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Abstract
Background: Adherence to antiseizure medications (ASMs) is a cornerstone of effective epilepsy management. However,
current consensus guidelines for assessing medication adherence via therapeutic drug monitoring (TDM) may neglect
individual patient characteristics, thereby compromising the accuracy of adherence assessments.
Objective: This study proposed an innovative Bayesian–based pharmacokinetic (PK) framework integrated with TDM data to
address the above limitations, with a focus on 14 widely prescribed ASMs, including brivaracetam, carbamazepine, cloba-
zam, eslicarbazepine acetate, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, phenobarbital, topiramate,
valproic acid, vigabatrin, and zonisamide.
Methods: Comprehensive clinical trial simulations were conducted to investigate the PK of ASMs in patients with epilepsy
under conditions of full adherence and various nonadherent dosing behaviors, including omission of the last dose and
consecutive missed doses. Bayesian posterior probabilities of these dosing behaviors were derived by integrating validated
population PK models, individual patient demographics (eg, age, weight, creatinine clearance), dosing history, prior adherence
probabilities and TDM measurements. Additionally, the influence of covariates on assessment outcomes was systematically
evaluated.
Results: The Bayesian-based PK approach demonstrated robust discriminative ability. Under idealized simulation conditions
with minimized variabilities, the approach achieved accurate retrodiction of the last 1 or 2 doses across all 14 ASMs and partial
retrodiction of extended nonadherence trajectories for 6 ASMs. Concentration thresholds for adherence classification varied
significantly across drugs and are influenced by patient-specific factors, comedications, formulation, sampling time, and prior
probability. To translate these insights into practice, an adaptable web-based dashboard was developed using the shiny package
in R software to enable precise and real-time assessments of medication adherence.
Conclusions: This study establishes a Bayesian-based PK approach to enhance the assessment of ASMs adherence. This
approach facilitates a paradigm shift from population-based management to patient-specific adherence profiling, offering a
practical methodology for the precise evaluation of medication-taking behaviors.

J Med Internet Res 2026;28:e77917; doi: 10.2196/77917

JOURNAL OF MEDICAL INTERNET RESEARCH Liu et al

https://www.jmir.org/2026/1/e77917 J Med Internet Res 2026 | vol. 28 | e77917 | p. 1
(page number not for citation purposes)

https://doi.org/10.2196/77917
https://www.jmir.org/2026/1/e77917


Keywords: antiseizure medications; medication adherence; therapeutic drug monitoring; Bayesian theory; population
pharmacokinetics

Introduction
Epilepsy is the second most common neurological disease
globally. Antiseizure medications (ASMs) represent the
cornerstone of treatment for epilepsy [1,2], with long-term
medication adherence being critical to achieving successful
therapeutic outcomes [3]. However, adherence to ASMs
among people with epilepsy is often suboptimal [4-6],
which is strongly associated with a range of adverse
clinical outcomes, including increased mortality, heightened
morbidity, greater health care utilization, and substantial
economic burden [7,8]. Therefore, when evaluating treatment
failures, it is imperative for health care providers to compre-
hensively assess patients’ adherence, to identify underlying
issues and provide tailored support to improve seizure control
and treatment efficacy.

In clinical practice, self-reported adherence is inherently
subjective and prone to bias [9], in contrast to therapeu-
tic drug monitoring (TDM), which offers a more objec-
tive measure of recent medication-taking behaviors [10,11].
Accurate TDM interpretation is straightforward in some
situations, such as a notably low drug concentration suggest-
ing nonadherence. However, it becomes much more complex
in other cases due to various intrinsic and extrinsic confound-
ers that affect drug concentrations, including organ function,
drug-drug interactions and dosing intervals.

The Consensus Guidelines for TDM in Neuropsycho-phar-
macology: 2017 update [12] (hereafter referred to as the 2017
Guidelines) provide reference ranges for commonly used
ASMs, which are specifically tailored for steady-state trough
concentrations (C0) in adult patients undergoing monother-
apy. The reference ranges for each ASM were determined
by multiplying the daily dose by dose-related concentration
factors, and then could be used to help identify nonadherence
[12]. However, the reference ranges were based on average
pharmacokinetic (PK) parameters from an adult population,
and do not account for key subpopulations, such as pedia-
tric, geriatric and pregnant patients, who exhibit clinically
significant PK differences [13-15].

