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Abstract

Background: Postpartum depression (PPD) affects up to 20% of mothers globally. Early detection is vital for better out-
comes, yet screening lacks scalability and predictive power. Artificial intelligence (AI)—through machine learning, deep
learning, and natural language processing —enhances the early identification of mothers at risk with greater accuracy.

Objective: This study aims to systematically map the existing literature on Al-based methods for detecting and predicting
PPD.

Methods: This scoping review was conducted in accordance with the PRISMA-ScR (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. We included empirical studies that applied Al
techniques to detect or predict PPD and were published in peer-reviewed journals, conference proceedings, or dissertations.
Studies were excluded if they were nonempirical (eg, reviews, editorials, and abstracts), not published in English, focused
on general perinatal mental health without a specific emphasis on PPD, or used Al solely for monitoring or treatment rather
than prediction or detection. We systematically searched 8 databases—MEDLINE, Embase, PsycINFO, CINAHL, Scopus,
IEEE Xplore, ACM Digital Library, and Google Scholar—from inception through February 28, 2025. The search strategy
was supplemented by backward and forward reference screening and biweekly alerts to capture newly published studies. Two
independent (M [Alkhateeb] and A [Nayeem])reviewers (M [Alkhateeb] and A [Nayeem]) screened the retrieved studies,
with disagreements resolved by a third reviewer (AA [Alrazaq]). Data were extracted by 2 independent reviewers using a
standardized extraction form capturing study characteristics, Al model types, data sources, features, preprocessing, validation
strategies, and performance metrics. A formal risk-of-bias assessment was not performed due to the scoping nature of the
review. All extracted data were synthesized narratively.

Results: Out of 503 retrieved studies, 65 met the inclusion criteria. The United States contributed the largest proportion
of studies (18/65, 27.7%). The highest number of publications occurred in 2024 (17/65, 26%). Most included studies were
journal articles (46/65, 71%). Short-term postpartum outcomes (<12 weeks) were most frequently assessed (20/65, 30.8%).
Most included studies (52/65, 80%) applied Al models for predicting PPD, while 14 of 65 (22%) studies used them for
detection. Sociodemographic data were most frequently used (49/65, 75.4%), followed by psychological data (44/65, 68%) and
obstetric data (35/65, 55%). Data preprocessing mostly relied on basic scaling (51/65, 79%) and some missing data imputation
(29/65, 44.6%). Machine learning dominated (57/65, 87.7%), especially random forest, support vector machines, and logistic
regression. Internal validation (k-fold, hold-out) was standard, while external validation was scarce. Ensemble-based boosting
models consistently demonstrated superior performance across key metrics, highlighting their potential for accurate and
scalable PPD prediction. Current studies suffer from limited sample sizes, geographic bias, lack of standardized feature sets,
minimal external validation, and inconsistent reporting of comprehensive model metrics.
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Conclusions: This scoping review analyzes 65 studies on Al in PPD, highlighting dominant use of classical machine learning,
limited deep learning adoption, underuse of advanced preprocessing, inconsistent validation, and reliance on structured,
unimodal data—mainly sociodemographic, clinical, and obstetric features.
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Introduction

Background

Postpartum depression (PPD) is a common mental health
issue affecting new mothers after they give birth. Its salient
features include feelings of enduring melancholy, losing
interest in hobbies and their everyday life (and, potentially,
their baby), and reduced feelings of pleasure in activities.

Traditionally referred to as the “baby blues,” PPD is a
profound and serious condition undermining the activities
of daily life and the psychosocial well-being of mothers. It
affects up to a fifth of new mothers worldwide, albeit it is
often undiagnosed; in any case, it is a major concern for
public health [1].

Postpartum care is vital to ensure the best outcomes
for both neonates and mothers. This includes creating a
supportive environment with health-promoting activities and
breastfeeding encouragement. It must also address each
mother’s individual mental health needs. [2].

Worldwide, studies of perinatal mental health have noted
that PPD is increasingly evident [3]. According to the
estimations of the National Institute of Mental Health, up to
15% of all women who experience pregnancy also expe-
rience related depression, whether during or after preg-
nancy. Prevalence is typically higher (ie, 18%-25%) in low-
and middle-income countries, where it is associated with
socioeconomic issues and health care resource availability
and access, as well as sociocultural factors [4].

The great variety in PPD prevalence underscores the
requirement for efficacious strategies for screening women
and delivering interventions catering to various needs. The
mainstay for PPD detection now is dependent on women
reporting classic symptoms and completing self-reported
tools, of which the Edinburgh Postnatal Depression Scale
(EPDS) [5] and the Patient Health Questionnaire-9 (PHQ-9)
[6] are common and effective. However, such tools for
screening women during and after pregnancy are typically
not administered consistently. For instance, women are often
screened once during the early stages of pregnancy, such
as the second trimester. However, the same tools are rarely
reapplied in later or postpartum periods [7,8].

Furthermore, the tools detect current depression, with no
scope to anticipate future risk (based on current symptoms
and feelings) [9]. Prediction and early diagnosis of PPD
remain challenging, largely because qualitative narrative data
are difficult to interpret and integrate alongside quantitative
clinical metrics.

https://www jmir.org/2026/1/e77376

A detailed professional analysis is necessary to interpret
data appropriately, which is costly, time-consuming, and
potentially subjective [10]. PPD prevention and treatment
interventions require improved screening solutions that can
be delivered during early pregnancy and throughout the
pregnancy journey and postpartum period.

Artificial intelligence (AI) can potentially address this
impasse, with its capability to handle and process vast
volumes of complex, high-dimensional, nonlinear data. Using
machine learning (ML), large language models, and natural
language processing (NLP) techniques, Al can detect subtle
patterns inherent within data that could otherwise evade
human analysis [10,11].

Al can enhance prediction accuracy by incorporating
diverse data sources. These include electronic health records
(EHRs), diagnostic indicators, self-reported feelings, and
behavioral cues gathered from digital platforms, with
appropriate safeguards [1,12]. Such possibilities render Al a
highly useful clinical tool, offering real-time decision-making
input for digital care delivery.

Research Problem and Aim

Many studies have developed AI models for detecting and
predicting PPD, yet these studies offer fragmented insights
into the full potential of AI methodologies. Several previ-
ous reviews attempted to summarize these insights [10,13-
19], but they have notable limitations. Specifically, some
prior reviews were traditional narrative reviews rather than
systematic or scoping reviews and thus lacked rigorous,
structured methodologies [13,14,16].

In addition, many earlier reviews used narrow search
queries or omitted critical databases (eg, PsycINFO, ACM
Digital Library, IEEE Xplore, Scopus, and Embase),
potentially excluding relevant studies [10,13-19]. Further-
more, past reviews often broadly addressed general depres-
sion or women’s mental health instead of specifically
targeting PPD, limiting their direct relevance [10,15]. Also,
the bibliographic searches of previous reviews mostly
concluded before September 2022, omitting recent advance-
ments in Al methodologies and multimodal data integra-
tion techniques. Importantly, most prior research emphasized
traditional clinical and survey-based data, neglecting
innovative data sources such as social media and wearable
sensors. These novel data sources represent a promising
opportunity to enhance Al model accuracy and predictive
capabilities for PPD [10,13,14,16-19].

The primary aim of this review is to map the landscape
of Al methodologies used in PPD detection and prediction
and to identify key research trends, methodological features,
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and evidence gaps. Specifically, this review is guided by the
following research subquestions:

* What types of Al models have been used to detect or
predict PPD, and how do they differ in approach and
complexity?

* What data modalities (eg, structured, unstructured,
physiological, and digital) have been used in these
studies?

* How have studies handled model development
processes such as feature selection, validation, and
interpretability ?

* What are the key limitations, challenges, and future
opportunities for applying Al to PPD detection in
real-world clinical and community settings?

By addressing these questions, this review provides a
structured, up-to-date, and integrative overview of Al in
postpartum mental health—highlighting opportunities for
innovation, responsible deployment, and policy translation in
maternal care.

Methods

We conducted a scoping review in accordance with the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews)
guidelines (see PRISMA-ScR checklist). The following
sections detail the specific methods we used in this review.

Search Strategy

All-inclusive searches were done across the following 8 major
electronic databases on November 18, 2024, to determine
relevant studies: MEDLINE (via Ovid), PsycINFO (via
Ovid), Embase (via Ovid), CINAHL (via EBSCO), IEEE
Xplore, ACM Digital Library, Scopus, and Google Scholar.
To keep our search up to date, we set up an automatic
biweekly search alert for 24 weeks, ending on February 28,
2025. Given the vast number of results generated by Google
Scholar, we focused on the first 100 results (10 pages),
as they are ranked by relevance. In addition to database
searches, we expanded our review by manually screen-
ing reference lists of included studies (backward reference
checking) and identifying studies that cited them (forward
reference checking). We also collected additional papers
through automatic email alerts. To ensure that the search
query was well-structured and effective, 3 experts in digital
mental health were consulted and previous relevant literature
was reviewed. Two main categories of terms were inclu-
ded in the final search query: Al-related terms (eg, artifi-
cial intelligence, machine learning, and deep learning) and
PPD-related terms (eg, postpartum depression, postpartum
depression, and postnatal depression). A detailed search query
used for each database is shown in Multimedia Appendix 1.

