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Abstract
Background: Bleeding complications are a major contributor to adverse drug events among older inpatients, particularly in
those treated with antithrombotic agents. Timely and accurate detection of bleeding events is essential for improving drug
safety surveillance and clinical risk management.
Objective: The study aimed to develop and validate automated algorithms for detecting major bleeding (MB) and clinically
relevant nonmajor bleeding (CRNMB) events from electronic medical records (EMRs) by combining structured data-based
rule models and a natural language processing (NLP) approach, and to evaluate their performance and generalizability against
a manually reviewed gold standard and an external dataset.
Methods: We conducted a multicenter retrospective study using routinely collected EMR data from 3 Swiss university
hospitals. Patients 65 years or older who received at least one antithrombotic agent and were hospitalized between January
2015 and December 2016 were included. To detect MB and CRNMB events, rule-based algorithms were developed using
structured data (International Statistical Classification of Diseases, 10th Revision, German Modification [ICD-10-GM] codes,
laboratory values, transfusion records, and antihemorrhagic prescriptions), with variables and cutoff values defined according
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to adapted International Society on Thrombosis and Haemostasis definitions and expert consensus. In parallel, a supervised
NLP model was applied to discharge summaries from one hospital. A manual review of 754 EMRs served as the reference
standard for internal validation, and the algorithm performance of the structured data algorithms (SDA), NLP, and their
combination (SDA+NLP) was evaluated against this manually reviewed gold standard using standard performance metrics.
External validation was performed on an independent dataset from the Lausanne University Hospital to assess model robust-
ness and generalizability.
Results: Among 36,039 inpatient stays, SDA identified 8.26% (n=2979) as MB and 15.04% (n=5419) as CRNMB cases.
ICD-10-GM codes alone detected 28.5% (n=849) of MB and 31.48% (n=1706) of CRNMB cases, while laboratory data
contributed most to event detection (n=1994, 66.94% for MB and n=3663, 67.60% for CRNMB). Integrating SDA with
NLP improved detection, identifying 12.2% (920/7513) of MB and 27.4% (2062/7513) of CRNMB cases at 1 hospital. The
combined model achieved the best performance (sensitivity 0.84, positive predictive value 0.51, F1-score 0.64). External
validation on Lausanne University Hospital 2021‐2022 data (n=24,054 stays) confirmed the algorithms’ reproducibility; the
prevalence of MB decreased while CRNMB increased, reflecting evolving clinical practices and antithrombotic use patterns.
Conclusions: Our integrated approach, combining SDA with NLP, enhances the detection of hemorrhagic events in older
hospitalized patients treated with antithrombotic agents, suggesting its potential usefulness for drug safety monitoring and
clinical risk management.
International Registered Report Identifier (IRRID): RR2-10.2196/40456
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Introduction
Over 16% of older inpatients experience at least 1 adverse
drug event (ADE) during their hospital stay [1], often
with more severe consequences than in younger patients
[2]. Among the medications most frequently implicated,
antithrombotic agents, widely prescribed in older adults
for the prevention and treatment of cardiovascular disease,
stand out as a major cause of bleeding-related ADEs [1,3].
Hemorrhagic complications represent a substantial share of
drug-related harm in this population and are associated with
longer hospital stays, higher readmission rates, and increased
mortality. Continuous and accurate measurement of these
events is therefore essential to inform prevention strategies,
strengthen pharmacovigilance, and promote safer antithrom-
botic use in clinical practice.

Various approaches have been developed to detect ADEs
in hospital settings, each with advantages and limitations.
Spontaneous reporting systems, though simple to imple-
ment, notoriously underestimate the true frequency of ADEs
due to underreporting [4]. Systematic chart reviews of
electronic medical records (EMRs), often considered the
reference standard, provide detailed clinical information
but are too resource- and time-intensive for routine sur-
veillance [5]. To overcome these constraints, automated
detection methods using routinely collected EMR data
have emerged. These approaches leverage both structured
data, such as diagnostic codes, medication records, labo-
ratory results, and vital signs, and unstructured clinical
narratives, including discharge summaries, progress notes,
and consultation reports. Structured data are accessible
and standardized, supporting large-scale analyses but may
lack contextual nuances needed to capture complex clini-
cal events such as bleeding [6-8]. Conversely, textual data,

although unstructured, often contain richer clinical detail but
require advanced computational methods for analysis. Recent
advances in machine learning (ML) and natural language
processing (NLP) have markedly improved the ability to
extract this information and are increasingly applied to
pharmacovigilance and ADE detection [9]. Integrating both
structured and textual data appears particularly promising for
identifying bleeding events, potentially enhancing accuracy
and completeness [10].

Despite growing interest in automated ADE detection to
support drug safety monitoring, important knowledge gaps
remain, particularly in the Swiss context. Most existing
studies focusing on bleeding events have relied exclusively
on either structured or unstructured data [11-15], have
prioritized prediction rather than detection [8,16], or have
focused on specific bleeding types or patient groups [7,10,
17-19]. Furthermore, clear operational definitions distinguish-
ing major bleeding (MB) from clinically relevant nonmajor
bleeding (CRNMB) are often lacking, limiting comparabil-
ity across studies [20]. To date, no study in Switzerland
has comprehensively evaluated the combined contribution of
structured and textual data for ADE detection in a general
inpatient population receiving antithrombotic therapy. To
address this gap, we conducted a multicenter study integrating
rule-based algorithms and NLP to detect MB and CRNMB
events among older inpatients treated with antithrombot-
ics. We hypothesized that combining structured and textual
EMR data would improve the accuracy and completeness
of bleeding event identification compared with using either
data source alone. The study aimed to develop rule-based
algorithms for bleeding detection from structured data sources
(diagnoses, laboratory results, transfusions, and antihemorrha-
gic prescriptions) based on international definitions; design
and train an NLP model to identify bleeding mentions in
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discharge summaries; assess and compare the diagnostic
performance of structured data algorithms (SDA), NLP, and
their combination (SDA+NLP) against a manually reviewed
gold standard; and evaluate the generalizability of the
best-performing models through external validation on an
independent dataset.

Methods
Study Design
We conducted a multicenter cross-sectional study using
retrospective data covering the period from January 1, 2015,
to December 31, 2016. Data were obtained from 4 large Swiss
hospitals: Lausanne University Hospital (CHUV; approxi-
mately 1500 beds [21]), Geneva University Hospital (HUG;
approximately 2000 beds [22]), both located in the French-
speaking region and serving the cantons of Vaud and Geneva,
respectively, Zürich University Hospital (USZ; approximately
900 beds [23]) serving the Zurich metropolitan area, and
Baden Cantonal Hospital (KSB; approximately 400 beds
[24]) serving the canton of Aargau in the German-speak-
ing region. This study was conducted in accordance with
the SRTOBE (Strengthening the Reporting of Observational
Studies in Epidemiology) statement (Checklist 1).