PK modeling and simulation approaches have been
successfully used to evaluate the impact of medication
nonadherence [16,17], and to design remedial dosing
strategies for missed or delayed doses [16,18]. When
combined with Bayesian principle, this methodology offers
a powerful framework for integrating individual TDM data
with population PK models [19,20]. By leveraging this
approach, it becomes possible to infer posterior probabilities
of different dosing patterns, thereby enabling a more refined
and quantitative assessment of medication-taking behavior.

In light of the above, this study aims to character-
ize medication adherence patterns to ASMs using TDM
measurements and a Bayesian-based PK approach. Addi-
tionally, a user-friendly dashboard is developed to offer
health care providers an intuitive, practical tool for assessing

individual adherence levels, thereby optimizing ASM therapy
and improving the treatment outcomes of ASMs.

Method
Ethical Considerations
As this study exclusively used computational modeling and
simulation techniques without involving direct human subject
participation or personal data collection, it is exempt from
institutional review board approval requirements in accord-
ance with international ethical guidelines.
Rationale
When patients fully adhere to their medication regimens,
the drug concentration fluctuates in a predictable manner.
However, if patients miss any of their doses, the drug
concentration will gradually decline to a suboptimal level,
which may ultimately result in treatment failure. The
differences in the probability distribution of drug concentra-
tion provides a valuable reference for differentiating between
adherence to the prescribed medication and nonadherence.

In this study, the Bayesian-based PK approach, calculating
the posterior probability of special dosing events, was used to
assess medication adherence. The principle of the Bayesian
approach is as follows [19]: given the probability of the
occurrence of a specific scenario (ie, the prior probability,P ω j ) and the probability of a particular drug concentration
at a given scenario ω j (ie, conditional probability, P C|ωj ) ,
the probability of the scenario at a given drug concentra-
tion (ie, posterior probability,P ω j C ) can be estimated, as
presented in Equation 1.

(1)P(ωj ∣ C) = P(ωj) × P(C ∣ ωj)P(C)
Where P C  is the full probability and could be calculated

with Equation 2.

(2)P(C) = j P(ωj) × P(C ∣ ωj)
The prior probability P ω j  refers to the pre-existing or
baseline probability estimate of a patient’s likelihood to
adhere to a prescribed medication regimen before any new,
specific data related to that individual patient’s adherence
behavior in the current treatment course is considered. The
conditional probability P C ω j  is calculated using Monte
Carlo simulations based on population PK. Once these
probabilities have been obtained, the posterior probabilityP ω j C  of each individual scenario is calculated using
Equations 1; 2. The scenario with the highest posterior
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probability is considered the most likely to occur, while the
one with the lowest posterior probability is deemed the least
probable.

In our study, the dosing event scenario is defined by
whether patients adhere to or miss their scheduled doses.
There are 2n possible scenarios when considering the last n
dosing events prior to sampling. For instance, as depicted

in Figure 1A, there are two scenarios (ω0 and ω1) when
considering the last dosing instance. This can be expanded
to four scenarios (ω00, ω01, ω10, and ω11) when the last
two dosing instances are considered (Figure 1B), and eight
scenarios (ω000, ω010, ω100, ω001, ω110, ω011, ω101, ω111) when
the last three dosing events are taken into account (Figure
1C).

Figure 1. The dosing scenarios when the most recent one (A), two (B) or three (C) dosing events are considered. ω: medication-taking behavior,
where the first, second and third digit after ω indicates the most recent one, two and three medication-taking events prior to sampling, respectively,
where 1 indicates dose taken and 0 indicates dose missed.

The workflow of adherence assessment is graphically
represented with Figure 2, using the example of a 70 kg
adult patient receiving oxcarbazepine 300 mg every 12 hours
(q12h) and reached steady state. C0 of oxcarbazepine was
used to infer the patient’s dosing behavior over the last

two dosing intervals. When the C0 approaches zero, the
posterior probability of at least one missed dose is high. As
C0 increases, this probability decreases, while the posterior
probability of complete adherence rises correspondingly,
eventually approaching 100%.