Study Eligibility Criteria

This scoping review targeted studies that specifically applied
Al to the detection or prediction of PPD. Eligible stud-
ies were empirical in nature, used AI methodologies, and
were published in peer-reviewed journals, dissertations, or
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conference proceedings. There were no restrictions regarding
publication year, country of origin, data type, study design,
population, or outcome type.

Exclusion criteria encompassed nonempirical works such
as reviews, abstracts, commentaries, and proposals, as well
as studies lacking a specific focus on PPD (eg, addressing
broader maternal or perinatal mental health). Studies that
used Al solely for managing or monitoring PPD, rather than
detecting or predicting it, were also excluded. In addition,
only those papers published in English were considered.

Study Selection

The study selection process in this review involved 3 main
steps. First, we used EndNote to remove any duplicate studies
from our search results. Then, the titles and abstracts of the
remaining studies were screened to determine their relevance.
For studies that passed this initial screening, a full-text review
was conducted, during which the entire paper, including
any supplementary materials, was carefully read. To ensure
accuracy, 2 independent reviewers (MA and AN) conduc-
ted the study selection process. In cases of disagreement
during title or abstract screening or full-text review, a third
reviewer (AAA) was consulted to resolve the conflict. In
addition, we calculated Cohen % statistic to assess interre-
viewer agreement, which yielded a value of 0.78-0.83 by
title or abstract screening or full-text review —indicating a
high level of consistency and reliability in the data selection
process [20].

Data Extraction

To ensure a structured and consistent approach to data
extraction, we developed a data extraction form, which was
pilot-tested using 5 selected studies before full implementa-
tion. This form was designed to capture key details rela-
ted to the study characteristics, datasets, features, and Al
methodologies. The finalized data extraction form used in this
review is shown in Multimedia Appendix 2. Two independ-
ent reviewers (MA and AN) used Microsoft Excel to extract
data systematically. Any discrepancies between them were
resolved through discussion.

Data Synthesis

We analyzed the extracted data using a narrative synthesis
approach, summarizing key findings in descriptive text and
tables to provide a clear overview of the research. First, we
outlined the basic details of each study, including the year of
publication and the country where the research was conduc-
ted. Subsequently, we characterized the datasets underpin-
ning Al model development, cataloged the Al methodologies
used in each study, and detailed the feature attributes used
in model construction. To keep the process structured and
ensure accuracy, we used Microsoft Excel to organize and
synthesize the extracted data efficiently.
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Results

Search Results

As illustrated in Figure 1, a total of 503 records were
retrieved through searches across 9 databases: Ovid MED-
LINE (n=64), Embase (n=48), PsycINFO (n=26), CINAHL
(n=22), IEEE Xplore (n=16), ACM Digital Library (n=2),
Scopus (n=145), Web of Science (n=80), and Google
Scholar (n=100, limited to the top 100 results ranked by
relevance). After removing 272 duplicate records using
reference management software, 231 unique reports remained

Alkhateeb et al

for screening. After reviewing the titles and abstracts, 145
records were excluded. The full texts of the remaining 86
records were retrieved for further assessment. Of these, 7
full-text papers were not available. After evaluating the 79
available full-text papers, 17 studies were excluded for the
following reasons: they did not use Al (n=7); did not focus
on PPD (n=1); were not journal papers, conference papers,
or dissertations (n=8); or were not written in English (n=1).
Three additional relevant studies were identified through both
backward and forward reference list screening. Ultimately, 65
studies were included in this review [21-85].

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram illustrating the study selection

process. Al: artificial intelligence; PPD: postpartum depression.

Identification of studies via databases
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Characteristics of the Included Studies

As shown in Table 1, the included studies were published
between 2009 and 2025, with the highest number of
publications occurring in 2024 (26.1%). Regarding publi-
cation types, the majority were journal papers (70.8%).
The United States contributed the largest proportion of
studies (27.7%), followed by China (15.4%) and Bangla-
desh (13.9%). This review included 39 out of 65 (60%)
retrospective studies and 27 out of 65 (41.5%) prospective
studies. The number of participants in the included studies
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ranged from 11 to 573,634, with a mean of 18,1874 (SD
72,933.8). Participant distribution was as follows: 23 studies
had fewer than 500 participants, 27 studies included between
500 and 5000 participants, 8 studies had between 5001
and 50,000 participants, and 7 studies involved more than
50,000 participants. Among the 26 studies that reported mean
participant age, values ranged from 26 to 44.5 years, with an
overall mean average of 31.08 (SD 3.42) years. See Multi-
media Appendix 3 for overall information about included
studies.
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Table 1. Characteristics of the included studies.
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Key aspects Studies References
Year of publication, n/N (%)
2025 3/65 (4.6) [30.46,77]
2024 17/65 (26.1) [21,24,35,37,40,41,43.45,51,52,65-67,69,78.83,85]
2023 14/65 (21.5) [28,32,33,42,44,50,56,63,68,72-74,79,80]
2022 10/65 (15.4) [34,36,39.47,58-62 ,81]
2021 5165 (7.7) [22,26,48,55,84]
2020 6/65 (9.2) [23,31,57,64,71,82]
2019 4/65 (6.2) [25.,29.49,76]
2018 3/65 (4.6) [27.,54,75]
<2017 3/65 (4.6) [38,53.70]

Publication type, n/N (%)
Journal paper
Conference paper

Dissertation

Country of publication, n/N (%)

United States
China
Bangladesh
India

Japan

United Kingdom
Spain

Sri Lanka
Others®

Research designb, n/N (%)

Retrospective
Prospective
Number of participants
Mean (SD)
Range
<500
500-5000
5001-50,000
>50,000
Mean age (years)©

Mean (SD)
Range

46/65 (70.8)
18/65 (27.7)
1/65 (1.5)

18/65 (27.7)
10/65 (15.4)

9/65 (13.9)

6/65 (9.2)

3/65 (4.6)

2/65 (3.1)

2/65 (3.1)

2/65 (3.1)

13/65 (1 each) (20)

39/65 (60)
27/65 (41.5)

18,1874 (72.933.8)
11-573 634

23/65 (35.4)

27/65 (41.5)

8/65 (12.3)

7/65 (10.8)

31.08 (3.42)
25.99-44.5

[22,23,25,28-31,33,34,37-44 46 47 49-52,54,55,57,60,62-65,67-70,74,76-85]
[21,24,26,27,32,35,45,48,53,56,58,59,61,66,71-73,75]
[36]

[242531,37,39.4143,51,53,55,57.62.64,74,76,80,83 84]
[27.42.63.69.75,77-79,82.85]
[21,354045,52,61,65,67,73]

[32-34.48.56.66]

[46.47 81]

[44,71]

[38,70]

[58,59]

[22,23,26,28-30.36.49.50,54.60.68.72]

[21,23-27,30,32,35,37 40-45 47-49,51-56,60,61,64-66,71-76,80,83,84]
[22,28,29,31,33,34,36,38,39,46,50,51,57-59,62,63,67-70,77-79,81,82,85]

[21-85]
[21-85]

[24,26-28.30,31,33,34,37.48.49,53,54,57.61 66.68.,71,72,77,79.81 85]
[21,2225.2935,38-42.45.50,52,58-60,62,63.65.67,69,70,73,75.78 80,82]
[32,36.47.51,56,64,74.76]

[23.43.44.4655 83 ,84]

[21-85]
[21-85]

40thers include Australia, Brazil, Indonesia, Italy, Mexico, Nigeria, Norway, Pakistan, Palestine, Portugal, Saudi Arabia, Slovenia, and Sweden.
bThe number of studies does not add up as one study used both retrospective and prospective designs.
®Mean age not reported: 39 studies (60%).

Characteristics of Datasets

format (unimodal), while the remaining studies (8/65, 12.3%)
integrated multiple data formats (multimodal). The survey

As depicted in Table 2, the average dataset size was
37,338.5 (SD 160,309.6), with a range spanning from 16 to
1,170,446. The dataset size fell between 500 and 5000 in
28 out of 65 (43.1%) studies. Most studies (49/65, 75.4%)
used closed-source data, while the remaining (16/65, 24.6%)
relied on open-source datasets. The studies included various
data formats, including textual, tabular, audio, video, and
images. The majority (57/65, 87.7%) used a single data

https://www jmir.org/2026/1/e77376

was the most common data collection approach (50/65,
76.9% of studies), followed by data sourced from EHRs
(25/65, 38.5% of studies). Most studies (45/65, 69.2%) were
conducted in health care settings. Regarding the timing of
outcome measurement for PPD, 20 out of 65 (30.8%) studies
assessed outcomes within 12 weeks of delivery (short term),
14 out of 65 (21.5%) studies between 12 and 36 weeks
(medium term), and 17 out of 65 (26.2%) studies after more
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than 36 weeks (long term). The most common reference
standard used for labeling the data (outcomes) was the

Alkhateeb et al

characteristics of the datasets used in the included studies are
provided in Multimedia Appendix 4.

