided informed consent. The data used were anonymized to
ensure privacy and confidentiality. No compensation was
provided to participants. Additionally, this study does not
include any identifiable images or figures.

Results

The Putative Association Between Screen Time and
Chronic Pain
The F-statistics of IVs are all greater than 10 in Multimedia
Appendices 2-4, indicating that the IVs are relatively strong.
We used a 2-sample MR method to make causal inference,
primarily relying on the IVW method. Figure 2 shows that the
2-sample MR results of screen time and chronic pain based on
the IVW. The box in Figure 2 indicates the point estimate of
the causal effect, and the error bars represent the 95% CI.
Multimedia Appendix 6 showed that time spent watching
television and length of mobile phone use were positively
associated with chronic pain, while time spent using computer
was negatively associated. Our IVW results suggested
significant positive associations of time spent watching

television with MCP (P=1.05×10–31; odds ratio [OR] 1.61, 95%

CI 1.49-1.74), back pain (P=2.41×10–8; OR 1.14, 95% CI

1.09-1.19), knee pain (P=7.10×10–6; OR 1.09, 95% CI

1.05-1.13), and neck or shoulder pain (P=1.18×10–5; OR 1.12,
95% CI 1.06-1.17). The association between time spent watching
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television and hip pain (P=.03; OR 1.06, 95% CI 1-1.11) reached
nominal significance. It is notable that even though there is
horizontal pleiotropy between time spent watching television
and back pain (PMR-Egger intercept=.02), it is significant after

MR-Egger correction (PMR-Egger slope=4.20×10–4). Similarly, our
IVW results indicated significant positive associations of length

of mobile phone use with MCP (P=2.15×10–5; OR 1.22, 95%
CI 1.11-1.34), headaches (P=.003; OR 1.08, 95% CI 1.03-1.13),

and neck or shoulder pain (P＜.001; OR 1.08, 95% CI
1.03-1.14). However, IVW results suggested significant negative
associations of time spent using computer with MCP (P＜.001;

OR 0.83, 95% CI 0.75-0.92), and knee pain (P=3.20×10–5; OR
0.92, 95% CI 0.88-0.96). The association between time spent
using computer and back pain (P=.01; OR 0.94, 95% CI
0.89-0.98) reached nominal significance. For the significant
associations, concordant estimates were basically suggested by
weighted median, MR-Egger, MR-PRESSO, and MRlap.

Figure 2. Mendelian randomization analysis of screen time and chronic pain based on the inverse variance weighted. MCP: multisite chronic pain;
OR: odds ratio; TV: television.

MRlap-corrected results in Multimedia Appendix 6 showed that
time spent watching television significantly increased the risk

of MCP (Pcorrected=3.57×10–30; ORcorrected=1.53, 95% CI

1.43-1.65), back pain (Pcorrected=8.46×10–6; ORcorrected=1.27,

95% CI 1.14-1.41), knee pain (Pcorrected=1.14×10–4;
ORcorrected=1.22, 95% CI 1.11-1.36), and neck or shoulder pain
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(Pcorrected=6.99×10–4; ORcorrected=1.19, 95% CI 1.08-1.31).
Length of mobile phone use significantly increased the risk of

MCP (Pcorrected=1.04×10–4; ORcorrected=1.39, 95% CI 1.18-1.64),
headaches (Pcorrected=.03; ORcorrected=1.34, 95% CI 1.04-1.74),
and neck or shoulder pain (Pcorrected=.01; ORcorrected=1.55, 95%
CI 1.1-2.17). In contrast, time spent using computer was

negatively associated with the risk of MCP (Pcorrected=1.65×10–3;
ORcorrected=0.81, 95% CI 0.71-0.92), back pain

(Pcorrected=4.28×10–3; ORcorrected=0.83, 95% CI 0.73-0.94), and

knee pain (Pcorrected=3.48×10–3; ORcorrected=0.83, 95% CI
0.73-0.94). Overall, the MRlap-corrected causal estimates were
consistent in direction and statistical significance with the
primary IVW results in Multimedia Appendix 6, supporting the
robustness of the findings against biases induced by sample
overlap. Leave-one-out analyses in Multimedia Appendix 7
showed no outlying SNPs.