Figure 2. The workflow of adherence assessment by therapeutic drug monitoring with Bayesian-based pharmacokinetic approach.
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The C0 value at which the posterior probabilities of two
distinct dosing scenarios are equal, can be derived from
Equations 1; 2, serving as a threshold to discriminate between
these scenarios. As depicted in Figure 2, the posterior
probabilities of missing two doses (ω00) and missing only the
last dose while having taken the second last dose (ω01  are
equal when the C0 is approximately 3 mg/L. When C0 is less
than 3 mg/L, the probability of ω00 is the highest. Similarly,
the C0 range maps to the most probable scenario as follows:
3‐7.5 mg/L to ω01, 7.5‐11.5 mg/L to missing the second-last

dose but taking the last dose (ω10) , and levels above 11.5
mg/L to taking both of the last two doses ω11 .

In this case, all dosing events could have a maximum
posterior probability exceeding 80%, which was defined as
complete retrodiction (Figure 3A). If only one or none dosing
events had a maximum posterior probability exceeding 80%,
it was defined as no retrodiction (Figure 3C). Other cases
were defined as partial retrodiction (Figure 3B).

Figure 3. Illustration of retrodiction types based on posterior probabilities of dosing events prior to sampling. (A) complete retrodiction: the
maximum posterior probabilities of all dosing events are ≥80%; (B) partial retrodiction: only events which are fully adherent and fully nonadherent
have a maximum posterior probability ≥80%; and (C) no retrodiction: only one or no dosing events have a maximum posterior probability ≥80%.

Population Pharmacokinetic
Characteristics
To characterize the conditional probability associated with
each dosing scenario, a systematic literature search was
conducted in PubMed and Embase to collate available
population PK parameters for ASMs across various for-
mulations, including conventional tablets, oral solutions,

suspensions, syrups, and extended-release (ER) formulations.
In our previous study [18], population PK models for 10
commonly used ASMs were identified up to March 31,
2022, including carbamazepine, clobazam, eslicarbazepine
acetate, lamotrigine, levetiracetam, oxcarbazepine, pheno-
barbital, topiramate, valproic acid, and zonisamide. An
update search was then performed up to November 30,
2024. Additionally, the population PK characteristics of
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brivaracetam, lacosamide, perampanel and vigabatrin were
also incorporated in the study. Details of the literature review
were summarized in Multimedia Appendix 1.
Assessment of Adherence
During the adherence assessment, pediatric patients (aged 8 y,
weighing 25 kg, and measuring 127 cm), adult patients (aged
40 y, weighing 70 kg, and measuring 180 cm), and pregnant
women (aged 25 y, weighing 70 kg, measuring 160 cm,
30 wk pregnant) taking conventional tablet of ASMs were
selected as typical patients. All typical patients had normal
renal and liver function and were not taking any concomitant
medications.

The evaluated dosing behaviors included the administra-
tion of the last one, two, and three doses prior to sampling at
steady state. Sampling was conducted immediately before the
subsequent dose. As for prior probability, it was assumed that
each scenario had an equal chance of occurring. Specifi-
cally, this implies a probability of 50% for each scenario
when considering only the last dosing behavior, 25% when
considering the last two dosing behaviors, and 12.5% when
considering the last three dosing behaviors.