EPDS (37/65, 56.9% of studies). Further details on the

Table 2. Characteristics of datasets used in the included studies.

Data summary Studies, n (%) References
Dataset size?®
Mean (SD) 37,338.5 (160,309.6) [21-85]
Range 16-1,170.,446 [21-85]

Dataset size categories, n/N (%)

<500 20/65 (30.8) [24,26,28,30,33,34,37,48.49,53,54,57,61,66,68,71,72,79,81 85]

500-5000 28/65 (43.1) [21,22,25,29,31,35,38-42,45,50,52,58-60,62,63,65,67,69,70,73,77,78,80,82]
5001-50,000 8/65 (12.3) [32,36,47,56,64,74-76]

>50,000 9/65 (13.9) [23,27,43,44,46,51,55,83,84]

Data source
Closed
Open

49/65 (75.4)
16/65 (24.6)

[22-27,29-32,36-39.,42-44 46-51,53-55,57-63,68-72,74-79,81-85]

[21,28,33-35,40,41,45,52,56,64-67,73,80]

Data format?
Unimodal
Multimodal

Data collection methodology®

[21-26,29,30,32,34-40,42-50,52,54-66,68-76,79-85]
[27,28,31,33,41,51,53,67]

57/65 (87.7)
8/65 (12.3)

Survey 50/65 (76.9) [21,22,24-28,30,31,33-36,38,40-42 44-46,50-54,56-65,67-73,75,78-82,85]
EHRs¢ 25/65 (38.5) [23,37,41-44,46,47.49,50,55,67-70,73,74,76-79,81,83-85]

Social media 8/65 (12.3) [27,29,32,33,51,53,66,67]

Sensor-based 5/65 (7.7) [37-39,44 49]

Laboratory-based data 2/65 (3.1) [79,81]

Setting®

45/65 (69.2)
18/65 (27.7)
5/65 (7.7)

[21-23,28,30,33-35,37-43,45-47 49-52,54,55 ,57-59,63,65,67-71,73-79,82-85]
[25,27,29,31,32,36,48,51,53,56,60-62,64,67,72,80,81]
[24,26,37,44,66]

Health care
Community
Academic
Outcome measurement timing (weeks)®
Short term (<12)
Medium term (12-36)
Long term (>36)

20/65 (30.8)
14/65 (21.5)
17/65 (26.2)

[34,38.42,46,47,50,52,55,57,62,63,67,68,71,74,77,78 81,82 ,85]
[36,46,50,57-59,62,63,70,72,78 ,80,81,85]
[22-24,36,37,43,48,53,57,63,64,69,76,80,83-85]

Reference standard

EPDS! 37/65 (56.9) [22.24,26-30,34.,38-40 42 46 47 50,52 ,53.,55-59,61-63 ,67-72,76-78 80-82]
ICDE 8/65 (12.3) [2.23.29,41 42,44.49.76.83]

PHQM 7/65 (10.8) [3.34.43,60.61,64,67]

PDSS! 3/65 (4.6) [4.25,34,48]

PPDSI 2/65 (3.1) [5.32.67]

4Mean (SD) is calculated.

bThe number of studies does not add up as some studies used multiple data collection methodologies.
“The number of studies does not add up as some studies are conducted in multiple settings.

4EHRs: electronic health records.

®The number of studies does not add up as the timing of outcome measurement varied across studies. Outcome measurement timing not reported: 27
(41.5%).

fEPDS: Edinburgh Postnatal Depression Scale.

8ICD: International Classification of Diseases.

hPHQ: Patient Health Questionnaire.

IPDSS: Postpartum Depression Screening Scale.

JPPDS: Postpartum Depression Scale.
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Characteristics of Preprocessing
Techniques

Table 3 summarizes the most frequently used preprocessing
techniques identified across the reviewed studies. Across
the reviewed literature, feature transformation overwhelm-
ingly dominates preprocessing: Min-Max scaling and Z
score standardization appear in 78.5% (51/65) of studies. In
contrast, missing data strategies remain underutilized —only
44.6% (29/65) of papers applied any form of imputation,
leaving 33.8% (22/65) to rely on case deletion or ignore
the issue entirely. Class imbalance remedies are similarly
rare: just 4.6% (3/65) of studies used stratified resampling
or SMOTE variants, while cost-sensitive learning appeared in
only 6.2% (4/65).

Categorical encoding methods vary in popularity: label
encoding leads at 29.2% (19/65), one-hot encoding in 13.9%

Table 3. Characteristics of datasets used in the included studies.

Alkhateeb et al

(9/65), binary encoding in 9.2% (6/65), dummy encoding
in 6.2% (4/65), and target encoding in a mere 3.1% (2/65).
For feature selection, tree-based importance (Gini impurity)
featured in 18.5% (12/65) of studies and Pearson correla-
tion filtering in 12.3%, with recursive feature elimination
(5/65, 7.7%), information-gain ratio (6.2%), and SHAP-based
methods (4/65, 6.2%) trailing behind.

Finally, dimensionality reduction and specialized feature
extraction remain fringe techniques: sequential floating
forward selection was used in only 7.7% (5/65) of papers
and principal component analysis (PCA) in 6.2% (4/65),
text vectorization methods (eg, N-grams, TF-IDF) in 4.6%
(3/65), domain-specific statistical features in 3.1% (2/65),
and acoustic-signal processing (MFCC) in just 1 study (1/65,
1.5%). For a comprehensive overview of dataset characteris-
tics used in the studies, refer to Multimedia Appendix 5.

Preprocessing techniques

Studies, n/N (%) References

Dimensionality reduction techniques

Sequential floating forward selection and 5/65 (7.7) [51,56,71,75,82]
SHAP?
Principal component analysis 4/65 (6.2) [36,52,77,81]
Others (each one l)b 1/65 (1.5) [33.,57,64,66,67,72]
Feature extraction®
Psycholinguistic and N-gram text vectorization 3/65 (4.6) [29,33]
Domain-specific statistical 2/65 (3.1) [51,56]
Acoustic signal feature extraction 1/65 (1.5) [31]
Feature selection
Regularization of the model
Pearson correlation 8/65 (12.3) [33,36 41.44.4548,54,61]
Spearman rank filtering 2/65 (3.1) [58,59]
Chi-square independence test 2/65 (3.1) [21,65]
Cox proportional hazards and Kaplan-Meier 1/65 (1.5) [24]

survival analysis
Wrapper and tree-based selection

Gini importance/mean decrease in impurity 12/65 (18.5)

Recursive feature elimination 5/65 (7.7)
with cross-validation

Entropy-based information gain ratio 4/65 (6.2)
SHAP value-based importance 4/65 (6.2)
via differential evolution

Other metaheuristic and ensemble filtersd 1/65 (1.5)

Encoding approaches

[22,23,25,40,46,52,71,73,82]
[30.,40,64,73,74]

[25.3041,46]
[37.43,62.63]

[64,71,75,84]

Label encoding 19/65 (29.2) [23-25,29,31,33,38,42,48,50,51,53,61,63,64,66-68,73]
One-hot encoding 9/65 (13.9) [26,27,32,36,41,43,52,56,65]

Binary encoding 6/65 (9.2) [22,34.40,50,74,76]

Dummy encoding 4/65 (6.2) [47,70,78 84]

Target encoding 2/65 (3.1) [41,59]

Handling unbalanced data

Manual resampling 15/65 (23.1)

[23,29,31,47,50,52,53,56,58,60,61,64,70,71,73]
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Studies, n/N (%) References
4/65 (6.2) [55.,63,69]
3/65 (4.6) [36,56,76]

Preprocessing techniques

Class weighting and cost-sensitive
Random oversampling (eg, SMOTE? variants)
Handling missing data

Statistical imputation (mean/median/KNN/ 29/65 (44.6) [22,24,31,33,34,36,38,41 43,44 46,51-54,58-60,62,65-67,70,73,78,80,82,84,
MICES®) 85]

Complete case analysis (listwise deletion) 22/65 (33.8) [23,27-29,34,36-38.,40,45.47,50,51,54,64,74-79,81]
Feature transformation techniques

51/65 (78.5)
23/65 (35.4)

[22-24.29-32,34,36-38.,40 41,43 49-52,54,56,58,59,67-71,74-76,78-82,84,85]
[26,27,29,32,33,36,40,41,47,50-52,64,65,67,72]

Min-max scaling and Z-score standardization

Text tokenization, lemmatization, and stop-
word removal

9/65 (13.8)
9/65 (13.8)

4SHAP: SHapley Additive exPlanations to interpret model.

bOthers include linear discriminant analysis (LDA), t-SNE, latent semantic analysis (LSA), latent Dirichlet allocation (LDA), spatial feature
extraction, and relief algorithm.