The 2015‐2016 dataset was used for algorithm develop-
ment as it was the most recent period with harmonized,
high-quality structured and unstructured EMR data across all
hospitals. Later years were excluded due to EMR vendor
transitions, database restructuring, and new data-governance
restrictions limiting access to deidentified text. A more
recent CHUV dataset (2021‐2022) was used for temporal
and external validation to test algorithm robustness under
evolving clinical practices and documentation standards.
Study Participants and Hospital Stays
Eligible participants were Swiss residents 65 years or older
treated with at least 1 antithrombotic agent during their
hospital stay. Antithrombotic agents included vitamin K
antagonists, heparins, platelet aggregation inhibitors, direct
thrombin inhibitors, direct factor Xa inhibitors, or fondapari-
nux. Hospitalizations had to last at least 24 hours and to occur
between January 2015 and December 2016 (test dataset). For

the external validation, an additional dataset from CHUV
covering January 2021 to December 2022 was used (valida-
tion dataset). Only patients who had provided explicit consent
for the reuse of their health data for research purposes, as
indicated by the signature of the general consent form, were
eligible for inclusion. Hospital stays lasting less than 24 hours
were excluded from the analysis.

Data Sources and Preprocessing
Each participating hospital extracted relevant clinical data
from its institutional data warehouses for all inpatient
stays meeting the inclusion criteria. The extracted data-
sets included both structured and unstructured data. Struc-
tured data comprised administrative information, patient
movements within the hospital, key clinical and laboratory
parameters, and prescribed medications coded using the
anatomical therapeutic chemical classification. Diagnostic
codes were drawn from the International Statistical Classi-
fication of Diseases, 10th Revision, German Modification
(ICD-10-GM), and procedures were coded according to
the Swiss Classification of Surgical Procedures (CHOP).
Diagnoses and procedures were obtained from the hospital
billing records associated with each inpatient stay. Unstruc-
tured data included discharge summaries. Further details on
data extraction and handling are available in the published
study protocol [25].

Prior to analysis, structured data were cleaned, harmon-
ized, and verified for consistency at each site, then locally
deidentified before being transferred to a centralized database
hosted at CHUV. Unstructured data were deidentified and,
where necessary, converted into machine-readable formats,
but were stored locally on secure hospital servers to comply
with data governance policies. Due to the extent of missing
and inconsistent information, such as discrepancies in data
structure, coding systems, variable definitions, and extensive
missing values, reliable harmonization of KSB data with the
other hospitals was not feasible, and data from KSB were
excluded from the analysis. In addition, only unstructured
data from CHUV were analyzed, as full deidentification of
textual data from the other sites could not be ensured. The
same preprocessing workflow was applied to the 2021‐2022
CHUV dataset used for external validation. An overview of
the data processing workflow is provided in Figure 1.
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Figure 1. Overview of the data extraction and preprocessing pipeline for structured and unstructured electronic medical record (EMR) data. CHOP:
Swiss Classification of Surgical Procedures; CHUV: Lausanne University Hospital; ICD-10-GM: International Statistical Classification of Diseases,
10th Revision, German Modification.

Bleeding Detection Algorithms
We selected variables of interest and cutoff values for our
algorithms based on an adaptation of the International Society
on Thrombosis and Haemostasis (ISTH) definitions of MB
[26] and CRNMB [27], informed by an extensive review of
international guidelines (Multimedia Appendix 1). MB was
defined as a hemoglobin drop of 4 g/dL or more within
48 hours, a 2 to 4 g/dL drop associated with death within
24 hours, a hemoglobin level less than 7 g/dL, a hemo-
globin level between 7 and 9 g/dL associated with death
within 24 hours, or a transfusion of more than 5 units of
blood or red blood cells. CRNMB was defined as a hemo-
globin drop of 2 to 4 g/dL within 48 hours not associated
with death or a hemoglobin nadir between 7 and 9 g/dL

without subsequent death. The ISTH hemoglobin thresholds
were adapted to improve specificity in older inpatients
and to reduce the risk of misclassifying nonhemorrhagic
anemias. The 5-unit transfusion threshold was pragmatically
chosen due to the limited granularity of CHOP procedural
codes. Additional structured indicators were also integrated
to refine case classification: the prescription of antihemor-
rhagic agents (idarucizumab, andexanet alfa, prothromplex,
octaplex, and beriplex) was considered indicative of MB.
MB-related in-hospital mortality was defined as any hospital
stay involving at least 1 MB event followed by death during
the same admission. We then developed rule-based algo-
rithms using Boolean logic to detect MB and CRNMB cases
from structured data (Figure 2).

Figure 2. Algorithmic framework for detection of major bleeding (MB) and nonmajor clinically relevant bleeding (CRNMB) cases using structured
data. Antihemorrhagic agent: idarucizumab, andexanet alfa, prothromplex, octaplex, and beriplex. ∆Hb: drop in hemoglobin levels within 48 hours;
ICD-10-GM: International Statistical Classification of Diseases, 10th Revision, German Modification; Min Hb: minimum hemoglobin value during
the stay.

The ICD-10-GM list comprised 12 codes for MB and 41
codes for CRNMB (Table 1). We defined an MB in-hospital
mortality case as a stay containing an MB occurring during
hospitalization followed by death of the patient during the
same hospitalization period. We measure the prevalence of
bleeding cases, corresponding to inpatient stays with at least

