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Abstract
Background: Artificial intelligence–enhanced imaging techniques have demonstrated promising diagnostic potential for
carotid plaques, a key cardiovascular and cerebrovascular risk factor. However, previous studies did not systematically
synthesize their diagnostic accuracy.
Objective: This study aimed to quantitatively explore the diagnostic efficacy of deep learning (DL) and radiomics for
extracranial carotid plaques and establish a standardized framework for improving plaque detection.
Methods: We searched the PubMed, Embase, Cochrane, Web of Science, and Institute of Electrical and Electronics Engineers
databases to identify studies involving the use of radiomics or DL models to diagnose extracranial carotid artery plaques
from inception up to September 24, 2025. The quality of the studies was determined using Quality Assessment of Diagnostic
Accuracy Studies for Artificial Intelligence (QUADAS-AI). A meta-analysis was conducted using StataMP (version 17.0;
StataCorp) with a bivariate mixed-effects model to calculate pooled sensitivity and specificity, generate summary receiver
operating characteristic (SROC) curves, assess Cochran Q statistic and I²-based heterogeneity, and conduct subgroup analyses
and regression analysis.
Results: Among 40 studies comprising 17,246 patients, 34 integrated independent test sets or validation sets in the quantita-
tive statistical analysis. Among them, 24 focused on DL models, 10 on machine learning models based on radiomics. The
combined sensitivity, specificity, and area under the SROC curve were 0.88 (95% CI 0.85‐0.91; P<.001; I2=93.58%), 0.89
(95% CI 0.85‐0.92; P<.001; I2=91.38%), and 0.95 (95% CI 0.92‐0.96), respectively. Compared with the machine learning
models based on radiomics algorithms, DL models achieved comparable improvements in specificity and area under the SROC
curve. It was observed that transfer learning and a large sample size enhanced the diagnostic performance of models. Models
used to identify plaque stability and presence had similar diagnostic performances, both of which were more effective in
identifying symptomatic plaque models. A total of 7 studies demonstrated that the models that combined clinical features
exhibited comparable diagnostic capability to pure DL and radiomics models. Additionally, 7 studies performed external
validation, obtaining lower diagnostic performance than in testing groups. Limited regression analysis failed to identify
significant sources of heterogeneity, and the limited number of eligible studies restricted more comprehensive subgroup
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analyses. The high heterogeneity in the study results may be due to different scanning parameters, model architecture, image
segmentation, and algorithms.
Conclusions: Radiomics algorithms and DL models can effectively diagnose extracranial carotid plaque. However, there are
concerns regarding irregularities in research design and the absence of multicenter studies and external validation. Future
research should aim to reduce bias risk and enhance the generalizability and clinical orientation of the models.

J Med Internet Res 2026;28:e77092; doi: 10.2196/77092
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Introduction
Extracranial carotid plaques are biomarkers of coronary artery
disease and cerebral ischemic events, including ischemic
heart disease and stroke. The global prevalence of carotid
plaques among individuals aged 30‐79 years is estimated
at 21.1% (n=815.76 million) in 2020. This high prevalence
reflects a growing global burden of cardiovascular and
cerebrovascular diseases, posing a significant challenge to
public health systems [1]. Therefore, early detection and
management of carotid plaque can potentially reduce the risk
of stroke and cardiovascular events [2-4], and thus, effective
detection and classification technologies need to be priori-
tized.

Imaging methods for carotid plaque imaging, such
as ultrasound, computed tomography angiography (CTA),
magnetic resonance imaging (MRI), and digital subtraction
angiography, facilitate detection, stenosis assessment, and
plaque composition analysis [5]. Conventional ultrasound
is the first-line screening method [6]. Studies show that
periapical radiographs (PRs) can serve as a supplementary
screening tool, demonstrating a 50% concordance with
ultrasound or CTA [7-9]. Current imaging primarily identifies
high-risk features, such as plaque neovascularity, lipid-rich
necrotic cores, thin fibrous caps, and intraplaque hemor-
rhage plaque ulceration [4,10]. Among them, the contrast-
enhanced ultrasound or superb microvascular imaging can
accurately quantify neovascularization and correlates well
with histopathology [11-14], offering rapid, noninvasive,
and reliable quantification [15]. It is proficient in vascu-
lar imaging and ulcer detection [16], as well as stenosis
assessment [17], but it faces challenges with small lipid cores
and thin fibrous caps [18]. MRI remains the gold standard
for assessing plaque composition, particularly for identify-
ing lipid cores and intraplaque hemorrhage [19]. While
digital subtraction angiography is the reference standard, its
invasive nature limits its application. Notably, the accuracy of
these diagnostic techniques largely relies on the expertise of
imaging or clinical physicians, which causes inconsistencies
in the assessment results of carotid atherosclerotic plaques—
particularly in measuring carotid intima-media thickness,
characterizing intraplaque components, and evaluating fibrous
cap integrity.