®Psycholinguistic text vectorization includes N-gram characteristics; linguistic inquiry and word count for emotion, cognition, social content; LDA
topics; and TF-IDF. Acoustic signal feature extraction includes MFCC, spectral contrast, and chroma.

dOthers include bagging-based selection-by-filter methods, sequential floating forward selection, sequential forward selection, relief algorithm, and
Boruta algorithm.

®SMOTE: Synthetic Minority Oversampling Technique.

fKNN: K-Nearest neighbor algorithm.

EMICE: Multiple Imputation by Chained Equations to handle missing data.

[25,31,40.,43.45,46,66,70]
[25,31,40,43,45,46,66,70]

Log/power transforms (Box-Cox, Yeo-Johnson)

Polynomial and interaction feature generation

56.9% of studies), mode of delivery for obstetric data (15/65,
23.1% of studies), maternal anxiety for psychological data
(13/65, 20% of studies), breastfeeding status for behavioral
data (11/65, 16.9% of studies), linguistic inquiry and word
count (LIWC) features —such as positive emotions (‘“happy”),
cognitive processes (“think”), and personal pronouns (“I”
and “we”)—for linguistic data (11/65, 16.9% of studies),
metabolic pathways and circulating markers for biomarker
data (4/65, 6.2% of studies), newborn gender for neonatal

Characteristics of Features Used in
Included Studies

The reviewed studies incorporated 9 distinct categories of
data in Al model development (Table 4). Sociodemographic
data were most frequently used (49/65, 75.4% of studies),
followed by psychological data (44/65, 67.7% of studies),
obstetric data (36/65, 55.4% of studies), and behavioral data
(23/65, 35.4% of studies). The number of features used

varied significantly across studies, ranging from 2 to 988,
with a mean average of 44.88 (SD 129.72). Notably, nearly
two-thirds of the studies (43/65, 66.2%) used fewer than 26
features.

Within each data type, the most commonly used individ-
ual features were age for sociodemographic data (37/65,

Table 4. Characteristics of features used in the included studies.

data (11/65, 16.9% of studies), hypertensive disorders for
medical history data (11/65, 16.9% of studies), and tweet
metadata for sensor-based data (3/65, 4.6% of studies).
Additional characteristics of the datasets used in the reviewed
studies are shown in Multimedia Appendix 6.

Features characteristics

Studies, n/N (%) References

Data type?
Sociodemographic 49/65 (75.4)
Psychological 44/65 (67.7)
Obstetric 36/65 (55.4)
Behavioral 23/65 (354)
Medical history 17/65 (26.2)
Neonatal 16/65 (24.6)
Linguistic 9/65 (13.9)
Biomarkers 7165 (10.8)
Sensor-based 5/65 (7.7)
Number of features?
Mean (SD) 449 (129.7) [21-85]

[21-24,28,30-32,34-36,38.,40-50,52,53,55,56,58-65,67-71,74,76-78,80,82-85]
[21-24,26,28-30,34-36,38.,40-46 .48 ,50-54,57 ,60-65,67,70-74,76,78,80,82-84]
[22-24,30,34,36,41,43 .44 ,46-49,51,55-61,63,64,67-71,74,76-78,80,83-85]
[22,25,32,34,36,42-44,47,50,51,53,55,56,58-61,63,64,67,80,82]
[22,23.43,46,47.49,56,63,67,68,71,76,78,80,83-85]
[22,28,30,38,47,50,53,56,61,63,64,70-72,78 85]

[26,27,29,31,33,39,66,67,75]

[46,57,68,69,77,79,81]

[37.,44,51,60,66]
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Features characteristics Studies, n/N (%) References
Range 2-988 [21-85]
Feature range
<25 43/65 (66.2) [21,23-29,31-33,35-38.,40-42 45 ,49-52,54-60,65-71,73,74,78.,79,82 85]
26-50 16/65 (24.6) [22,30,34,43,47,48,53,61,63,64,72,76,77.,80,83,84]
>50 6/65 (9.2) [39,44.46,62,7581]

Data input features sociodemographic data®

Age

Education level

Marital status

Monthly income

Employment status
Obstetric data®

Mode of delivery

Parity

Gestational age

Gravida

Obstetric complications
Psychological data®

Maternal anxiety

Depression history

Feeling of guilt

Feeling sad

Sleeping disorders
Behavioral data®

Breastfeeding status

Problems bonding with baby

Planned pregnancy

Smoking status

Alcohol use
Linguistic data®

LIWCES features

Speech and acoustic

Emotional and cognitive expression

Language models

Tweet attributes language
Biomarker data®

Metabolic pathway

Circulating biomarkers

Neurological

Protein-related

Genetic/epigenetic
Neonatal data®

Newborn gender

Birth weight

Preterm birth

Health of baby

Apgar scores

37/65 (56.9)

21/65 (32.3)
20/65 (30.8)
13/65 (20)

11/65 (16.9)

15/65 (23.1)
11/65 (16.9)
9/65 (13.9)
7/65 (10.8)
6/65 (9.2)

13/65 (20)
12/65 (18.5)
9/65 (13.9)
8/65 (12.3)
7/65 (10.8)

11/65 (16.9)
9/65 (13.9)
8/65 (12.3)
7/65 (10.8)
6/65 (9.2)

11/65 (16.9)
8/65 (12.3)
4/65 (6.2)
2/65 (3.1)
2/65 (3.1)

4/65 (6.2)
4/65 (6.2)
3/65 (4.6)
2/65 (3.1)
1/65 (1.5)

11/65 (16.9)
8/65 (12.3)
6/65 (9.2)
4/65 (6.2)
3/65 (4.6)

[21-24,28,30-32,34,35,38.,40,41,43 .45 ,47-50,52,55,58-61,63-65,68-71,74,77,80,82,
85]

[22,24,28,30,32,34,36,41,46,48,58-61,63,64,68,74,80,82,85]
[22,30,34,41,43,46-48,53,58,59,61,63,64,68,70,76,83-85]
[30,34,36,38,41,50,60,61,64,70,78,82,85]
[22,28,30,43,46,48,61,63,64,70,85]

[30,32,34,41,47.48,55,61,68,74,78,80,83-85]
[22,30,36,43,46,63,64,68,78,80,85]
[24,30,34,47,49,61,68,71,78]
[24,30.,49,60,68.,83,84]

[23,34,43,61,69.85]

[21,25,27,35,40,45,48,52,62,65,71,76,83]
[22,30,34,41,43,44,48,53,55,63,69,82]
[21,25,27,35,40,45,52,65,73]
[21,27,35,40,45,52,54,65]
[25,27,46,47,53,54,62]

[23,28,34,47,48,53,56,61,64,78,85]
[21,35,40,45,48,52,61,65,73]
[32,34.48,53,61,74,80,85]
[22,23,46,47,60,63,64]
[22,36,46,47,63,64]

[27]
[31]
[33]
[39]
[66]

[81]
[46,57,68]
[69,79]
[77]

[57]

[30,31,38,47,50,58,59,61,64,70,85]
[30,34,41,47,64,71,77,78]
[43,48,58,59,76,77]

[28,30,53,85]

[47,71,78]
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Features characteristics

Studies, n/N (%) References

Medical history?

Hypertension disorders 111/65 (16.9)

[22,43,47,49,56,63,76,78,80,83,84]

Gestational diabetes 44/65 (6.2) [43.49,78,80]

Migraine 44/65 (6.2) [22,63,83,84]

Preeclampsia 33/65 (4.6) [43,83,84]

Hypothyroidism 33/65 (4.6) [83-85]
Sensor-based®

Tweet metadata 33/65 (4.6) [66]

Activity intensity 33/65 (4.6) [37,60]

Calories burned 11/65 (1.5) [37]

Heart rate 11/65 (1.5) [37]

2The number of studies does not add up as certain features are reported in multiple studies within each category, resulting in repeated counts.

bThe sensor-based category includes only 4 features.
CLIWC: linguistic inquiry and word count.

Characteristics of Al Techniques

As shown in Table 5, the most included studies (52/65,
80%) used Al models for predicting PPD (ie, identifying
women at risk of developing PPD in the future), while 14 out
of 65 (21.5%) studies used them for detection (ie, identify-
ing whether a woman is currently experiencing PPD). Most
studies leveraged ML techniques (57/65, 87.7%), whereas DL
techniques were applied in 11 out of 65 (16.9%) studies.
The predominant application of Al models was in classifica-
tion tasks (eg, identifying the presence, absence, or severity
level of PPD). In contrast, 5 out of 65 (7.7%) studies used
Al models for regression tasks (eg, detecting EPDS score).
Various Al algorithms were used in the included studies, with
random forest (RF) being the most common (29/65, 44.6%),
followed by support vector machine (26/65, 4%) and logistic
regression (LogR) (23/65, 35.4%).