1 MB or CRNMB event, either present on admission or
occurring during hospitalization. We quantified the relative
and absolute contribution of each structured data source
(diagnoses, laboratory, transfusions, and medications), both
individually and in combination, in terms of overall detection
capacity and proportion of identified bleeding events.
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Table 1. Lists of deficient systems/organs and distribution of ICD-10-GMa chapters and codes identifying MBb and CRNMBc cases.
Types of hemorrhagic events ICD-10-GM codes
MB
  Hyphema H21.0
  Hemorrhage and rupture of the choroid H31.3
  Retinal, vitreous, or subarachnoid hemorrhage H35.6, H43.1, I60_
  Hemopericardium not classified elsewhere I31.2
  Intracerebral hemorrhage I61_
  Other nontraumatic intracranial hemorrhages I62_
  Hemoperitoneum K66.1
  Hemarthrosis M25.0_
  Hypovolemic shock R57.1
  Shock during or after a procedure for diagnostic and therapeutic

purposes, not classified elsewhere
T81.1

CRNMB
  Conjunctival hemorrhage H11.3
  Otorrhagia H92.2
  Hemorrhagic esophageal varices I85.0, I98.3
  Other specified diseases of the esophagus K22.8
  Non-traumatic hemothorax J94.2
  Gastric, duodenal, or gastrojejunal ulcer with hemorrhage and/or

perforation
K25.0, K25.2, K25.6, K26.0, K26.2, K26.4, K26.6, K27.0, K27.2,
K27.4, K27.6, K28.0, K28.2, K28.4, K28.6

  Acute hemorrhagic gastritis K29.0
  Rectal and anal hemorrhage K62.5
  Hematemesis K92.0
  Melena K92.1
  Unspecified gastrointestinal hemorrhage K92.2
  Prostatic congestion and hemorrhage N42.1
  Hematoma of the broad ligament N83.7
  Hematometra N85.7
  Abnormal bleeding from the uterus and vagina N93.8, N93.9
  Postmenopausal bleeding N95.0
  Epistaxis R04.0
  Throat hemorrhage R04.1
  Hemoptysis R04.2
  Respiratory tract hemorrhage R04.8, R04.9
  Spontaneous ecchymosis R23.3
  Unspecified hematuria R31
  Hemorrhage, not classified elsewhere R58, T81.0

aICD-10-GM: International Classification of Diseases, 10th Revision, German Modification.
bMB: major bleeding.
cCRNMB: clinically relevant nonmajor bleeding.

Natural Language Processing Model
To complement structured data detection, we developed a
supervised ML model to identify MB, CRNMB, and past
bleeding cases documented in discharge summaries.

A dataset of 400 discharge summaries from CHUV was
randomly divided into a training set (n=280) and a test
set (n=120), including 100 summaries with MB, 100 with
CRNMB, and 200 with no bleeding. Three independent
physicians manually annotated the 400 discharge summaries

using 4 mutually exclusive labels: (A) ‘presence of CRNMB,’
(B) ‘presence of MB’ (as previously defined), (C) ‘history of
bleeding’ (when a discharge summary mentioned bleeding in
the EMR before the hospital admission), and (D) ‘absence
of any bleeding.’ Preprocessing steps included tokeniza-
tion, lemmatization, and sentence segmentation using the
French spaCy model (v3.0) [28]. The classification pipeline
combined logistic regression and support vector machine
models, selected for their interpretability and robustness
with limited training data. We deliberately used a classical
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supervised ML model rather than deep learning architectures
to ensure interpretability, reproducibility, and computational
efficiency, which are essential for clinical validation and
routine pharmacovigilance applications. This approach also
better suited the relatively small, annotated corpus, allowing
transparent feature weighting and easier auditability across
institutions. The model was trained using the scikit-learn
library (Python v3.9.1). The classification pipeline proceeded
in 3 stages: step 1: binary classifier to identify bleeding-rele-
vant versus irrelevant sentences; step 2: multiclass classifier
to distinguish between irrelevant, antecedent bleeding, and

active bleeding; step 3: binary classifier to further differen-
tiate between MB and CRNMB within sentences flagged
as active bleeding. Sentence-level predictions were aggrega-
ted to assign a final label to each document. Rules were
prioritized as follows: MB>CRNMB>history of bleeding>no
bleeding. This ensured a conservative classification hierar-
chy, favoring the identification of more severe bleeding
cases when multiple labels were present. Further methodolog-
ical details are available in the study proposal previously
published [25], the related article [29], and summarized in
Figure 3.

Figure 3. Natural language processing workflow from raw text input to final classification output. BERT: Bidirectional Encoder Representations
From Transformers; DS: discharge summary; HBDSCAN: Hierarchical Density-Based Spatial Clustering of Applications With Noise; UMAP:
Uniform Manifold Approximation and Projection.

Validation of the Bleeding Detection
Algorithms

Internal Validation Using CHUV 2015-2016
Data
To validate the SDA and SDA combined with NLP
(SDA+NLP) models, we conducted a manual review of 754
EMRs from CHUV’s 2015‐2016 dataset. The sample size for
validation was determined using a test result-based sampling
method [30]. Assuming a 7% MB, a 10% CRNMB accu-
racy, and a sensitivity of 0.7, at least 704 EMRs had to be
reviewed, and 754 EMRs were effectively reviewed. Four
physicians independently reviewed the records to compare
algorithm-detected with clinician-identified MB and CRNMB
cases. The review process followed a structured protocol
aligned with ISTH definitions [26,27] and adapted for
retrospective application to routinely collected hospital data.
Reviewers assessed each inpatient stay according to 4 key
criteria: (1) evidence of active bleeding, (2) severity of the
event (eg, hemodynamic instability), (3) need for therapeu-
tic intervention (eg, transfusion volume, administration of
antihemorrhagic agents), and (4) temporal relationship to

hospital admission (present on admission versus occurred
during stay). A complete list of synonyms used to iden-
tify MB and CRNMB cases during manual chart review
is provided in Multimedia Appendix 2. Two binary classi-
fication scenarios were evaluated: (1) MB versus all other
cases (CRNMB or no bleeding), and (2) CRNMB ver-
sus no bleeding (excluding MB). Algorithm performance
was evaluated at the inpatient-stay level using standard
binary classification metrics (sensitivity, specificity, positive
predictive value [PPV], negative predictive value, accuracy,
and F1-score), with manual chart review as the gold standard.
Comparisons between SDA, NLP, and combined models
were descriptive, and sensitivity was prioritized due to the
study’s patient safety focus. Interrater reliability among
reviewers was evaluated using Fleiss κ on a subset of
40 cases, with agreement levels interpreted according to
Landis and Koch [31] (>0.80: almost perfect; 0.61‐0.80:
substantial; 0.41‐0.60: moderate; 0.21‐0.40: fair; 0.00‐0.20:
slight; <0.00: poor). A P value associated with the Fleiss
κ coefficient was also calculated, with a P value less than
.05 indicating statistically significant agreement. Additional
details and results are provided in Multimedia Appendix 3.
In a subanalysis, a causal relationship between antithrombotic
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therapy and each bleeding event was also assessed during
the manual review, using a structured tool based on temporal
association, biological plausibility, and alternative explana-
tions. Cases were rated as certain, probable, possible, or
unclassified, in relation to antithrombotic exposure, accord-
ing to the WHO-Uppsala Monitoring Center scale [32]. The
methodology, sample size calculation, and findings of the
causality assessment of the subanalysis are presented in
Multimedia Appendix 4.