In the reverse MR analysis, MCP was used as the exposure, and
different types of screen time were treated as outcomes. The
F-statistics of IVs of MCP in Multimedia Appendix 5 are all
greater than 10, indicating that the IVs are relatively strong.
The results in Multimedia Appendix 8 indicated that MCP was
positively associated with time spent watching television

(P=4.8×10–7; OR 1.27, 95% CI 1.16-1.4) and length of mobile

phone use (P=3.38×10–5; OR 1.29, 95% CI 1.14-1.45), while
the association with time spent using computer (P=.61; OR
0.97, 95% CI 0.87-1.09) was not statistically significant. For
other exposures, the analysis could not be conducted due to the
limited number of available IVs or F-statistics below the
conventional threshold of 10.

Independent Effect of Screen Time on Chronic Pain
Multimedia Appendix 9 showed that the causal effects of screen
time on chronic pain based on IVW MVMR. The conditional
F-statistics for both time spent using computer and length of
mobile phone use is less than 10 in the MVMR results.

Discovery of Screen Time and Chronic Pain Genes
Based on SMR Analysis
As the main analysis result, SMR was corrected by FDR and
combined with the HEIDI test to screen for overlapping genes
between exposure and outcome in 8 eQTL summary data.
Multimedia Appendices 10 and 11 provided the full results,
including the exact PFDR and PHEIDI values for all tested genes
after FDR correction. A total of 72 overlapping genes related
to exposure and outcome were identified in Multimedia
Appendix 12, and the results showed that these overlapping
genes originated from 3 exposures and MCP: 40 genes for time
spent watching television and MCP, 26 genes for time spent
using computer and MCP, and 6 genes for length of mobile
phone use and MCP. In the SMR analysis, the Adipose
Subcutaneous tissue had the most genes, while only one gene
was found in the Brain Spinal cord cervical c-1.

Genetic Findings of TWAS-Based Screen Time and
Chronic Pain
After Bonferroni correction, we examined genome-wide
significant associations in Multimedia Appendices 13 and 14,
followed by joint and conditional tests. Multimedia Appendices
15 and 16 provided the results of the jointly significant genes.
Then we identified 28 genes with overlapping exposures and
outcomes in Table 1. No genes overlapping with the exposure
were found in the hip pain for ≥3 months GWAS dataset.
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Table 1. Transcriptome-wide significant genes identified by TWASa in screen time and chronic pain.

Gene (chromosome)Cross-tissue expressionTrait

sCCA1Time spent watching television – back pain for ≥3 months • PMS2P3 (7)

sCCA2Time spent watching television – MCPb • FUBP1 (1)
• WDR47 (1)
• PLEKHO1 (1)
• FAM172A (5)

sCCA3Time spent watching television – MCP • SUSD3 (9)
• RPL35 (9)
• RELA (11)
• RMC1 (18)
• SYPL2 (1)
• SF3B4 (1)
• ARPC5L (9)
• PTPDC1 (9)
• FAM53B (10)

sCCA2Time spent watching television – knee pain for ≥3 months • GATC (12)

sCCA3Length of mobile phone use – neck or shoulder pain for ≥3 months • RBM42 (19)

sCCA3Length of mobile phone use – MCP • CSTPP1 (11)
• TM9SF4 (20)

sCCA2Time spent using computer – MCP • WDR47 (1)
• RFTN2 (2)
• NMT1 (17)
• RMC1 (18)
• FASTKD5 (20)
• TM9SF4 (20)

sCCA3Time spent using computer – MCP • SYPL2 (1)
• CEP170 (1)
• SCOC-AS1 (4)

sCCA2Time spent using computer – headaches for ≥3 months • SHMT2 (12)

aTWAS: transcriptome-wide association study.
bMCP: multisite chronic pain.