The most frequently used optimization strategy among
the included studies was stochastic gradient descent (9/65,
13.9%), followed by Adam (7/65, 10.8%) and learning rate
scheduling (6/65, 9.2%). The most applied regularization
and model stabilization techniques were L1/L2 regularization
(9/65, 13.9%) and grid search (9/65, 13.9%). To validate
Al model performance, both k-fold cross-validation and
holdout validation were the most widely adopted approaches
(32/65, 49.2%). Accuracy was the most reported perform-
ance metric (49/65, 75.4%), followed by sensitivity (48/65,
73.9%) and area under the curve (AUC) (41/65, 63.1%).
Additional characteristics of the Model of Characteristics of
Al Techniques used in the reviewed studies are shown in
Multimedia Appendix 7.

Table 5. Characteristics of artificial intelligence techniques used in the included studies.

Characteristics

Studies, n/N (%) References

AT?* algorithm aim

Prediction 52/65 (80) [21-27,29,30,32-36,39-47 49.,50,52-55,57-60,62,64-69,72-74,76-78 ,80-85]
Detection 14/65 (21.5) [28,31,37,38,48,51,56,61,63,69-71,75,79]
Al category
Machine learning 57/65 (87.7) [21-25,29-39,41-62,64,66-70,73-85]
Deep learning 11/65 (16.9) [26-28,32,40,41,58,59,63,65,71]
Transfer learning 3/65 (4.6) [26,40,41]
Natural language processing 3/65 (4.6) [33,39,72]
Reinforcement learning 2/65 (3.1) [63,69]

Problem solving approach

Classification 60/65 (92.3%)
Regression 5/65 (7.7%)
Al model type

Ensemble methods

Bagging
Random forest 29/65 (44.6)

85]

[21-35,37-43 45-53,55-67,69-76,78-85]
[36,44.,54,68.77]

[21,24,33,34,3741.43,4748,51,52,55,56,58-61,64,65,71,73,74,76,78,80-82,84,

https://www jmir.org/2026/1/e77376

J Med Internet Res 2026 | vol. 28 177376 | p. 10
(page number not for citation purposes)


https://www.jmir.org/2026/1/e77376

JOURNAL OF MEDICAL INTERNET RESEARCH

Alkhateeb et al

Characteristics Studies, n/N (%) References
Bagging 1/65 (1.5) [48]
Extreme random trees 1/65 (1.5) [73]

Extra trees 1/65 (1.5) [22]

Boosting
XGBoost
Gradient boosting
AdaBoost
CatBoost
LightGBM
Stacking
Stacking ensemble
Stacking model
Nested stacking
Neural networks
Multilayer perceptron
Recurrent neural

Convolutional neural

Natural language processing

Classification models
Support vector machine
Decision tree
K-Nearest neighbors
Recursive partitioning

Probabilistic classification
Logistic regression
Naive Bayes

Linear regression models
Ridge regression
LASSO regression

Elastic net

Support vector regression

Kernel regression

15/65 (23.1)
10/65 (15.4)
9/65 (13.9)
6/65 (9.2)
4/65 (6.2)

1/65 (1.5)
1/65 (1.5)
1/65 (1.5)

11/65 (16.9)
6/65 (9.2)
5/65 (1.7)
1/65 (1.5)

26/65 (40)
18/65 (27.7)
9/65 (13.9)
1/65 (1.5)

23/65 (35.4)
7/65 (10.8)

6/65 (9.2)
5/65 (1.7)
5/65 (1.7)
2/65 (3)
1/65 (1.55)

Optimization strategies (gradient-based optimization)

Stochastic gradient descent

Adam

Learning rate scheduling

AdamW
Cosine Annealing

Momentum

Regularization and model stabilization

L1/12 regularization
Grid search
Dropout

Batch normalization
Early stopping
Weight decay

Osprey optimization

9/65 (13.9)
7/65 (10.8)
6/65 (9.2)
2/65 (3.1)
2/65 (3.1)
1/65 (1.5)

9/65 (13.9)
4/65 (6.2)
8/65 (12.3)
3/65 (4.6)
2/65 (3.1)
2/65 (3.1)
1/65 (1.5)

[21,24,30,36,41,43.,45,55,61,65,68,76,80,84,85]
[22,23,30,51,56,60-62,68,73]
[33,41,45.48,53,56,64,65,73]
[3541,45,65,68,73]

[35,45,65,68]

[21]
[52]
[73]

[43,52,56.67,70,84]
(26,2740 41 66]
[28,31,36,64,80]
[72]

[21,26,29,32,33,37,38,43,47,49-51,53,56-61,64,75,76,78,79,82,85]
[21,24,25,30,41,46,48,49,51-53,56,60,65,76,78.,84,85]
[21,37,49,51,52,56,64,65,78]

[64]

[21,23,29,33,38,42-44,47,50,53,55,56,61,64,65,70,74,76,77 ,83-85]
[32,34,38,50,53,60,64]

[22,34,44 47,52 ,68]
[22,34,39,44,77]
[23,36.44.47,68]
[68]

[68]

[27-29.32,36.40,56,64,66]
[27,32,36,41,48,56,66]
[23,27,29,32,41,56]
[28.40]

[40.48]

[36]

[23,28,29,36,42,44,76,77 83]
[43,65,79.81]
[27,36,40,41,48,56,59,64]
[36,4041]

[28,36]

[36,56]

[67]
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Characteristics

Studies, n/N (%) References

Validation techniques
K-fold cross-validation 32/65 (49.2)

32/65 (49.2)

1/65 (1.5)

1/65 (1.5)

Holdout validation
Leave-one-out cross-validation [57]
Nested cross-validation [44]

MLP performance measures

Accuracy 49/65 (75.4)
Sensitivity 48/65 (73.9)
AUC* 41/65 (63.1)
Precision 36/65 (55.4)
Specificity 23/65 (354)
Geometric mean 7/65 (10.8)
Negative predictive value 7/65 (10.8)
F1-score 5/65 (7.7)

Root mean squared error/mean squared  3/65 (4.6)
error

[22,23,25,29,30,35,37,39,43,47-49,52,53,61-65,68,69,71,73-77,79,82-84]
[21,24,26-29,31-34,36,38-43.,45-47,50,51,53-56,58-60,70,78 81]

[21,2224.26-35,38 40,41 43-46 48 49,52 54-67 69-71,73.74.,76-80,82.85]
[21,22,24-2629-35,37 38 40-46 49-65,67,70.71,73,75,76.79.82-84]
[22-25,31,34,37-51,53,55-57,59-61,64,70,74-84]
[21,22,24-26.29-35 37 40 41 43-45 50,53 56,57 59-62.64 65 67,7378 82-85]
[22,30,31,34,37,38 42 44-46 48 51,5563 ,64,70,71,73,75,76,79,82 84]
[38,50.51.61,62,69,70]

[22,32,34.44 45 82 84]

[21,35.58.69,73]

[36,58.68]

3AT: artificial intelligence.
PML: machine learning.

CAUC: area under the curve, ROC-AUC (receiver operating characteristic) that plots true-positive rate against false-positive rate at different threshold

settings.

Among the Al models evaluated in Table 6, ensemble
methods emerged as the top performers, with an average
accuracy of 93.4%, an Fi-score of 92.5%, and an AUC
of 89.4%. Among gradient boosting techniques, CatBoost
achieved the highest AUC of 98.6%, alongside robust
accuracy and Fj-score metrics. LightGBM also demonstrated
strong performance, recording 92.6% accuracy, an F-score
of 87.8%, and an AUC of 91.1%, highlighting its scalabil-
ity and effectiveness. XGBoost delivered competitive results,
with an accuracy of 89.1% and an AUC of 86.8%. Convolu-
tional neural networks (CNNs) showed excellent performance
as well —particularly in accuracy (92%) and F-score (95.1%)
—although they were evaluated in a smaller subset of studies.

Traditional tree-based models, including RFs and recursive
partitioning, also showed moderate to strong performance.

RFs achieved an average accuracy of 80.5% and an AUC of
82.4%, while broader tree-based classifiers averaged 82.8%
accuracy and 82.6% AUC. Recursive partitioning, however,
showed lower accuracy (71.8%) and AUC (74.7%) across the
few studies assessed.

Across all models included, the mean performance was
81.7% (SD 11.05) for accuracy, 80.51% (SD 15.44) for
F{-score, and 81.0% (SD 12.0) for AUC. Collectively, these
findings underscore the strong predictive capabilities of
DL architectures and ensemble-based approaches —especially
boosting models—in detecting PPD, consistently outperform-
ing conventional ML algorithms across most evaluation
metrics or detailed information on performance metrics
(accuracy, F'|-score, and AUC) (Multimedia Appendix 8).

Table 6. Accuracy, F'i-score, and area under the curve of artificial intelligence models used in postpartum depression prediction.