External Validation Using CHUV 2021-2022
Data
An external validation was performed using CHUV data from
24,054 inpatient stays between January 2021 and December
2022. We applied the same detection algorithms (SDA and
SDA+NLP) to this independent dataset to evaluate their
performance, robustness, and reproducibility. Results were
compared to those from the 2015‐2016 CHUV dataset.
Statistical Analysis
Descriptive statistics were used to summarize population
characteristics. Comorbidity was assessed using the Charlson
and Elixhauser indexes [33,34], which are validated tools for
risk adjustment and mortality prediction based on adminis-
trative health data. Comparisons of patient characteristics
between hospitals were conducted using a 1-way analysis
of variance on ranks (Kruskal-Wallis test) for continuous
variables and Pearson χ2 test for categorical variables.
Hyperparameters of the NLP classifier were optimized
through 5-fold cross-validation on the training set, and final
performance was estimated on an independent test set. All
performance metrics were reported with 95% CIs calcula-
ted using the Wilson method. Analyses were conducted
using StataCorp. 2021. Stata Statistical Software: Release 17.
College Station, TX: StataCorp LLC software for structured
data and Python (v3.9.1) for NLP development.
Ethical Considerations

Human Subject Ethics Review Approvals or
Exemptions
This study was conducted in accordance with the Declara-
tion of Helsinki and Swiss federal regulations governing
research on human data. Ethical approval was obtained
from all relevant cantonal ethics committees, coordinated by
the lead committee of the Canton of Vaud (CER-VD No.
2018‐00272). As the study involved secondary analysis of
routinely collected, deidentified hospital data, it qualified for
a simplified review under Swiss Human Research Act article
2, paragraph 2(c).

Informed Consent
The study relied exclusively on existing clinical data that
were deidentified before analysis. According to Swiss

regulations and institutional data governance policies,
informed consent was waived for patients who had not
explicitly objected to the use of their medical data for
research purposes. All participating hospitals operate an
institutional opt-out procedure, allowing patients to refuse the
secondary use of their data for research.
Privacy and Confidentiality
All data were deidentified at source before analysis.
Structured data were transferred through secure institutional
channels to a restricted-access research environment hosted at
CHUV. Unstructured textual data remained stored locally on
hospital servers and were processed within each institution’s
secure infrastructure to comply with data protection require-
ments. No directly identifiable information was accessible to
the investigators.
Compensation Details
No compensation was provided to patients, as the study
involved secondary analysis of preexisting, routinely
collected data and did not include direct contact with
participants.
Protection of Identifiable Information in
Figures and Supplementary Materials
No image, document, or figure contains any identifiable
patient information. Consequently, no individual consent for
image publication was required.

Ethics Approval
Approved by the Cantonal Ethics Committee of Vaud,
Switzerland (CER-VD No. 2018‐00272); informed consent
was waived for patients who did not opt out of research data
use.

Results
Study Population Characteristics
A total of 36,039 inpatient stays, involving 24,991 unique
patients, were included in the analysis: 7677 stays (5754
patients) at CHUV, 18,015 stays (11,356 patients) at HUG,
and 10,347 stays (7881 patients) at USZ. Patient characteris-
tics are detailed in Table 2. The median age at admission
was 78 (IQR 65‐99) years, with a balanced sex distribution
(51.40% male). Comorbidity was generally low across the
cohort, with a median Charlson index and Elixhauser index of
0.0; USZ patients had the lowest overall comorbidity burden.
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Table 2. Baseline patient characteristics and treatments: overall and by university hospital.

Characteristics All hospitals (n=36,039)a CHUVb (n=7677) HUGc (n=18,015)
USZd
(n=10,347)

Admission age (years), median (IQR) 78 (65‐99) 79 (65‐99) 80 (65‐99) 75 (65‐92)
Sex, n (%)
  Male 18,525 (51.40) 3987 (51.93) 8638 (47.95) 5900 (57.02)
  Female 17,514 (48.60) 3690 (48.07) 9377 (52.05) 4447 (42.98)
Length of stay (d), median (IQR) 9 (1-342) 9 (1-293) 12 (1‐342) 6 (1-145)
Transfer to intensive care, n (%) 1534 (4.26) 467 (6.1) 1067 (5.92) —e