The radiomics algorithms and deep learning (DL) models
have demonstrated significant potential in medical image
analysis [20]. Radiomics is a quantitative medical imag-
ing analysis approach that aims to transform high-dimen-
sional image features (such as texture heterogeneity, spatial

topological relationships, and intensity distribution) into
quantifiable digital biomarkers, thereby providing objective
evidence to guide clinical decision-making. However, the
characteristic dimensionality of radiomics data often far
exceeds sample sizes, which renders the traditional statistical
methods inadequate [21]. Machine learning (ML), with the
potential to process large-scale, high-dimensional data and
uncover deep correlations among these complex features [22].
Combining radiomics with ML to develop an ML model
using radiomics can enhance the diagnostic performance of
AI in large and complex datasets, exceeding the performance
of models constructed through traditional statistical methods.

DL is also one of the important subbranches of artifi-
cial intelligence, which can automatically learn and layer
from raw data without manual design of features, ultimately
generating predictions via an output layer [23]. DL-driven
image generation techniques have demonstrated remarkable
effectiveness in cross-modality imaging and synthesis tasks
across various sequences within the same modality. With
the rapid development of computer technology, ML mod-
els based on radiomics and DL models based on radio-
mics have become important tools for cardiovascular disease
research. Current evidence suggests that these methods can
significantly improve the quantitative assessment accuracy of
atherosclerotic plaque progression and enhance the diagnos-
tic and predictive power of major adverse cardiovascular
events [24-26]. In recent years, research on the application
of these methods in the fields of plaque diagnosis, stabil-
ity assessment, and symptomatic plaque identification has
increased significantly. Although these advancements have
significantly improved the diagnosis of carotid plaques,
variations in data dependency and imaging configurations
among different models create inconsistencies in diagnos-
tic accuracy. Moreover, these models may become overly
specialized in common imaging configurations, even when
using radiomics data from identical sources. Currently,
systematic evaluations of its clinical validity remain limited.

Therefore, this systematic review comprehensively
assesses the applications of ML models based on radio-
mics algorithms and DL models in carotid plaques, while
highlighting gray areas in the available literature.

Methods
Study Registration
The study was performed in line with the PRISMA-
DTA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses of Diagnostic Test Accuracy Studies)
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guidelines [27] and PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) standards [28,29]
and was registered on the International Prospective Register
of Systematic Reviews (PROSPERO CRD42025638492).

Data Sources and Search Strategy
Relevant articles were searched on PubMed, Embase, Web
of Science, Cochrane Library, and Institute of Electrical
and Electronics Engineers (IEEE) databases, focusing on
English-language articles published up to September 24,
2025. The literature search was based on the PIO (population,
intervention, and outcomes) principles: “P” represents carotid
artery disease, carotid plaques, or atherosclerosis populations;
“I” represents radiomics or DL as interventions; and “O”
represents the outcomes of diagnosis and their subordinates
and other keywords. Furthermore, we manually analyzed
the reference lists of all included articles to identify addi-
tional relevant publications. The complete search strategy is
outlined in Table S1 in Multimedia Appendix 1. The EndNote
20 software (Clarivate Analytics) was used to manage the
included studies.

Eligibility Criteria

Inclusion Criteria
The inclusion criteria included:

1. Studies on patients with extracranial carotid plaques
that aimed to detect or distinguish between unstable and
symptomatic plaques, among other factors.

2. Studies using radiomics algorithms or DL models based
on medical imaging techniques, such as ultrasound,
CTA, or MRI, to diagnose carotid plaques.

3. Studies reported the diagnostic performance metrics,
including confusion matrix, 2×2 diagnostic tables,
accuracy, sensitivity, specificity, receiver operating
characteristic (ROC) curves, F1-score, precision, recall,
etc.

4. Those that adopted the following designs: prospective
or retrospective cohorts, diagnostic accuracy trials,
model development or validation studies, and compara-
tive studies (eg, AI models vs AI models combined
with clinical features).