By combining the results of SMR and TWAS analysis, we found
that 7 overlapping genes (SYPL2, RMC1, FUBP1, ARPC5L,
RFTN2, NMT1, and CEP170) were identified between exposures
(time spent watching television and time spent using computer)

and outcome (MCP) in Multimedia Appendix 17 and Figure 3.
In addition, we found that SYPL2 gene expression was
associated with both time spent watching television and time
spent using computer.
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Figure 3. Results supported by genetic evidence. SMR: summary data–based Mendelian randomization analysis; TWAS: transcriptome-wide association
study.

In Figure 3, the panel on the far left shows genes supported by
at least 2 lines of evidence. A total of 3 lines of evidence were
used to support genes, with each column representing one type
of supporting evidence. The SMR evidence shows different
colors according to 8 different eQTL summary data. TWAS
evidence is shown in light yellow and colocalization evidence
is shown in light blue. CEP170 was supported by all analyses.
ARPC5L, RMC1, RFTN2, FUBP1, SYPL2, SDCCAG8, and
NMT1 were supported by 2 lines of evidence.

Colocalization Analysis of Shared Genetic Variation
Colocalization analysis identified multiple genes with moderate
or strong support for colocalization signals in the shared genetic
variation between screen time and chronic pain in Multimedia
Appendix 18. The results showed that 4 genes suggest a
moderate support for colocalization (SPNS1, TUFM, SDCCAG8,
and CEP170). Multimedia Appendix 19 showed that the 4 genes
are overlapped between screen time and chronic pain.

Gene Discovery
As shown in Figure 3, we presented the distribution of
significant genes in each analysis method, and the results

showed that the CEP170 gene stood out in the association
analysis of “Time spent using computer” and MCP, receiving
triple support from SMR, TWAS, and colocalization analysis
(PPH4>.75). The signaling distribution of this gene involved 4
eQTL tissues: Adipose Subcutaneous, Adipose Visceral
Omentum, Nerve Tibial, and Whole Blood.

Discussion

Principal Findings
This study delves into potential phenotypic associations and
underlying genetic connections between screen time and chronic
pain. The results show that screen time is associated with chronic
pain. In the 2-sample MR results, time spent watching television
and length of mobile phone use were significantly and positively
associated with chronic pain, including MCP, back pain, knee
pain, neck or shoulder pain, hip pain, and headaches. In contrast,
time spent using computer inversely was negatively associated
with MCP, back pain, and knee pain. It is particularly important
to note that we still list the significant IVW results of exposure
to the length of mobile phone use. Even though the effect value
directions of the IVW and MR-Egger results are not consistent,
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it is consistent with the direction of our main analytical method
in other methods. The statistical power of MR-Egger decreases
for fewer IVs [27]. Therefore, we still take the results of IVW
as the standard for the length of mobile phone use. In the reverse
MR results, we found that there is a bidirectional positive
correlation among time spent watching television, length of
mobile phone use, and MCP. In the MVMR analysis, not all
the conditional F-statistics were >10, suggesting the presence
of weak instruments. Therefore, our interpretations were based
on the 2-sample MR results. However, the inverse association
between time spent using computer and MCP should be
interpreted cautiously, as it stems from the 2-sample MR results.
The lack of robust MVMR findings means we cannot rule out
the potential influence of confounding factors. In addition, by
integrating SMR, TWAS, and colocalization analysis, we
identified an overlapping gene CEP170 associated with time
spent using computer and MCP. These findings highlight the
important role of screen time in the development of chronic
pain.

Differential Associations Between Screen Time and
Chronic Pain
Previous studies have shown a positive correlation between
mobile phone use and neck pain [39], and a strong correlation
between watching television and back pain [40], which is
consistent with our research findings. In contrast, our research
found that time spent using computer may have a protective
effect on certain types of chronic pain, which differs from some
studies that concluded, “longer computer time increases the risk
of multi-site pain” [8,39]. This difference may be due to the
study population, with earlier studies focusing on adolescents,
while our analysis was conducted on adults. Due to continued
musculoskeletal development, adolescents may be more
susceptible to the negative physical effects of sedentary
behavior.