In-hospital mortality, n (%) 1416 (3.93) 345 (4.5) 850 (4.7) 221 (2.1)
Comorbidity, n (%)
  Chronic renal dysfunction 8418 (23.36) 2163 (28.18) 5662 (31.43) 593 (5.7)
  Dialysis 622 (1.7) 176 (2.3) 241 (1.3) 205 (2.0)
  Acute renal dysfunction 1151 (3.19) 266 (3.5) 623 (3.5) 262 (2.5)
  Chronic liver dysfunction 1020 (2.83) 294 (3.8) 497 (2.8) 229 (2.2)
  Acute liver dysfunction 498 (1.4) 145 (1.9) 244 (1.4) 109 (1.1)
  Hypertension 18,316 (50.82) 3158 (41.14) 9271 (51.46) 5887 (56.90)
  Alcohol abuse 1354 (3.76) 388 (5.1) 663 (3.7) 303 (2.9)
  Stroke 3001 (8.33) 813 (10.6) 1625 (9.02) 563 (5.4)
  Cancer 6776 (18.80) 1572 (20.48) 2905 (16.13) 2299 (22.22)
  Platelet coagulation defect 2178 (6.04) 496 (6.5) 1029 (5.71) 653 (6.3)
  Anemia 7624 (21.15) 1998 (26.03) 4380 (24.31) 1246 (12.04)
  Risk fall 11,376 (31.57) 2932 (38.20) 6021 (33.42) 2423 (23.42)
  Diabetes 6638 (18.42) 1314 (17.12) 3575 (19.84) 1749 (16.90)
  Recent myocardial infection 1923 (5.34) 609 (7.9) 761 (4.2) 553 (5.3)
  Low weight 4059 (11.26) 967 (12.6) 2533 (14.06) 559 (5.4)
  Thrombolysis 695 (1.9) 180 (2.3) 512 (2.8) 3 (0.0)
  Vascular malformation 955 (2.6) 153 (2.0) 334 (1.9) 468 (4.5)
Charlson comorbidity index, median (IQR) 0.0 (0.0‐9.0) 0.0 (0.0‐9.0) 0.0 (0.0‐7.0) 0.0 (0.0‐7.0)
Elixhauser comorbidity index, median (IQR) 0.0 (0.0‐6.0) 0.0 (0.0‐6.0) 0.0 (0.0‐6.0) 0.0 (0.0‐5.0)
Antithrombotic categories, n (%)
  Direct factor Xa inhibitors 3297 (9.15) 599 (7.8) 1478 (8.20) 1220 (11.80)
  Vitamin K antagonists 7469 (20.72) 1324 (17.25) 4943 (27.44) 1202 (11.62)
  Heparin group 24,784 (6877) 5045 (65.71) 11,918 (66.17) 7821 (75.59)
  Direct thrombin inhibitors 255 (0.7) 87 (1.1) 134 (0.7) 34 (0.3)
  Platelet aggregation inhibitors 14,220 (39.46) 4354 (56.71) 4700 (26.09) 5166 (49.93)
  Thrombolytics 104 (0.3) 15 (0.2) 89 (0.5) 0.0 (0.0)
  Other antithrombotic agents: fondaparinux 1365 (3.79) 212 (2.8) 1140 (6.33) 13 (0.1)
Antidotes, n (%) 137 (0.4) 15 (0.2) 122 (0.7) 0.0 (0.0)
Transfusion, n (%) 582 (1.6) 264 (3.4) 318 (1.8) —
  ≤5 UIf plasma or red blood cells 225 (0.6) 100 (1.3) 125 (0.7) —
  >5 UI plasma or red blood cells 357 (1.0) 164 (2.1) 193 (1.1) —
Number of antithrombotic agents received during hospitalization, n (%)
  1 22,397 (62.15) 4257 (55.45) 12,381 (68.73) 5759 (55.66)
  2 11,918 (33.07) 2904 (37.83) 4924 (27.33) 4090 (39.53)
  3 1641 (4.55) 495 (6.4) 669 (3.7) 477 (4.6)
  ≥4 83 (0.2) 21 (0.3) 41 (0.2) 21 (0.2)

an: total number of recorded measurements for the respective parameter.
bCHUV: Lausanne University Hospital.
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cHUG: Geneva University Hospital.
dUSZ: Zürich University Hospital.
eNot available (missing or nontransferred data).
fUI: unit of blood component.

Distinct prescribing patterns were observed across hospi-
tals: HUG had the highest use of vitamin K antagonists
(n=4943, 27.44%), CHUV had the highest prescription rate
of antiplatelet agents (n=4354, 56.71%), and USZ repor-
ted the highest use of direct factor Xa inhibitors (n=1220,
11.79%) and heparins (n=7821, 75.59%). Hypertension
(n=18,316, 50.82%), chronic renal dysfunction (n=8418,
23.36%), anemia (n=7624, 21.15%), and cancer (n=6776,
18.80%) were among the most prevalent comorbidities.
Overall, in-hospital mortality was 3.93% (n=1416).
Bleeding Detection Using SDA
SDA detected 8748 (24.27%) overall bleeding cases, of which
2979 (8.26%) were MB cases and 5419 (15.04%) were

CRNMB cases (Table 3). Fatal MB occurred in 1.0% (n=350)
of all stays. MB prevalence varied across hospitals, with
the highest proportion observed at CHUV (n=769, 10.0%),
followed by USZ (n=998, 9.6%) and HUG (n=1212, 6.73%).
CRNMB prevalence was highest at USZ (n=1682, 16.26%).
Missing values for each variable used to identify MB and
CRNMB events are presented in Multimedia Appendix 5.

Table 3. Prevalence of bleeding cases detected by SDAa, overall and by university hospitalb.
All hospitals, n (%) CHUVc, n (%) HUGd, n (%) USZe, n (%) P valuef

Nonbleeding-related 27,641 (76.70) 5822 (75.84) 14,152 (78.56) 7667 (74.10) <.001
CRNMBg 5419 (15.04) 1086 (14.15) 2651 (14.72) 1682 (16.26) <.001
MBh 2979 (8.26) 769 (10.0) 1212 (6.73) 998 (9.6) <.001
MB in-hospital mortality 350 (1.0) 119 (1.6) 137 (0.8) 94 (0.9) <.001
Total 36,039 7677 18,015 10,347 —i

aSDA: structured data algorithms (ie, rule-based algorithm for structured data).
bBleeding cases: number of stays for patients treated with at least 1 antithrombotic agent during which at least 1 bleeding episode occurred.
cCHUV: Lausanne University Hospital.
dHUG: Geneva University Hospital.
eUSZ: Zürich University Hospital.
fUsing Pearson χ2 test.
gCRNMB: clinically relevant nonmajor bleeding.
hMB: major bleeding.
iNot applicable.

Relative and Absolute Contribution of
Structured Data Sources
Laboratory data were the most influential source for detecting
both MB and CRNMB, contributing to two-thirds of

identified cases, while ICD-10-GM codes contributed to
approximately one-third. Prescriptions for antihemorrhagic
agents had a minimal added value for MB detection, while
transfusion data contributed modestly. Figure 4 illustrates the
relative contribution of each data source.

Figure 4. Relative contribution of structured data sources (laboratory data, ICD-10-GM codes, prescription of antihemorrhagic agents, and
transfusions) to the detection of major bleeding (MB) and clinically relevant nonmajor bleeding (CRNMB). ICD-10-GM: International Statistical
Classification of Diseases, 10th Revision, German Modification.

Overlap between data sources was limited. Only 12.1%
(n=361) of MB stays and 8.7% (n=458) of CRNMB stays
were identified by 2 data sources, while detection by all 4
sources occurred in 0% of MB cases and only 0% (n=12) of

CRNMB cases (Figure 5). This limited overlap highlights the
complementarity, but also fragmentation, of structured data
signals.
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Figure 5. Absolute contribution of structured data sources (laboratory data, ICD-10-GM codes, prescription of antihemorrhagic agents, and
transfusions) to the detection of (A) major bleeding and (B) clinically relevant nonmajor bleeding. ICD-10-GM: International Statistical Classifica-
tion of Diseases, 10th Revision, German Modification.

Combined Detection Using SDA and NLP
(CHUV Only)
Among 7513 CHUV stays with discharge summaries,
combining SDA and NLP increased case detection: In total,
39.69% (n=2982) of hemorrhagic cases were detected: 12.2%
(n=920) were identified as MB and 27.45% (n=2062) as
CRNMB.