5. Only studies published in English and with extractable
quantitative data were deemed eligible.

Exclusion Criteria
The exclusion criteria excluded:

1. Studies involving nonhuman subjects (animal experi-
ments or in vitro models), those that explored intracra-
nial or coronary plaques, enrolled pediatric populations
(<18 years), or reported only generalized atherosclero-
sis without plaque-specific criteria (focal intima-media
thickness ≥1.5 mm) or specific diagnostic metrics;

2. Those that did not adopt well-defined deep learn-
ing models or radiomics algorithms, focused only
on image segmentation or texture analysis without
diagnostic validation, or reported predictive models
without providing a clear diagnostic relevance.

3. Studies that lacked a validated reference standard.

4. Studies that did not report diagnostic performance.
5. Informal publication types (eg, reviews, letters to the

editor, editorials, and conference abstracts).
6. Studies that did not report validation or test sets.

Screening of Articles and Data Extraction
In the initial screening, duplicates were excluded followed by
reading of full texts, and data were entered into a predefined
extraction table, which included surnames of authors, source
of data, publication year, algorithm architecture, type of
internal validation, availability of open access data, exter-
nal verification status, reference standard, transfer learning
application, number of cases for training, test, internal,
or external validation, study design, sample size, mean or
median age, inclusion criteria, and model evaluation metrics.
The contingency tables are derived from the models explicitly
identified by the original authors as the best-performing
ones. Data from external validation sets were prioritized. If
there were no external validation set in the original studies,
data from internal validation sets were used. If neither was
available, the contingency tables corresponding to the test sets
were selected. This process was performed by two research-
ers (LJ and YG), working independently, and any differen-
ces were resolved through discussion with a third researcher
(HG).
Quality Assessment
Two blinded investigators (LJ and YG) systematically
assessed the quality of studies using the Quality Assessment
of Diagnostic Accuracy Studies for Artificial Intelligence
(QUADAS-AI) tool. Specifically, they evaluated the risk
of bias and applicability concerns across 4 domains: flow
and timing, reference standard, index test, and participant
selection. Although the Quality Assessment of Diagnostic
Accuracy Studies-2 (QUADAS-2) is extensively applied to
assess the quality of diagnostic accuracy studies [30], it
does not address the specific methodological choices, result
analyses, and measurements related to diagnostic studies
using AI. To address this gap, QUADAS-AI was developed
as a consensus-based tool to aid readers in systematically
examining the risk of bias and the usability of AI-rela-
ted diagnostic accuracy studies (Table S6 in Multimedia
Appendix 1) [31], thereby improving the quality assessment
process [32,33]. Any evaluation discrepancies were resolved
by a third investigator (HG).
Statistical Analysis
A meta-analysis was performed using STATA/MP software
(version 17.0; Stata Corporation) with a bivariate random-
effects model. For meta-analyses of the diagnostic accuracy
of AI-based models, bivariate mixed-effects models can
account for both within-study variability (random effects)
and between-study heterogeneity (fixed effects), ensuring
the robustness of the pooled estimates [34]. A contingency
table was generated using data from the included litera-
ture, and then we calculated metrics such as the number
of cases, the Youden index, sensitivity, specificity, and
recall. The diagnostic efficacy of radiomics algorithms and
DL models in evaluating carotid plaque was determined
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using a summary receiver operating characteristic (SROC)
curve and area under the curve (AUC; 0.7≤AUC<0.8 fair;
0.8≤AUC<0.9 good; and AUC≥0.9 excellent). Publication
bias was explored using Deeks funnel plot asymmetry test.
The Fagan nomogram was developed to determine clinically
pertinent posttest probabilities (P-post) and likelihood ratios
(LRs). LRs were determined by comparing the probability
of test results between diseased and nondiseased groups. The
pretest probability was subsequently adjusted based on test
results and LRs to obtain P-post [35]. The Cochran Q (P≤.05)
and I2 statistic were used to explore heterogeneity among
the included studies, and regression analysis was conducted
to assess sources of heterogeneity. I2≤50% indicated mild
heterogeneity, 50%<I2<75% reflected moderate heterogene-
ity, and I2≥75% indicated high heterogeneity.

The subgroup analysis encompassed the following factors:
(1) model type (DL or ML model), (2) medical imaging
modalities (PRs, ultrasound, MRI, or CTA), (3) application
of transfer learning, (4) characteristics of carotid plaques
(presence vs absence, stable vs vulnerable, and symptomatic
vs asymptomatic), (5) comparison of the most effective ML
model based on radiomics algorithm and DL models using
the same dataset and clinicians’ diagnoses, (6) different
types of datasets (testing and validation), (7) low and high
or unclear risk of bias studies, (8) different sample sizes

of model, and (9) models with different research designs
(multicenter studies and single-center studies). To identify the
sources of heterogeneity associated with nonthreshold effects,
meta-regression was performed using the above-mentioned
covariates.