Furthermore, 2 potential explanations may underlie the
differential associations between time spent using computer
and chronic pain, although there is no direct evidence available
at present. One possible explanation is that the perception of
pain is influenced by the allocation of cognitive resources; that
is, when attention is occupied by other highly attractive stimuli,
the perception of pain may be reduced [41,42]. According to
the characteristics of the UK Biobank population (aged 40-69
years during 2006-2010) in this study [43], the use of mobile
phones and televisions was often associated with activities that
had relatively low cognitive requirements and less attention
input at that time. In contrast, even leisure-time computer use
generally involved more cognitively demanding activities among
middle-aged adults, such as reading, writing, online
communication, or other interactive tasks. Research indicates
that pain is less likely to enter conscious awareness when
cognitive resources are occupied by goal-directed information
maintained in working memory and when sustained attention
is devoted to the task [44]. This indicates that computer tasks
with high cognitive load may potentially reduce the pain
experience through distraction. Moreover, it is also important
to consider that individuals who frequently use computers tend
to have higher educational attainment, higher income, and better
overall health [45]. Given that individuals in nonmanual

occupations tend to have a lower likelihood of experiencing
chronic pain compared with those in manual labor occupations
[46,47], part of the observed lower risk associated with time
spent using computer may therefore reflect underlying
socioeconomic or occupational factors rather than a sole
reflection of the nature of computer-based activities themselves.
This may explain why length of mobile phone use and time
spent watching television were associated with a higher risk of
pain, while time spent using computer showed a protective
effect in this study.

Another possible explanation is that different types of screen
time may affect pain perception by engaging the brain’s reward
system to varying degrees. Dopamine is involved in pleasure,
reward, and incentive behavior [48]. Although mobile phone
and television use may induce pleasure, the limited interactivity
prevents them from triggering dopamine release to the same
extent as engaging in more goal-directed and cognitively
engaging computer activities. Successfully completing such
goals may elicit a sense of accomplishment. The reward system
may be activated, promoting dopamine release, which has been
proven to have analgesic effects [49,50]. Moreover, bidirectional
association analysis suggests that MCP may influence the choice
of screen behavior. People with MCP tend to increase passive
and low-effort screen behaviors (such as watching television or
casually browsing their mobile phones). This behavioral
adaptation may contribute to a pattern of bidirectional
reinforcement, where an increase in passive activity further
restricts physical movement and may exacerbate pain. However,
we emphasize that these explanations are speculative, as direct
evidence is currently lacking.

The Potential Mechanisms by Which CEP170
Contributes to Screen Time and Chronic Pain
Leveraging multiomics approaches, we identified CEP170,
whose cis-regulated expression may contribute to the biological
mechanisms between time spent using computer and MCP. In
SMR results, the CEP170 gene expression level was positively
correlated with MCP but negatively correlated with time spent
using computer. This aligns with our MR results, where time
spent using computer was associated with a lower risk of MCP.
One possible explanation is that CEP170 may influence
behavioral patterns related to screen time, where individuals
with higher gene expression tend to spend less time on the
computer, which in turn is associated with increased MCP risk.
Although its colocalization results suggest a moderate support
for colocalization, CEP170 was detected in all analytical
methods.