Metrics? Accuracy F1-score AUCP

Model Studies,n Mean (SD) Range Studies,n Mean (SD) Range Studies,n Mean (SD) Range
Random forest 23 80.5(9.2) 59-96 19 809 (13.7)  39.3-95 25 824(92) 65.1-98
Decision trees 16 82.8 (9.1) 68.8-98.1 12 83.9(10.5) 66-9858 13 826(79) 69-97.6
XGBoost 13 89.1 (10.3) 67.6-100 8 91.8(114) 66-100 7 86.8 (11.1) 73-100
LightGBM 6 92,6 (11) 70.2-984 6 87.8(22.7) 41.6-986 4 91.1 (12.3) 72.7-98
AdaBoost 7 78.7 (9.6) 66-94 6 754 (11.6) 58-89 6 785(5.7)  69-85.7
CatBoost 5 936 (9.5) 77-9946 5 90.5 (11.1)  72-99.1 3 98.6 (0.5)  98-99
Gradient Boosting 8 79.2 (9.5) 67-79 7 76.7 (15.6)  45-92 10 86.8 (104) 70-97.3
Linear regressions 8 70.9 (4.9) 67-79 2 76.5 (0.7) 76-77 14 77.2(5.3) 67-87
Logistic regressions 16 75.3(7.3) 655-943 9 72.1 (16) 382-94.1 21 819(9.6) 69.6-97
Naive Bayes 9 74 (6.6) 67.5-864 18 734 (13.2) 56-88.7 10 76.8 (7.1)  65.6-92
SVMs® 18 80 (8.4) 64-94.9 13 77.5(14.1) 42.2-94 18 78.7(69) 642-90.3
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Metrics?® Accuracy F-score AUCP
Model Studies,n Mean (SD) Range Studies,n Mean (SD) Range Studies,n Mean (SD) Range
KNNsd 8 79.5 (13) 61.5-97 8 783 (13.9) 57-97 7 793(9.5) 615-882
Neural networks 3 79.6 (144) 659375 4 80.1 (15.1) 65.1-952 6 64.8(24.8) 31.2-90.8
MLPs® 9 81.7(8.3) 68-92 3 73.6 (24) 40.6-91.7 12 749 (17.3) 312912
ANNsf 6 85.3(10.8) 70.7-97.1 3 859(12.3) 71.7-93 3 706 (6.3)  66-77.79
CNNsé 5 92 (8.1) 77.3-100 4 95.1 (3.9) 91.1-100  N/AD N/A N/A
Reinforcement learning 3 854 (4.1) 81-89.07 3 84.2(4.7) 79.2-884 7 86.6 (3.8)  83-90.66
Ensemble models 9 934(10.8) 65-99.84 9 92.5(153) 529921 7 894 (16) 56.5-98.95
Overall 174 81.7(11.1) 59-100 141 80.5(154) 382-100 176 81.0 (12) 31.2-100

4Models are grouped into tree-based, boosting, probabilistic, traditional machine learning, neural networks, and ensembles. Metrics are mean (SD).
Study counts refer to the number of models reporting accuracy, F'1-score, or AUC—not the number of references.

bAUC:area under the curve.

CSVMs: Support Vector Machines.
dKNNs: K-Nearest Neighbor algorithm.
°MLPs: multilayer perceptrons.

fANNG: Artificial Neural Network.
8CNNs: Convolutional Neural Networks.
"N/A: not applicable.

Discussion

Principal Findings

This scoping review examines the evolving application of
Al in PPD research, with approximately 80% of studies
prioritizing early prediction over detection. This reflects a
growing awareness of AI’s potential to enable proactive
mental health interventions.

ML algorithms dominated (87.7%), suggesting a prefer-
ence for structured data handling and model interpretability.
Classical models such as RF (44.6%), LogR (35.4%), and
XGBoost (23.1%) were especially prevalent, likely due to
their ease of implementation, strong performance on tabular
datasets, and alignment with the interpretability demands in
health care as these models are well suited for structured
and tabular clinical data (eg, demographics, EPDS scores,
and EHR) and offer high interpretability, a core requirement
in health care settings for clinical transparency and trust.
In contrast, DL approaches—while more capable of han-
dling complex, high-dimensional inputs—were used in only
169% of studies, indicating underutilization of architec-
tures such as convolutional or recurrent neural networks
(RNNs). This aligns with the nature of DL methods (CNNs,
RNNs, and transformers) that require large, high-dimensional
datasets (eg, text, electroencephalogram, and sensor signals),
which were rare in the reviewed studies; also, DL models
are less interpretable, a major limitation in mental health
where explainability is critical for clinician adoption. NLP
and reinforcement learning (RL) were rarely used, despite
their potential for analyzing unstructured clinical notes and
dynamic decision-making, respectively. This aligns with the
fact that NLP is suitable for analyzing unstructured clini-
cal notes, patient narratives, or social media data, and few
studies had access to such datasets. In addition, RL’s strength
in dynamic decision-making (eg, treatment adjustment over
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time) is difficult to apply in static, retrospective datasets
common in PPD research.

More than 90% of studies focused on classification tasks
—categorizing individuals as at risk or not for PPD—while
only a few adopted regression models to estimate continuous
risk levels. Although classification supports clinical decision-
making, regression can offer more granular risk assess-
ments, useful for personalized interventions and monitoring
symptom trajectories. This aligns with real-world clinical
workflows—binary screening tools are common. However,
the underuse of regression models (predicting continuous
risk) limits personalization and longitudinal risk tracking.

The optimization strategies such as Adam or stochastic
gradient descent optimizers, learning rate scheduling, and
dropout were rarely reported across the literature. This may
reflect that most studies used classical ML, which does not
require such parameters or limited technical expertise or a
focus on classical methods over deep architectures. Regulari-
zation practices such as L1/L.2 penalties, batch normalization,
and early stopping were underused, despite their impor-
tance for model generalizability and performance stabiliza-
tion. These techniques help prevent overfitting and improve
generalizability. Their absence may reflect limited ML
maturity or reliance on default model settings without tuning.
Moreover, model validation techniques varied considerably.
Although nearly half of the reviewed studies used k-fold
cross-validation or holdout validation, external validation was
seldom implemented. External validation requires access to
independent datasets, which are often unavailable due to
privacy constraints in mental health and raising concerns
about generalizability. Performance evaluation also lacked
consistency, with accuracy (75.4%) and sensitivity (73.9%)
reported most frequently, while key metrics such as specific-
ity, AUC, and F-score were less commonly disclosed, which
are essential for imbalanced datasets such as PPD.
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By considering the results of performance evaluation
across accuracy, Fip-score, and AUC, they indicate that
ensemble models, especially boosting techniques such as
CatBoost, LightGBM, and XGBoost, consistently outper-
formed other AI methods in predicting PPD. Their
high accuracy and AUC reflect strong generalization and
robustness, owing to their ability to iteratively correct
misclassifications and capture complex, nonlinear patterns—
particularly valuable in noisy, imbalanced health care
datasets.

CatBoost led with an AUC of 98.6%, benefiting from
its advanced handling of categorical variables and built-in
overfitting control, making it highly suited for structured
health data. LightGBM followed closely, offering high
accuracy (92.6%) and efficiency due to its gradient-based
sampling and fast training, making it ideal for large-scale
or real-time applications. XGBoost also performed competi-
tively (89.1% accuracy and 86.8%) and remains popular for
its transparency and feature importance tools.

In contrast, traditional decision tree—based classifiers such
as RFs and generic tree-based models achieved moderate
performance, with accuracy ranging from 80.5% to 82.8%
and AUC values near 82%. While interpretable and computa-
tionally efficient, these models lacked the advanced learn-
ing mechanisms of boosting methods. Recursive partitioning
methods, evaluated in only 2 studies, performed the weakest
among tree-based approaches.

Overall, the mean model performance—accuracy: 81.7%
(SD 11.05), Fjy-score: 80.51% (SD 15.44), and AUC:
81.0% (SD 12.0)—shows variability likely due to differ-
ences in datasets, preprocessing, and validation strategies.
This underscores the need for standardized evaluation and
external validation to ensure model reproducibility and
clinical reliability. Also, this suggests limited awareness or
inconsistent standards in performance reporting and hinders
meaningful comparisons and meta-analysis across studies.

This inconsistency complicates comparative assessments
across models and highlights the need for standardized
evaluation frameworks.

This scoping review offers the first comprehensive
synthesis of both foundational and advanced preprocess-
ing techniques used in Al-driven PPD studies. The high
prevalence of basic normalization methods—such as Min-
Max scaling and Z-score standardization, reported in 78.5%
of studies—demonstrates a broad consensus on the need
to standardize input features, particularly in ML models
sensitive to feature magnitude. These practices are foun-
dational for ensuring convergence stability and improving
model performance, especially in algorithms such as LogR
and k-nearest neighbors. However, more advanced prepro-
cessing techniques were markedly underutilized, limiting the
full potential of Al in PPD prediction.

For example, although missing data are ubiquitous in
real-world health care datasets, only 44.6% of studies applied
imputation techniques to address it. The remaining studies
either dropped missing values or excluded incomplete cases
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—approaches that risk reducing sample size and introducing
systematic bias, particularly in psychiatric populations where
follow-up and self-report compliance can vary. Likewise,
class imbalance, a well-documented issue in mental health
data (eg, more controls than PPD cases), was insufficiently
addressed: only 23.1% of studies used resampling meth-
ods such as SMOTE, and an even smaller fraction (6.2%)
incorporated cost-sensitive learning, which could improve
model fairness and reduce false negatives—an important
consideration in screening contexts.