Sensitivity analysis was performed to assess the stability of
the results by several steps: (1) excluding specific articles one
by one to determine the stability of the results, (2) exclud-
ing studies with extremely large sample sizes (N≥500; n=7
studies), (3) excluding studies with extremely small sample
sizes (N≤50; n=4 studies), and (4) excluding studies with
extreme effect sizes (sensitivity or specificity>0.95 or <0.7;
n=11 studies).

Results
Study Selection
We obtained 5834 studies in the initial analysis, of which
1233 were excluded for duplication or redundancy. After
screening titles and abstracts, 4507 publications were
eliminated. After the full texts of the 94 articles were read,
40 studies were eligible for meta-analysis. The PRISMA
flow diagram of the study showing the selection process is
presented in Figure 1.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of study selection. IEEE: Institute of Electrical
and Electronics Engineers.

Study Characteristics
Among the 40 studies that fulfilled the systematic review’s
inclusion criteria, 34 provided sufficient quantitative data
(contingency tables from validation or test sets) eligible for
incorporation into the meta-analysis. The detailed character-
istics of all 40 eligible studies are summarized in Tables
S3 and S4 in Multimedia Appendix 1, while all subsequent
quantitative analyses were conducted based on the 34 studies
with available quantitative data. Overall, 34 studies were
included [36-69], among which 9 were multicenter studies
[41,43,45,49,57,63-65,69], 3 used public databases [37,40,
53], 13 provided open access to the data [37,40,45,48-50,
53,57,59,63-66]. A total of 12 studies conducted internal

validation [38,39,41,42,44,47,48,57,61,64,69,70] to confirm
the reproducibility of the model development process and
prevent overfitting. In addition, 7 studies conducted exter-
nal validation [41,50,57,60,63,64,69] to assess the model’s
transportability and generalizability using unused datasets.
Only 1 study conducted a comparative analysis of the
diagnostic performance of DL models with that of clinicians
[57]. The medical imaging modalities included PRs (n=5),
ultrasound (n=16), MRI (n=5), and CTA (n=8). The core
features of the 34 studies are presented in Tables 1 and 2,
with further details provided in Tables S2 and S3 in Multime-
dia Appendix 1.
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Table 1. Data sources, indicators, and algorithms of included studies.
Study, year Data source Validation type

Source of data

Number of cases for
training, test, internal, or
external Data range Labels

Su et al [51], 2023 China 322; 138; NRa; NR NR Stable or vulnerable
plaque

No

Zhang et al [70], 2024 China 4064; NR; 1016; NR NR Stable or vulnerable
plaque

Internal validation

Zhou et al [44], 2024 China 751; 261; 258; NR NR Stable or vulnerable
plaque

Internal validation

Zhang et al [58], 2021 China 121; 41; NR; NR NR Symptomatic or
asymptomatic

No

Zhai et al [41], 2024 NR 240; NR; 60; 100 January 2017-January
2022

Normal or abnormal External validation

Yoo et al [39], 2024 South Korea 388; 130; 130; NR 2009‐2022 Normal or abnormal Internal validation
Xu et al [56], 2022 NR NR NR Stable or vulnerable

plaque
No

Xie et al [47], 2023 China 264; 75; 38; NR 2020‐2021 Stable or vulnerable
plaque

Internal validation

Wei et al [62], 2024 China 2725; 554; NR; NR NR Normal or abnormal No

Ganitidis et al [60],
2021

Greece 46; 10; 18; NR NR Symptomatic or
asymptomatic

Internal validation

Shi et al [50], 2023 China 134; 33; NR; NR October 2019-July 2022 Symptomatic or
asymptomatic

No

Gui et al [49], 2023 China 84; 20; NR; NR NR Symptomatic or
asymptomatic

No

Ali et al [71], 2024 Italy 336; 84; NR; NR NR Symptomatic or
asymptomatic

No

Amitay et al [48], 2023 Israel 371; 144; 144; NR 2016‐2021 Normal or abnormal Internal validation
Ayoub et al [72], 2023 China 136; 150; 69; NR NR Stable or vulnerable

plaque
Internal validation

Cilla et al [55], 2022 Italy NR October 2015-October
2019

Stable or vulnerable
plaque

No

Guang et al [57], 2021 China 136; NR; 69; NR September 2017-
September 2018

Stable or vulnerable
plaque

Internal validation

He et al [69], 2024 China 3088; NR; 772; 1564 January 2021-March
2023

Normal or abnormal;
stable or vulnerable
plaque

Internal and
external validation

Latha et al [73], 2021 India NR NR Normal or abnormal No
Ma et al [59], 2021 China 1169; 294; NR; NR NR A total of 3 types