For the Monte Carlo simulations, the parameters were
fixed according to the final reported values, except for
the residual unexplained variability (RUV) to obtain the
“true” concentration-time profiles under various nonadher-
ence scenarios. Consequently, RUV was set to negligible
levels [21]—specifically 0.01 mg/L for additive error and
0.1% for proportional error—to minimize noise in the study.
A total of 40,000 virtual patients were generated for each
scenario. The Monte Carlo simulations were conducted using
R programming (version 4.2.2; R Foundation for Statistical
Computing) with the rxode2 package (version 2.1.2). The
results were plotted using the ggplot2 package (version 3.5.1).
Evaluation of Critical Factors Affecting
Adherence Assessment
The factors reported to significantly influence the PK of
ASMs were investigated for their impact on adherence
assessment, including renal function (estimated glomeru-
lar filtration rate, eGFR: 30, 60 and 90 mL/min/1.73m2)
and concomitant medications. Additionally, the effect of
formulation (extending dosing interval to every 24 h for ER
formulation), sampling time (2 h earlier or later), and prior
probabilities (10%, 30%, 50%, 70%, and 90%) on medication
adherence was also tested. The impact of these factors was
assessed from two perspectives: the first was the ability to
retrodict the number of the last scheduled doses, and the
second was their influence on the concentration threshold
used to distinguish between nonadherence patterns.
Development of Web-Based Dashboard
To facilitate quick calculation, an interactive online dash-
board was developed to assess ASMs’ medication adherence,

informed by TDM results, and individual characteristics that
were determined as significant factors on PK parameters
in the included models. This tool was built using rxode2
(version 2.1.2), ggplot2 (version 3.5.1), and shiny (version
1.8.1.1) within the R framework (version 4.2.2; R Foundation
for Statistical Computing).

Results
Population Pharmacokinetic
Characteristics
A total of 23 population PK models encompassing 14
ASMs were ultimately included in the analysis [22-44].
Among these, models for adult [22-25,27-29,31,33,35,36,38,
40,42] and pediatric patients [22,23,25-30,32,34,36,37,39,44]
were available, while models specific to pregnant women
were only available for lamotrigine [41] and levetiracetam
[43]. Since age was consistently identified as a significant
covariate for PK parameters in adults, elderly patients were
thus grouped with the adult population. Models character-
izing multiple formulations were identified for eslicarbaze-
pine acetate [34], lamotrigine [36] and valproic acid [30,42].
Details of the identification of literature, included studies,
and the final parameter estimates used in the analysis were
comprehensively summarized in Figures S1-S9 in Multimedia
Appendix 1 and Tables S1-S2 in Multimedia Appendix 1.
Assessment of Adherence
The posterior probabilities of various dosing behaviors when
considering the last one, two, and three dosing behaviors
for each ASM are detailed in Figure S10-S23 in Multimedia
Appendix 1. Figure 4 demonstrates the ability to retrodict
the number of the last scheduled doses for each ASM
in typical patients under conditions of minimized RUV.
Results indicated that when investigating the most recent
dosing behavior, all ASMs can be fully retrodicted. Regard-
ing the scenarios involving the last two dosing behaviors,
complete retrodiction was achievable only for oxcarbazepine
in pediatric patients, whereas other ASMs were partially
retrodicted. When extending to the last three dosing behav-
iors, no ASMs can be fully retrodicted, and only carba-
mazepine, clobazam, eslicarbazepine acetate, oxcarbazepine,
phenobarbital and zonisamide could be partially retrodicted
across all investigated population. From a pharmacokinetic
perspective, ASMs with higher clearance are eliminated
rapidly, thereby diminishing the concentration “signal”
necessary to distinguish earlier dosing events. Furthermore,
the traceability may vary in clinical scenarios where patient
characteristics significantly deviate from the typical popula-
tion.
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Figure 4. The ability to retrodict the last one, two and three dosing behaviors prior to sampling for typical patients in theoretical condition when
minimizing residual unexplained variabilities. D1: the last dosing behavior; D2: the last two dosing behaviors; D3: the last three dosing behaviors;
CR, complete retrodiction, which is defined as when the maximum posterior probabilities of all dosing events are ≥80%; PR, partial retrodiction,
which is defined as when only events which are fully adherent and fully nonadherent ( have a maximum posterior probability ≥80%; NR: no
retrodiction, which is defined as when only one or no dosing events have a maximum posterior probability ≥80%. Adults: aged 40 y, weighing 70 kg,
and measuring 180 cm; children: aged 8 y, weighing 25 kg, and measuring 127 cm; pregnant women: aged 25 y, weighing 70 kg, measuring 160 cm,
and being 30 weeks pregnant. Residual unexplained variabilities were minimized by defining additive error as 0.01 mg/L and proportional error as
0.1%.
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Impact of Critical Factors on Adherence
Assessment
It has been reported that renal function affects the apparent
clearance (CL/F) of eslicarbazepine acetate [33], levetirace-
tam [24], oxcarbazepine [38] and vigabatrin [28]. As renal
function decreases, there is no significant effect on the
identification of nonadherence patterns. The effect of renal
function on levetiracetam is illustrated in Figure S24 in
Multimedia Appendix 1, with levetiracetam, oxcarbazepine,
and vigabatrin demonstrating similar trends.