In terms of categorical variable processing, label encoding
(29.2%) and one-hot encoding (13.9%) were commonly used.
While these methods are simple to implement, they may
introduce ordinal bias or dimensionality explosion, respec-
tively. More efficient encoding schemes (eg, target encod-
ing and frequency encoding) that better preserve categorical
relationships were rarely used, reflecting either limited
awareness Or concerns over interpretability.

Advanced feature engineering and selection techniques
were also underexploited. Tree-based feature selection was
used in only 18.5% of studies, despite its use in iden-
tifying nonlinear relationships and reducing overfitting.
Dimensionality reduction methods such as PCA (6.2%) and
interpretability tools such as SHAP (6.2%) were seldom
implemented, limiting transparency and the ability to uncover
key risk factors. Furthermore, multimodal or unstructured
data processing techniques —including text or acoustic feature
extraction—were applied in fewer than 5% of studies, despite
their relevance in analyzing patient interviews, social media
posts, or voice biomarkers.

In summary, while basic preprocessing steps have become
standard practice, the limited adoption of more sophisticated
strategies reflects a missed opportunity to enhance model
robustness, generalizability, and interpretability. These gaps
underscore the need for broader methodological literacy
and the integration of more nuanced preprocessing pipelines
tailored to the complexity and heterogeneity of PPD data.

Geographically, North America led the research land-
scape, with the United States contributing the largest share
—just less than two-thirds. Asia also featured prominently,
especially China, Bangladesh, and India. This wide partici-
pation demonstrates the global relevance and flexibility of
Al solutions in diverse health care systems. However, it
also reveals disparities in research capacity, underscoring the
need for more contributions from underrepresented regions to
ensure global equity. Bangladesh’s notable presence is largely
due to the use of public datasets, showing how open access
data can significantly influence research output. The included
studies span from 2009 to 2025, with publication volume
rising steadily. A quarter of the studies were published in
2024 alone, reflecting growing global interest, better access to
digital health data, and advances in Al. The lower count from
2025 is likely due to early-year data collection. Most studies
appeared in peer-reviewed journals (more than two-thirds),
while fewer were conference papers (less than one-third),
and only 1 was a dissertation—illustrating both the academic
rigor and fast-evolving nature of this field. Sample sizes

J Med Internet Res 2026 | vol. 28 177376 | p. 14
(page number not for citation purposes)


https://www.jmir.org/2026/1/e77376

JOURNAL OF MEDICAL INTERNET RESEARCH

varied widely, ranging from 11 to 5,73,634 participants
(mean 18,187.4), yet nearly half of the studies had fewer
than 5000 participants, raising concerns about generalizabil-
ity and model performance. Among the 26 studies report-
ing participant age, the average was 31.08 years—consistent
with the typical childbearing population—although the lack
of demographic transparency in many studies limits compa-
rability and clinical applicability. Among studies reporting
participant age, the mean average was 31.08 (SD 3.42) years,
aligning with the typical reproductive age. However, more
than half of the studies did not report age, limiting compara-
bility and model applicability across age groups.

Sample sizes varied greatly—from less than a dozen
to more than half a million—with most studies enrolling
fewer than 5000 participants. Smaller studies often used
surveys or interviews, while larger ones relied on national
registries. This underscores the importance of large datasets,
especially for training DL models. Closed-source datasets
dominated, with only about 25% of studies using open
data. This limits reproducibility and hinders collaboration.
Expanding open access datasets and standardized repositories
would improve transparency and accelerate innovation. Most
studies were retrospective, drawing on accessible surveys
and EHR data. While more than two-thirds used surveys
and many depended on structured clinical inputs, a recent
shift toward prospective designs reflects growing interest
in real-time, high-quality data for AI validation. Use of
social media and sensor data is emerging, indicating a move
toward passive, continuous monitoring. However, objective
biomarkers—such as hormonal, genetic, or neuroimaging data
—were underutilized, appearing in only 2 studies, underscor-
ing a missed opportunity for clinical robustness. Moreover,
nearly 90% of studies used unimodal inputs (eg, surveys
and EHRs), with few incorporating multimodal data such as
text, audio, or imaging. This limits the ability to capture the
complex biopsychosocial nature of PPD. Research predom-
inantly occurred in health care settings, reflecting strong
clinical relevance. Around one-third took place in commun-
ities and fewer than 10% in academic contexts. Expand-
ing into diverse settings could improve the inclusivity and
generalizability of Al-based PPD interventions. Assessment
timing for PPD varied widely, with 12-month evaluations
being most common. Studies spanned short-, medium-, and
long-term intervals, yet more than 40% failed to specify
timing—revealing a major gap in methodological transpar-
ency. This variability underscores both evolving perspectives
on PPD progression and the need for standardized follow-
up periods to enhance comparability, reproducibility, and
clinical relevance of Al models. The EPDS is the most widely
used reference in PPD research, followed by International
Classification of Diseases (ICD) codes and PHQ-9, highlight-
ing its strong validation in postpartum populations. However,
inconsistent use of diagnostic tools across studies hampers
comparability and a unified understanding of PPD. While
Al models show promise using varied data sources, few are
benchmarked against tools such as EPDS or PHQ-9 —limiting
assessments of their real-world clinical use.
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Feature counts varied widely (2-988), with an average
of 44.9; nearly two-thirds of studies used fewer than 25
features, indicating a preference for simplicity and inter-
pretability. These findings underscore the need for broader
adoption of sophisticated feature selection and dimensional-
ity reduction techniques (eg, PCA, SHAP, and recursive
elimination) to enhance predictive performance and clinical
relevance. The results of this scoping review underscore
the central role of sociodemographic features, which were
the most frequently used across included studies on PPD.
Variables such as age (56.9%), education level (32.3%),
and marital status (30.8%) were among the most common
predictors, highlighting the consistent reliance on structured
patient-reported or administrative health records. Obstetric
features were the second most common group, particularly
mode of delivery (23.1%), parity (16.9%), and gestational age
(13.9%). These findings align with literature suggesting that
birth experience and maternal clinical history offer critical
information in predicting PPD onset. Psychological indica-
tors such as maternal anxiety (20%) and history of depres-
sion (18.5%) were also well represented. Their inclusion
reflects growing interest in integrating mental health history
and current affective symptoms into predictive frameworks.
Similarly, behavioral factors such as breastfeeding status and
bonding issues were frequently used to enhance emotional
and functional contextualization of risk. Less frequently used
were linguistic features (eg, LIWC metrics and emotional
expression) and biomarkers (eg, epigenetic markers and
neurological proteins), suggesting a growing but underutilized
frontier. Notably, sensor-derived features (eg, tweet meta-
data, wearable-derived activity, or heart rate) appeared only
in a handful of studies, despite the increasing ubiquity of
digital health data. This spectrum of feature types illustrates a
multidomain data integration trend, particularly among recent
studies that incorporate EHRs, digital behavioral traces, and
physiological data to enhance model robustness and precision.

Comparison With Previous Reviews

The findings of this review are broadly consistent with earlier
literature, including reviews by Kwok et al [10], Fazraning-
tyas et al [15], Qi et al [17], Saqib et al [18], Fazraning-
tyas et al [30], and Acharya et al [13]. These prior studies
similarly identified a reliance on retrospective study designs,
structured demographic and clinical features (eg, age, parity,
and psychiatric history), and traditional ML models such
as RFs, support vector machines, and LogR. Most were
applied to survey-based or EHR-derived datasets, reflecting
the accessibility and interpretability of structured data in
maternal mental health contexts.

However, this scoping review extends the current literature
in several important ways. First, our review is not focused
narrowly only on model types or performance metrics; it even
systematically maps the entire AI modeling pipeline, from
data characteristics and preprocessing techniques to model
training, optimization, and validation strategies. For example,
while earlier studies acknowledged preprocessing in general
terms, our analysis quantifies the usage of basic methods
(eg, scaling and label encoding) and highlights the underuse
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of advanced techniques such as SMOTE, SHAP, recursive
feature elimination, and cost-sensitive learning.

Second, this review identifies the limited adoption of
advanced Al methodologies, including DL, transformer-based
NLP, and transfer learning, despite their growing success in
related health care domains. While Fazraningtyas et al [15]
and Qi et al [17] recognized these tools conceptually, few
studies in their datasets applied them operationally to PPD
detection tasks—an observation confirmed and quantified by
our analysis.

Third, our review offers a granular classification of
more than 45 features across 9 thematic domains, revealing
persistent dependence on sociodemographic and self-repor-
ted data. This pattern, while accessible and interpretable,
introduces potential biases and limits the generalizability
of models. In contrast, passive and objective inputs—such
as biosensors, electroencephalogram, speech signals, or
real-time behavioral metrics—remain substantially under-
used, despite their promise for early and noninvasive
detection of PPD.

Fourth, unlike previous studies that typically summarized
trends descriptively, this review visualizes and quantitatively
tracks the growth of literature over time, the global distribu-
tion of research output, and the evolution of study design
types, using structured frameworks and stacked visualiza-
tions. For instance, we highlight that Bangladesh’s growing
presence is largely driven by the reuse of public datasets,
illustrating how open data democratizes research participa-
tion.