For MB cases, 56.6% (n=521) were detected by SDA
alone, 19.8% (n=182) by NLP alone, and 23.6% (n=217)
by both. For CRNMB cases, 35.1% (n=724) were detected
by SDA alone, 48.2% (n=994) by NLP alone, and 16.7%
(n=344) by both.

Classification discrepancies were observed between SDA
and NLP: 217 cases identified as MB by SDA were reclas-
sified as CRNMB by NLP, and conversely, 81 CRNMB
cases by SDA were reclassified as MB by NLP. NLP also
enabled the detection of a history of bleeding in 8.5% (n=642)
of cases, improving the temporal resolution of hemorrhage
onset.
Internal Validation Using CHUV
2015-2016 Data
The manual review of 754 EMRs identified 276 bleeding
cases: 144 MB and 132 CRNMB. Structured laboratory

data showed the highest sensitivity (0.58, 95% CI 0.52‐
0.64), while ICD-10-GM codes had the highest PPV (0.89,
95% CI 0.83‐0.98), and F1-score (0.60). SDA outperformed
NLP in sensitivity (0.77 vs 0.61), but NLP had higher
PPV (0.70 vs 0.51) and F1-score (0.65 vs 0.62). The
best performance was achieved by the combined ICD-10-
GM∪NLP algorithm, with a sensitivity of 0.71 (95% CI
0.66‐0.76), PPV of 0.72 (95% CI 0.66‐0.87), and F1-score
of 0.72. Algorithms combining SDA and NLP yielded the
highest sensitivity (0.84), confirming the benefit of multimo-
dal approaches. However, intersection-based algorithms (eg,
SDA∩NLP) demonstrated higher specificity at the cost of
reduced sensitivity.

Performance metrics for MB and CRNMB subgroups
followed similar trends, with reduced sensitivity but high
specificity for ICD-10-GM–based detection. Table 4 presents
a comprehensive summary of all performance metrics,
including sensitivity, specificity, PPV, negative predictive
value, accuracy, and F1-score.
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Table 4. Performance metrics of bleeding detection algorithms compared to manual electronic medical records review (gold standard; n=754)a.
Sensitivityb
(95% CI)

Specificityc
(95% CI) PPVd (95% CI) NPVe (95% CI)

Accuracyf (95%
CI) F1-scoreg

Bleeding all type (MBh or CRNMBi)
  Individual structured data sources
   ICD-10-GMj 0.46 (0.40‐0.51) 0.97 (0.95‐0.98) 0.89 (0.83‐0.98) 0.75 (0.72‐0.79) 0.78 (0.75‐0.81) 0.60
   Laboratory data 0.58 (0.52‐0.64) 0.60 (0.55‐0.64) 0.45 (0.40‐0.64) 0.71 (0.66‐0.75) 0.59 (0.55‐0.62) 0.51
   Whole blood or red blood cells

transfusion
0.18 (0.14‐0.23) 0.95 (0.93‐0.97) 0.68 (0.57‐0.97) 0.67 (0.63‐0.70) 0.67 (0.63‐0.70) 0.29

  Detection algorithms
   SDAk 0.77 (0.72‐0.82) 0.58 (0.54‐0.62) 0.51 (0.47‐0.62) 0.81 (0.77‐0.85) 0.65 (0.62‐0.68) 0.62
   NLPl 0.61 (0.55‐0.67) 0.85 (0.81‐0.88) 0.70 (0.64‐0.88) 0.79 (0.75‐0.82) 0.76 (0.73‐0.79) 0.65
  Combined data sources and algorithms
   SDA∪NLP 0.84 (0.79‐0.88) 0.54 (0.49‐0.58) 0.51 (0.47‐0.58) 0.85 (0.81‐0.89) 0.65 (0.61‐0.68) 0.64
   SDA∩NLP 0.47 (0.41‐0.53) 0.92 (0.89‐0.94) 0.78 (0.71‐0.94) 0.75 (0.71‐0.78) 0.76 (0.72‐0.79) 0.59
   ICD-10-GM∪NLP 0.71 (0.66‐0.76) 0.84 (0.80‐0.87) 0.72 (0.66‐0.87) 0.83 (0.80‐0.86) 0.79 (0.76‐0.82) 0.72
   ICD-10-GM∩NLP 0.31 (0.26‐0.37) 0.99 (0.98‐1.00) 0.95 (0.89‐1.00) 0.71 (0.68‐0.74) 0.74 (0.71‐0.77) 0.47
MB
  Individual structured data sources
   ICD-10-GM 0.34 (0.27‐0.42) 0.99 (0.97‐0.99) 0.84 (0.73‐0.99) 0.86 (0.84‐0.89) 0.86 (0.84‐0.88) 0.49
   Laboratory data 0.47 (0.39‐0.55) 0.81 (0.77‐0.84) 0.36 (0.30‐0.84) 0.86 (0.83‐0.89) 0.74 (0.71‐0.77) 0.41
   Whole blood or red blood cells

transfusion
0.22 (0.16‐0.29) 0.97 (0.96‐0.98) 0.66 (0.52‐0.98) 0.84 (0.81‐0.87) 0.83 (0.80‐0.85) 0.32

  Algorithms
   SDA 0.72 (0.64‐0.78) 0.79 (0.76‐0.82) 0.45 (0.39‐0.82) 0.92 (0.90‐0.94) 0.78 (0.75‐0.81) 0.55
   NLP 0.35 (0.28‐0.44) 0.95 (0.93‐0.96) 0.63 (0.51‐0.96) 0.86 (0.83‐0.89) 0.84 (0.81‐0.86) 0.45
  Combined data sources and algorithms
   SDA∪NLP 0.76 (0.68‐0.82) 0.79 (0.75‐0.81) 0.46 (0.39‐0.82) 0.93 (0.91‐0.95) 0.78 (0.75‐0.81) 0.57
   SDA∩NLP 0.30 (0.23‐0.39) 0.96 (0.94‐0.97) 0.64 (0.52‐0.97) 0.85 (0.83‐0.88) 0.83 (0.81‐0.86) 0.41
   ICD-10-GM∪NLP 0.56 (0.48‐0.64) 0.94 (0.92‐0.96) 0.69 (0.60‐0.96) 0.90 (0.87‐0.92) 0.87 (0.84‐0.89) 0.62
   ICD-10-GM∩NLP 0.14 (0.09‐0.21) 1.0 (0.99‐1.00) 0.91 (0.72‐1.00) 0.83 (0.80‐0.86) 0.83 (0.80‐0.86) 0.25
CRNMB
  Individual structured data sources
   ICD-10-GM 0.30 (0.23‐0.39) 0.91 (0.88‐0.93) 0.41 (0.32‐0.93) 0.86 (0.83‐0.88) 0.80 (0.77‐0.83) 0.35
   Laboratory data 0.25 (0.18‐0.33) 0.73 (0.70‐0.77) 0.17 (0.12‐0.77) 0.82 (0.79‐0.85) 0.65 (0.61‐0.68) 0.20
   Whole blood or red blood cells

transfusion
0.03 (0.01‐0.07) 0.96 (0.95‐0.98) 0.15 (0.06‐0.98) 0.82 (0.79‐0.85) 0.80 (0.77‐0.83) 0.05