Pregnancy enhances the clearance of lamotrigine and
levetiracetam, leading to lower systemic drug exposure and,
consequently, may decrease the concentration thresholds
(Figure S15-S16 in Multimedia Appendix 1). Similarly,
pediatric patients show higher clearance per body weight
compared with adults, leading to the decreased concentration
thresholds (Figure S10-S23 in Multimedia Appendix 1).

The effects of concomitant inducers and inhibitors were
also evaluated. Administration of inducers or inhibitors did
not alter the fundamental distinguishability of nonadherence
patterns but shifted the concentration threshold required for
their discrimination. Specifically, the threshold was lowered
by inducers and raised by inhibitors. The magnitude of
these adjustments varied substantially across ASMs (Figure
S25 in Multimedia Appendix 1). For instance, in a typi-
cal adult patient taking lamotrigine, coadministration with
enzyme inducers (eg, carbamazepine, phenobarbital) lowered
the threshold by approximately 67%, whereas the inhibitors
valproic acid elevated it by approximately 83%. The effect on
topiramate was less pronounced.

The impact of formulation on adherence assessment
was evaluated for eslicarbazepine acetate, lamotrigine and
valproic acid. At equivalent total daily doses, ER for-
mulations with prolonged dosing intervals enhanced the
discriminative capacity for dosing behaviors compared to
immediate-release (IR) or other oral formulations requiring
more frequent administration (Figure S15, S21 in Multimedia
Appendix 1). In contrast, formulations such as oral suspen-
sions and syrups exhibited minimal impact on the assessment
(Figure S13, S21 in Multimedia Appendix 1).

Sampling time also influences adherence assessment
(Figure S26 in Multimedia Appendix 1). Sampling 2 hours
earlier or later than the scheduled time does not significantly
influence the distinguishability of nonadherence patterns.
However, compared to sampling just before administra-
tion, the concentration threshold for distinguishing nonadher-
ence patterns increases when sampling is done earlier and
decreases when sampling is done later. The magnitude of this
change varies among different ASMs.

The impacts of prior probabilities on adherence assessment
were also evaluated. The results indicated that prior probabili-
ties could not only significantly affect the distinguishability of
the nonadherence dosing scenarios, but also notably alter the
concentration threshold for distinguishability (Figure S27 in

Multimedia Appendix 1). The magnitude of the concentration
threshold change was found to be dependent on the type of
ASMs.

Application of Web-Based Dashboard
A web-based dashboard for assessing medication adherence
has been developed and is freely accessible online [45].
After inputting the type of ASMs, patient characteristics (age,
body weight, height, gender), scheduled dosing regimens,
sampling time, TDM data, and prior probabilities for each
scenario, the system estimates the posterior probabilities
of each dosing scenario and plots them against the drug
concentration. RUV are initialized with literature-reported
values (as listed in Table S2 in Multimedia Appendix 1)
when requiring consideration, but remain user-adjustable to
accommodate specific clinical situations, thereby enabling the
precise identification of medication adherence patterns.

Figure 5A presents a case of a 75-year-old male (70 kg)
with epilepsy and impaired renal function (eGFR 40 mL/min/
1.73m2) who had remained seizure-free for over 3 years on
oxcarbazepine 300 mg q12h. Following a recent increase in
seizure frequency, TDM was performed to assess potential
nonadherence. The measured C0 of oxcarbazepine was 12
mg/L, which lies within the conventional therapeutic range of
10‐35 mg/L and aligns with the recommended range of 6‐24
mg/L as per the 2017 guidelines [12]. However, model-based
estimates from the dashboard indicated a nearly negligible
probability of full adherence and a high probability of having
missed at least one dose. The posterior probability of full
adherence remained at 0%, regardless of whether the prior
probability was set as low as 1% (suggesting poor adher-
ence) or as high as 99% (denoting high adherence) (Figure
S28 in Multimedia Appendix 1), demonstrating the minimal
influence of the prior in this case. By contrast, increasing the
RUV from 0.1% to 30% increased the posterior probability
of full adherence from 0% to 56% (Figure S29 in Multimedia
Appendix 1), underscoring the substantial impact of RUV on
the adherence assessment in this case.