Finally, this review distinguishes itself by its methodolog-
ical scope and rigor. It includes studies published through
February 2025 across 8 multidisciplinary databases, covering
both prospective and retrospective designs, a wide range
of countries, and diverse data sources. This comprehensive
coverage enables a more nuanced understanding of current
capabilities and persistent gaps in Al-based maternal mental
health research. In particular, our audit of model regulariza-
tion, hyperparameter tuning, and evaluation practices offers
insight into areas often overlooked by earlier reviews. Taken
together, these contributions provide a stronger foundation for
the development of transparent, reproducible, and clinically
relevant Al tools in PPD research—addressing both meth-
odological blind spots and equity concerns raised in prior
literature.

Implication and Further Works

To significantly advance the field of Al-driven PPD research,
several key strategic priorities should be addressed. These
priorities focus on improving methodological rigor, inclusiv-
ity of data, clinical applicability, and ethical implementation.

First, enhance the integration of multimodal and objective
data sources. Currently, research predominantly relies on
traditional sociodemographic and self-reported survey data.
There is an urgent need to incorporate underutilized modali-
ties such as linguistic data (eg, LIWC, sentiment analysis, and
acoustic speech patterns), biosignals (eg, heart rate variability
and activity monitoring), wearable technology outputs, and
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biological biomarkers (eg, hormonal, metabolic, genetic, or
epigenetic markers). Leveraging these richer data types can
significantly enhance the accuracy, personalization, and early
detection capabilities of predictive models.

Second, expand and prioritize sharing of open access
datasets. Only about 25% of studies included in our review
used publicly available datasets, highlighting a substan-
tial barrier to reproducibility, benchmarking, and interna-
tional collaboration. Developing standardized, large-scale,
anonymized datasets should become a priority. Techniques
such as federated learning could facilitate collaborative
research across different institutions while maintaining data
privacy and security.

Third, increase the adoption of longitudinal and prospec-
tive research designs. Most existing Al models for PPD
prediction are based on retrospective or immediate postpar-
tum data, limiting their ability to capture evolving symptom
patterns over time. Incorporating longitudinal data collection
into future studies is essential to better understand symp-
tom progression, delayed onset, and relapse scenarios, thus
enhancing the clinical relevance and predictive accuracy of
Al models.

Fourth, advance multimodal fusion frameworks. Given
the complexity of PPD, future models must systematically
integrate structured data (eg, EHRs) and unstructured inputs
(eg, text, audio, and sensor signals). Developing robust
multimodal fusion approaches that effectively combine
diverse data sources will significantly enhance model
interpretability, clinical effectiveness, and predictive power.

Fifth, standardize preprocessing and feature engineering
pipelines. Variability and incomplete reporting in prepro-
cessing methods currently limit model comparability and
reproducibility. Adopting standardized protocols for data
preprocessing—including feature extraction, transformation
techniques, and class imbalance adjustments (eg, SMOTE and
cost-sensitive learning)—is necessary. Transparent reporting
of these processes should be enforced to enhance scientific
rigor and validation.

Sixth, emphasize model explainability and ethical Al
practices. Transparent and interpretable Al models are crucial
for clinical adoption. Few studies currently apply advanced
explainability methods such as SHAP, Local Interpretable
Model-Agnostic Explanations, or counterfactual analyses.
Integrating these interpretability techniques into Al pipelines
will facilitate clinician trust and understanding. Moreover,
ethical considerations—such as minimizing algorithmic bias
(such as balanced datasets and resampling to correct
imbalances in training data)—are considered in few studies,
but preventing potential harms from false positives, safe-
guarding patient autonomy, and ensuring cultural sensitivity
should be systematically addressed in all AI model develop-
ments.

Seventh, standardize evaluation and reporting metrics.
While accuracy is often prioritized, metrics such as specif-
icity, AUC, Fi-score, and precision must be consistently
reported to enable comprehensive evaluation and meaningful
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comparisons across studies. Furthermore, systematic reviews
and meta-analyses are required to identify existing methodo-
logical inconsistencies, biases, and underrepresented findings
to refine future Al-based research approaches.

Eighth, shift from subjective screening tools to objec-
tive validation measures. Current studies heavily rely on
subjective instruments (eg, EPDS, PHQ, and ICD codes),
which, despite validation, vary significantly across studies.
Future research should validate AI models using objec-
tive clinical measures such as physiological indicators and
behavioral markers, thus improving reliability and facilitating
clinical implementation.

Ninth, the superior performance of ensemble mod-
els—particularly boosting techniques such as CatBoost,
LightGBM, and XGBoost—suggests that they are promising
candidates for clinical implementation in PPD screening.
Their ability to consistently achieve high accuracy, F-score,
and AUC underscores their robustness in handling structured
health data, including demographic and clinical features.
Given the strong results of CatBoost in handling categorical
variables and LightGBM’s efficiency in large-scale settings,
future research should prioritize evaluating these models in
real-world clinical workflows and mobile health platforms,
where scalability and interpretability are critical. In addition,
since performance varied across studies due to differences in
data characteristics and preprocessing strategies, future work
should aim to establish benchmark datasets and standardized
pipelines for fair comparison.

Efforts should also be made to assess model perform-
ance across different population subgroups, ensuring that
these algorithms do not inadvertently introduce or amplify
bias. Finally, comparative studies should continue to assess
whether boosting models maintain their advantage as datasets
grow and diversify, particularly in longitudinal or multisite
contexts.

Finally, foster global and interdisciplinary collabora-
tion. PPD research remains unevenly distributed globally.
Encouraging cross-regional and interdisciplinary collabo-
ration—particularly with underrepresented regions and
diverse professional backgrounds such as computer science,
psychiatry, public health, and ethics—will foster equitable
research practices and drive innovation in maternal mental
health care globally.

Limitations

Despite the comprehensive nature of this scoping review,
several limitations should be acknowledged; first, we limited
our inclusion to studies published in English. This language
restriction may have resulted in the exclusion of relevant
research published in other languages, particularly from non—
English-speaking countries where maternal mental health may
be a pressing issue.

Second, we prioritized peer-reviewed and indexed
literature from 8 major databases and limited Google Scholar
results to the first 100 entries ranked by relevance. Con-
sequently, gray literature, including government reports,
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dissertations beyond ProQuest, and nonindexed conference
proceedings, may have been underrepresented.

Third, our review focused specifically on studies using Al
techniques for detection or prediction of PPD. As a result,
studies that applied Al for monitoring, treatment delivery, or
resource allocation in maternal mental health were excluded,
which narrows the scope of applicability.

Finally, we did not conduct a quantitative meta-analysis
or risk of bias assessment, as these are typically outside the
scope of scoping reviews. Consequently, while we mapped
methodological patterns and gaps, we did not evaluate effect
sizes, statistical heterogeneity, or study-level quality in a
standardized manner.

Conclusions

This scoping review comprehensively maps the application
of Al in PPD research, analyzing 87 studies published
between 2009 and 2025. The review identifies a predomi-
nant emphasis on early prediction (~80%) over detection,
with ML methods—particularly RF (44.6%), LogR (35.4%),
and XGBoost (23.1%)—used in 87.7% of studies. These
models were favored for their compatibility with structured
clinical data and interpretability. DL approaches, including
CNNs and RNNs, were underutilized (16.9%), reflecting data
limitations and interpretability concerns. NLP and RL were
rarely applied, mirroring limited access to unstructured or
sequential data sources.

More than 90% of studies focused on classification tasks,
aligning with standard clinical workflows, while regression
approaches remained limited. Basic preprocessing practices,
such as normalization, were widely adopted (78.5%), but
advanced strategies —such as imputation (44.6%), resampling
(23.1%), cost-sensitive learning (6.2%), and feature selec-
tion techniques such as PCA or SHAP—were inconsistently
applied. Most models lacked detailed reporting of optimiza-
tion strategies or regularization methods, and only half used
internal validation. External validation was rarely reported,
complicating model comparability.

The comparative analysis between accuracy, Fj-score, and
AUC confirms that ensemble learning approaches, particu-
larly boosting algorithms such as CatBoost and LightGBM,
consistently outperform traditional models in predicting PPD,
achieving superior accuracy, Fi-scores, and AUC values
across studies.

Geographic trends showed research dominance by North
America, particularly the United States, with notable
contributions from Asia, driven by access to public data-
sets. Most studies used retrospective designs and unimo-
dal inputs—mainly survey or EHR data—while multimodal
and objective data (eg, biomarkers and sensor data) were
rarely incorporated. Assessment timing, feature selection, and
dataset transparency varied widely. Sociodemographic and
obstetric features were the most frequently used predic-
tors, while linguistic, behavioral, and physiological data
were underrepresented. This review offers the first detailed
synthesis of preprocessing workflows and feature domains in
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PPD-AI research, underscoring both progress and methodo-
logical gaps across the literature.
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