  Detection algorithms
   SDA 0.65 (0.42‐0.58) 0.65 (0.62‐0.69) 0.23 (0.19‐0.69) 0.86 (0.82‐0.89) 0.63 (0.59‐0.66) 0.32
   NLP 0.53 (0.45‐0.62) 0.77 (0.74‐0.81) 0.34 (0.28‐0.81) 0.89 (0.86‐0.91) 0.73 (0.70‐0.76) 0.41
  Combined data sources and algorithms
   SDA∪NLP 0.66 (0.57‐0.73) 0.56 (0.52‐0.60) 0.24 (0.20‐0.60) 0.88 (0.85‐0.91) 0.58 (0.54‐0.61) 0.35
   SDA∩NLP 0.38 (0.30‐0.47) 0.88 (0.84‐0.90) 0.40 (0.32‐0.90) 0.87 (0.84‐0.89) 0.79 (0.76‐0.82) 0.39
   ICD-10-GM∪NLP 0.60 (0.52‐0.68) 0.75 (0.72‐0.79) 0.35 (0.29‐0.79) 0.90 (0.87‐0.92) 0.73 (0.69‐0.76) 0.44
   ICD-10-GM∩NLP 0.24 (0.17‐0.32) 0.93 (0.91‐0.95) 0.42 (0.31‐0.95) 0.85 (0.82‐0.87) 0.81 (0.78‐0.83) 0.30

aIt should be noted that no patient record contained the variable antihemorrhagic agent for the detection of MB. Consequently, the performance for
this variable was not included in the table.
bSensitivity: proportion of bleeding cases that have been correctly identified.
cSpecificity: proportion of nonbleeding-related cases that have been correctly identified.
dPPV: positive predictive value; proportion of bleeding cases among all those classified as bleeding cases by the algorithm.
eNPV: negative predictive value; proportion of nonbleeding-related cases among all those classified as nonbleeding-related cases by the algorithm.
fAccuracy: overall prediction accuracy (ie, the proportion of bleeding and nonbleeding-related cases that the algorithm has correctly identified.
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gF1-score: harmonic mean of the precision and recall (ie, F1-score = 2 × [recall × precision]/[recall + precision]).
hMB: major bleeding.
iCRNMB: clinically relevant nonmajor bleeding.
jICD-10-GM: International Statistical Classification of Diseases, 10th Revision, German Modification.
kSDA: structured data algorithm.
lNLP: natural language processing.

Interrater reliability for manual review of 40 EMRs showed
substantial agreement: Fleiss’ Kappa was 0.65 for bleeding
detection and 0.61 for MB versus CRNMB classification. Of
276 manually reviewed inpatient stays with bleeding events,
17% (n=48) were attributed to antithrombotic agents. The
causal relationship was classified as “certain” in 25% of cases
(n=12), “probable/likely” in 23% (n=11), and “possible” in
52% (n=25).
External Validation Using CHUV
2021-2022 Data
Application of the SDA and SDA+NLP algorithms to
the CHUV validation dataset (24054 stays) demonstrated
generalizability. The prevalence of MB cases significantly
decreased from 10.0% in the 2015‐2016 period to 5.55%
(n=1336) in the 2021‐2022 period, while the prevalence
of CRNMB cases increased significantly from 14.15% to
16.63% (n=4000). MB in-hospital mortality also rose, from
1.6% to 2.6% (n=616).

Patient characteristics differed significantly between
cohorts (Multimedia Appendix 6). Direct oral anticoagulant
prescriptions increased from 7.8% to 22.7%, while vitamin K
antagonist use decreased from 17.2% to 7.6%. The incidence
of elevated INR values >4 declined from 3.3% to 1.8%.
Both Charlson and Elixhauser scores increased, reflecting
higher comorbidity. Transfusions involving ≤5 units of blood
rose from 1.3% to 8.8%. Notably, the proportion of patients
receiving ≥3 antithrombotic agents during hospitalization
increased fivefold (from 6.7% to 35.0%).

Discussion
Principal Findings
To our knowledge, this is one of the first multicenter
studies assessing the feasibility and effectiveness of combin-
ing structured and unstructured EMR data to detect bleeding
cases in older inpatients treated by one or more antithrom-
botic agents. Across 3 large university hospitals, our SDA
identified 8.26% of MB and 15.4% of CRNMB cases.
Laboratory variables contributed most to event detection,
while ICD-10-GM codes alone captured only about one-third
of cases, achieving a sensitivity of 0.84 when both data
sources were combined. These findings confirm the feasibil-
ity of automated bleeding surveillance in real-world hospital
data and demonstrate the added value of leveraging free-text
information to complement structured data sources.

Comparison to Prior Work
Our estimated bleeding rates (MB: 8.26% and CRNMB:
15.04%) are consistent with prior hospital-based studies in
older adults, which reported MB incidences ranging from
1.8% to 11.3% [35,36] and CRNMB from 3.5% to 13.0%
[35,37]. These findings confirm that antithrombotic-related
bleeding remains a major cause of ADEs in older pop-
ulations, associated with increased hospitalization length,
morbidity, and mortality [38], highlighting the need for
targeted preventive strategies.

The algorithms’ performance varied across structured data
sources and aligns with prior research. ICD-10-GM codes
detected only one-third of MB and CRNMB cases, consistent
with previous evidence of underreporting anticoagulant-rela-
ted bleeding events [39,40]. Yap et al [15] found similarly
low sensitivity (16%‐24%) but very high PPV (>0.97),
indicating that diagnostic codes are reliable confirmatory
markers but poor screening tools. The inclusion of labora-
tory data markedly improved sensitivity in our SDA model,
consistent with findings by Dyas et al [6] and Shung et al
[10]. The modest decline in PPV was likely due to false
positives generated by hemoglobin thresholds, a limitation
noted in earlier work [15].