CEP170 is located at the centrosome and spindle microtubules
and participates in microtubule organization and assembly
[51,52]. Additionally, CEP170 plays an important role in
supporting ciliary homeostasis [53]. Cilia may potentially play
a central role in cell signaling, and recent animal experiments
have further revealed that cilia have key regulatory functions
in controlling mechanical nociceptive thresholds and
inflammatory and neuropathic pain [54]. The SMR results show
that CEP170 exhibited significant signals in multiple eQTL
tissues, including Adipose Subcutaneous, Adipose Visceral
Omentum, Nerve Tibial, and Whole Blood. This indicates that
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CEP170 may be expressed in these tissues and may contribute
to the biological mechanisms behind the observed associations.
A large UK Biobank study revealed that abdominal adipose
tissue (including visceral fat and subcutaneous fat) was
associated with chronic musculoskeletal pain. It suggested that
excessive and ectopic fat depositions may be involved in the
pathogenesis of multisite and widespread chronic
musculoskeletal pain [55]. This is likely attributable to the
chronic low-grade inflammation driven by accumulated visceral
fat, which can sensitize peripheral nerves and promote MCP
[56,57]. In line with this, our SMR analysis found that CEP170
expression in subcutaneous and visceral adipose tissue is
associated with MCP. Given the established importance of
microtubules in lipid metabolic homeostasis [58,59], we
hypothesize that CEP170 may potentially protect against MCP
by enhancing microtubule stability in adipose tissue. This
mechanism might potentially constrain adipose-derived
inflammatory signaling, thereby possibly alleviating peripheral
nerve sensitization and lowering MCP risk. However, the current
results only provide preliminary genetic clues. Direct links
remain unclear and more functional studies, especially
tissue-specific experiments, are needed in the future to clarify
the potential contribution of CEP170 to pain pathways.

Strengths and Limitations
Our research has several advantages. First, we integrated a
variety of analytical methods to duplicate our findings and
strengthen the robustness of our results. Second, we leveraged
large-scale GWAS data from the UK Biobank, ensuring a robust
analysis with broad generalizability. Third, by identifying
overlapping genes and potential biological pathways, our study
provides new genetic insights into the association between
screen time and chronic pain, which, despite limited evidence,
may inform future research in this field. Finally, our study
considered different types of screen time separately, which
allows for a more nuanced understanding of their different
effects on chronic pain. These findings may serve as a useful
reference for subsequent studies on the genetic and
epidemiological links between screen time and chronic pain.

Although this study provides new insights, there are still some
limitations. First, using data from the same sources in multiple
analyses may introduce the bias of the winner’s curse,
potentially inflating effect sizes or significance levels.

Replication in fully independent datasets is necessary to confirm
the discovery. Second, our analyses were restricted to European
populations, which may limit generalizability to other
populations with different screen use habits and pain reporting.
Third, the lack of detailed data on screen use posture, activity
type, and behavior patterns may limit the depth of causal
reasoning. Future studies could incorporate longitudinal and
behavioral data to better clarify the mechanisms and causal
pathways. Fourth, as both exposures and outcomes are
self-reported, recall and measurement bias may lead to
misclassification and reduce precision. Self-reported pain may
not capture clinical heterogeneity, so future studies using
clinically validated phenotypes are needed. Fifth, due to the
weak strength of IVs, we were unable to adequately control for
crucial potential confounding factors, such as socioeconomic
status and educational attainment. Consequently, the observed
protective association between “time spent using computer”
and chronic pain might be partially attributable to residual
confounding by socioeconomic status and related factors. Sixth,
reverse MR could not be performed for the outcomes of back
pain, knee pain, neck or shoulder pain, headaches, and hip pain
due to limited IVs, limiting the assessment of reverse causality.
In addition, the smaller sample size for hip pain may have
limited statistical power, contributing to borderline significance
in the 2-sample MR analysis and precluding reverse MR for
this phenotype. Seventh, environmental exposure, such as air
pollution, was not taken into account in this analysis. Particulate
matter can affect inflammatory and stress-related biomarkers
involved in chronic pain [60-62]. Future studies should integrate
genetic and environmental data to clarify these relationships.
Eighth, the colocalization signal for CEP170 is not the strongest,
and direct evidence is lacking. Therefore, its role remains
speculative and warrants further investigation. Finally, this study
lacks validation in large surveys or independent cohorts,
highlighting the need to combine genetic and epidemiological
studies in future research.

Conclusions
This study provides evidence that reveals an association between
screen time and chronic pain. We found the CEP170 gene might
contribute to the shared biological mechanism between time
spent using computer and MCP risk. Future studies should
further validate this association and clarify the functional role
of CEP170 in the development of chronic pain.
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OR: odds ratio
PP: posterior probability
sCCA: sparse canonical correlation analysis
SMR: summary data–based Mendelian randomization
SNP: single-nucleotide polymorphism
TWAS: transcriptome-wide association study
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