Figure 5B illustrates another case of a 10-year-old (30 kg)
boy with epilepsy and normal renal/hepatic function, treated
with valproic acid tablet 500 mg and carbamazepine 150
mg q12h. His measured C0 of valproic acid was 40 mg/L,
below both the conventional therapeutic range (50‐100 mg/L)
and the 2017 guideline-recommended range (62.2‐134.8
mg/L). Although subtherapeutic concentrations initially raised
suspicion of nonadherence, model-based analysis estimated
a probability of full adherence exceeding 80%, suggesting
that the low valproic acid concentration likely resulted
from carbamazepine-induced metabolic induction rather than
missed doses. Varying the prior probability of adherence from
1% to 99% had minimal impact on this conclusion (Figure
S30 in Multimedia Appendix 1). Similarly, increasing RUV
from 0.1% to 30% altered the posterior probability of full
adherence by only 5% (Figure S31 in Multimedia Appendix
1), demonstrating the robustness of the assessment against
RUV variation in this clinical scenario.
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Figure 5. Screenshot of the dashboard for adherence assessment. (A) Elderly patient, 75 years old, weighing 70 kg, measuring 180 cm, eGFR 40
mL/min/1.73m2, taking oxcarbazepine 300 mg q12h; (B) pediatric patient, 10 years old, weighing 30 kg, measuring 130 cm, taking valproic acid 500
mg q12h and carbamazepine 100 mg q12h. ɷ00: missing two continuous doses before sampling; ɷ01, missing the second-to-last dose but taking the
last dose; ɷ10, missing the last dose but taking the second-to-last dose; ɷ11, taking all doses.

Discussion
Principal Findings
This study is the first to introduce a clinical framework
to investigate the role of TDM in assessing medication
adherence for 14 commonly used ASMs among diverse
patients. By integrating Bayesian theory with population PK,
we demonstrated that routine TDM, when combined with
clinical factors, enables quantitative retrodiction of recent
medication-taking behaviors for all investigated ASMs. The
Bayesian-based PK framework can also be easily available
through the open-access dashboard developed in this study.
Comparison to Prior Work
The 2017 Guideline established reference ranges encompass-
ing approximately 66% of patients for commonly used ASMs,
primarily derived from PK data obtained in adult patients

receiving monotherapy [12]. While clinically useful, these
population-derived thresholds have limited generalizability to
special populations with distinct PK profiles. In contrast, the
model-informed algorithm developed in this study enables
a more personalized assessment of medication adherence.
This approach explicitly accounts for patient-specific factors
including age (eg, pediatric and geriatric populations),
pregnancy status, renal and hepatic function, concomitant
use of enzyme inducers or inhibitors, formulation character-
istics. It thereby provides a refined framework for evaluating
medication-taking behavior across diverse clinical scenarios.
Interpretation of the Findings
We identified multiple critical factors that influence the
adherence assessment, including intrinsic factors (physiolog-
ical differences, concomitant medication, renal function,
formulation , etc) and extrinsic factors (prior probability,
RUV, etc).
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The influence of intrinsic factors on adherence evalua-
tion is primarily mediated through alterations in PK parame-
ters, most notably systemic drug clearance. Enhanced drug
clearance, commonly observed in pediatric and pregnant
patients, as well as in those receiving enzyme inducers,
reduces both the ability to differentiate adherence patterns
and the corresponding concentration thresholds. In pediatric
populations, the higher clearance per body weight results
from ongoing organ maturation, larger organ size-to-body
weight ratios, and increased metabolic enzyme activity [15,
36,46]. In pregnant women, elevated clearance arises from
increased cardiac output, enhanced renal blood flow, and
hormonally mediated induction of metabolic pathways [14,41,
47,48]. Conversely, reduced clearance, frequently encoun-
tered in patients with renal impairment or those receiv-
ing enzyme inhibitors, may improve differentiation ability
or raise the concentration thresholds required for pattern
discrimination.