Detection of CRNMB was more challenging than MB,
partly due to broader definitions and lower specificity of
ICD-10-GM codes and transfusion data, echoing the moderate
performance reported by Yap et al [15] (sensitivity 50%‐56%,
PPV 43‐50%).

The NLP model contributed substantially to overall
detection, with a sensitivity of 61% and PPV of 70%, in
line with earlier NLP-based models for bleeding and ADE
detection [10,41]. Importantly, only about 20% of events
overlapped with those captured by structured data, demon-
strating that text analysis retrieves unique clinical insights
often missing from coded data. NLP also enhanced temporal
resolution by identifying prior bleeding episodes in 8.5%
of cases, information generally unavailable from structured
data alone. The combined SDA+NLP model achieved high
sensitivity (0.84), thereby minimizing the risk of missed
events, with only 16% of cases being false negatives.
Although this proportion is relatively low, it still represents
missed hemorrhagic events that could impact the accu-
racy of retrospective surveillance and safety signal detec-
tion. However, our detection algorithm provides a notable
proportion of false positives (49%), which could contribute to
alert fatigue in clinical practice and increase the workload
associated with unnecessary chart reviews. For real-world
deployment, performance thresholds depend on the intended
use: for surveillance or signal detection, a sensitivity above
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0.80 with PPV above 0.50 is generally acceptable, as false
positives can be secondarily reviewed; for clinical deci-
sion support, stricter thresholds (eg, PPV≥0.70) are needed
to prevent alert fatigue. Improving true positive detection
to 70% would strengthen reliability and clinical applicabil-
ity, potentially through prioritization or triage of clinically
significant cases.

External validation revealed a decline in MB prevalence
and a concurrent increase in CRNMB and MB-related
mortality in the validation dataset (2021‐2022), compared
to the CHUV 2015‐2016 dataset. These trends may reflect
evolving prescribing patterns, such as increased use of direct
oral anticoagulants and reduced use of vitamin K antago-
nists, and a shift in clinical profiles, with higher comorbid-
ity scores and greater treatment complexity in the more
recent cohort. These observations are consistent with the
known bleeding risk profiles of antithrombotic agents, direct
oral anticoagulants being more frequently associated with
gastrointestinal bleeding (CRNMB), and vitamin K antago-
nists with intracranial bleeding (MB) [42], and underscore the
need for dynamic algorithmic models capable of adjusting for
changing treatment patterns and patient characteristics [43].
Strengths and Limitations
This study has several notable strengths. It is one of the first
multicenter initiatives to integrate structured and unstructured
EMR data for ADE detection in older hospitalized patients.
The inclusion of 3 university hospitals provided a large,
diverse dataset, while the harmonization of over 1 million
clinical variables ensured robust data quality. Algorithms
were developed using internationally accepted definitions
of MB and CRNMB and validated through manual chart
review, ensuring clinical credibility. External validation on
a temporally distinct dataset further reinforced reproducibility
and robustness.

Several limitations should also be considered.
First, the test dataset (2015‐2016) was relatively dated and

spanned only 2 years, reflecting mostly the time-consuming
extraction and harmonization process required to merge data
from three hospitals before data interoperability infrastruc-
tures were implemented. Consequently, it may not entirely
capture current clinical practices. Nevertheless, this limitation
was mitigated by validating our pipeline on an independent
and more recent dataset.

Second, NLP development and validation were performed
using CHUV data only and did not take into considera-
tion interinstitutional variations in coding practices, hospital
information system architecture and interoperability, clinical
documentation standards, or local prescribing patterns, which
may limit the generalizability of our findings. To mitigate
this, the model was trained on a balanced, manually annotated
corpus reviewed by 3 independent physicians. Future studies
should externally validate the NLP model on datasets from
other French-speaking institutions to confirm its performance
and enhance its applicability.

Third, data from 1 hospital (Baden hospital) were excluded
due to missing information and harmonization challenges, and
CHOP codes could not be extracted from the USZ hospital;
this could have led to underestimation of certain bleeding
events. Recent efforts have been undertaken to improve data
harmonization across sites, which now largely mitigate the
harmonization challenges previously encountered.

Fourth, while ICD-10-GM code selection was based on
international guidelines and expert review, some misclas-
sification may have occurred. This limitation was partly
mitigated by manual validation. However, the adoption of a
standardized bleeding classification would help overcome this
limitation and harmonize bleeding-event categorization across
studies.

Fifth, causality assessment between bleeding cases and
antithrombotic agents was not formally assessed by our
algorithms, as this requires strict criteria and necessitates
a comprehensive EMR review. Causality was manually
evaluated using the WHO–Uppsala Monitoring Center
framework, which provided valuable contextual insights
but is resource-intensive. Future work should investigate
semiautomated causal-inference tools to scale this process
efficiently.

Sixth, structured data were insufficient to capture the
timing of bleeding cases prior to admission, as such informa-
tion is documented in discharge summaries, underscoring the
need for unstructured data in ADE detection.

Finally, all participating hospitals were tertiary academic
centers with strong data infrastructures and comprehensive
documentation practices. While this ensured data reliability
and methodological consistency, it may limit the generaliza-
bility of our findings to other contexts, such as secondary
or community hospitals, or to health systems with differ-
ent digital maturity levels. Compared to many international
settings, Swiss university hospitals operate within a decentral-
ized but highly standardized health care system, characterized
by universal coverage and well-developed inpatient services.
Future research should evaluate these algorithms in more
diverse hospital types and countries to assess their adaptabil-
ity and scalability beyond tertiary Swiss institutions.
Future Directions
This study illustrates the value of combining structured
and unstructured clinical data to improve the detection of
bleeding events in older inpatients exposed to antithrombotic
therapy. This integrated approach can enhance pharmacovi-
gilance systems, reduce underreporting, and support timely
clinical interventions. Future efforts should expand algorithm
coverage to additional unstructured sources (eg, nursing notes
and consultation letters), improve clinical documentation
practices, and incorporate semiautomated causality assess-
ment tools. Combining these detection models with multivari-
ate risk stratification that integrates patient-specific factors
(age, comorbidities, comedications, and clinical service)
could enable prioritization of clinically meaningful alerts.
Finally, embedding such tools within common data models
and privacy-preserving data-sharing infrastructures, such as
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those promoted by the Swiss Personalized Health Network,
could facilitate cross-institutional learning health systems and

accelerate artificial intelligence-supported pharmacovigilance
in real-world clinical practice.
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