Despite the increasing use of ER formulations of ASMs,
conventional formulations continue to account for a sub-
stantial proportion of prescriptions due to their lower cost
and wider availability [49,50]. Consequently, population
PK studies have more frequently characterized conventional
formulations. Based on the limited population PK data
available for ER ASMs, our findings suggest that ER
formulations may improve the differentiation of adherence
behaviors, a finding attributable to the extended dosing
interval (eg, from 12 to 24 h) and the resulting concentration-
time fluctuation.

Prior probability is essential for estimating the posterior
probability of dosing behaviors. In this study, we adopted an
equiprobable prior probability to reflect a state of maximum
uncertainty before considering the evidence (TDM measure-
ments). This represents a conventional and conservative
strategy in Bayesian modeling when reliable, specific prior
knowledge is unavailable [19,51]. In real clinical settings,
the prior probability can be informed by pharmacy refill data
or population-average adherence estimates. When individual-
level data are absent, population-based priors derived from
patients with comparable covariates (eg, age, comorbidities,
and socioeconomic status) may be applied. Although the
impact of the prior was limited in the cases illustrated in
Figure 5, its influence on adherence assessment can be
substantial and depends on both the specific ASM and TDM
measurements. Consequently, the ability for user-defined
priors implemented in the dashboard remains highly valuable.

RUV in population PK analysis captures unexplained
stochastic variations, including assay error, sampling
inaccuracies, and model misspecification. As these elements
may confound medication adherence assessments, RUV was
intentionally minimized in the present analysis to reduce
setting-specific noise and facilitate clearer characterization

of covariate effects. To enhance real-world applicability, the
accompanying dashboard allows users to adjust the RUV
level based on reported values from source population PK
studies (Table S2 in Multimedia Appendix 1), known assay
variability, or clinical experience.
Limitations
The study has several limitations. First, there are numer-
ous patterns of nonadherence and we only considered the
scenario of missing doses. Other types of nonadherence,
such as delayed doses, missed partial doses, and inadvertent
overdoses, were not considered. Second, due to the lack
of population-PK studies, specifically in pediatric patients,
pregnant women, and for ER formulation, we did not include
all these scenarios in our analysis. However, our dashboard
can be readily extended to include these populations, or novel
formulations once their population PK parameters become
available. In addition, it is important to note that while
we provide accurate estimation of probabilities for recent
medication events, the clinical judgment should not be solely
based on it. Comprehensive assessment must be performed
to incorporate the patient’s overall condition, medication
history, and relevant information.
Future Directions
As epilepsy pharmacotherapy evolves, the dashboard will be
updated to incorporate emerging population PK models for
novel ASMs when available. Concurrently, it will extend to
pharmacodynamic models to bridge the gap between PK and
clinical outcomes, thereby quantifying the risks of break-
through seizures from nonadherence trajectories. Leveraging
prior work on remedial dosing regimens on ASMs [18], the
tool can be expanded to provide remedial dosing strategies
for clinicians to safely restore therapeutic concentrations after
missed doses. Finally, the integration with multidimensional
data, such as digital biomarkers and electronic health records,
will be explored. The comprehensive strategy will ultimately
facilitate the realization of precise, patient-specific life-cycle
management in epilepsy treatment.
Conclusion
In conclusion, this study establishes a Bayesian-based PK
approach to enhance the objective assessment of ASM
adherence. By leveraging TDM data, the approach showed
large improvement in assessing nonadherence patterns
compared to the previous guidelines. In addition, to bridge
the methodology with clinical practice, we developed an
interactive dashboard that translates PK principles into
visual and interpretable outputs. The work demonstrates the
feasibility of transitioning from traditional population-based
monitoring to individual-specific management for patients
with epilepsy.
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