(echo-rich,
intermediate, and
echolucent)

No

Pisu et al [43], 2024 Italy 163; 106; NR; NR March 2013-October
2019

Symptomatic or
asymptomatic

No

Wang et al [74], 2024 China 154; 39; NR; NR January 1, 2018-
December 31, 2021

Symptomatic or
asymptomatic

No

Gago et al [53], 2022 Spain NR 2007‐2010 Normal or abnormal No
Omarov et al [40], 2024 The United

Kingdom
577; 103; NR; NR NR Normal or abnormal No

Wang et al [45], 2023 China 2619; 1122; NR; NR NR Stable or vulnerable
plaque

No

Vinayahalingam et al
[42], 2024

Germany 280; 37; 37; NR NR Normal or abnormal No
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Study, year Data source Validation type

Source of data

Number of cases for
training, test, internal, or
external Data range Labels

Singh et al [37], 2024 Cyprus; The United
Kingdom; NR

3088; 772; NR; NR NR Stable or vulnerable
plaque

No

Shan et al [46], 2023 China 52; 22; NR; NR January 2018-
December 2021

Stable or vulnerable
plaque

No

Li et al [38], 2024 NR 4546; 1471; 1019; NR NR Normal or abnormal Internal validation
Jain et al [54], 2021 NR 682; 76; NR; NR July 2009-September

2010
Stable or vulnerable
plaque

No

Molinari et al [36],
2018

Italy NR 2004‐2010 Symptomatic or
asymptomatic

No

Kats et al [61], 2019 Israel 1946; 7; 12; NR NR Normal or abnormal Internal validation
Chen et al [52], 2022 China 81; 34; NR; NR July 2015-May 2021 Symptomatic or

asymptomatic
No

Zhao et al [63], 2025 China 317; NR; NR; 328 January 2018-
December 2023 (Center
1); Jan 2022-December
2023 (Center 2,3)

Symptomatic or
asymptomatic

External validation

Hu et al [64], 2025 China 213; NR; 93; 110 January 2018-May
2023 (Center 1);
January 2020-May
2023 (Center 2)

Symptomatic or
asymptomatic

Internal and
external validation

Li et al [75], 2025 China 2069; 887; NR; NR October 2021-January
2022

normal or abnormal No

Yu et al [66], 2025 China 146; 63; NR; NR April 2022-August
2023

HIPsb or NHIPsc No

Liapi et al [65], 2025 Cyprus, The United
Kingdom, and
Greece

168; 46; 22; NR NR Symptomatic or
asymptomatic

Internal validation

Kuwada et al [67],
2025

Japan Training and validation
data: 500; Test data: 80

2008‐2023 Normal or abnormal No

Lao et al [68], 2025 China 76; 31; NR; NR January 2017-October
2022

Stable or vulnerable
plaque

No

aNR: not reported.
bHIP: highly inflammatory plaque.
cNHIP: non–highly inflammatory plaque.

Table 2. Data sources, indicators, and algorithms of all studies.
Study, year Indicator definition Algorithm

Device

Exclusion of
poor quality
cases Algorithm architecture MLa or DLb

Transfer
learning applied

Su et al [51], 2023 Ultrasound NRc Inception V3; VGG-16d DL No
Zhang et al [70],
2024

Ultrasound NR Fusion-SSL DL No

Zhou et al [44],
2024

Ultrasound NR Tri-Correcting DL No

Zhang et al [58],
2021

MRIe Yes LASSOf MRI-based model
(HRPMMg)

ML models based on radiomics
algorithmsh (LASSO algorithm)

No

Zhai et al [41],
2024

CT Yes 3D-UNet; ResUNet DL No

Yoo et al [39],
2024

PRs Yes CACSNet DL Yes

Xu et al [56], 2022 Ultrasound NR Multi-feature fusion method DL No
Xie et al [47], 2023 Ultrasound NR CPTVi DL No
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Study, year Indicator definition Algorithm

Device

Exclusion of
poor quality
cases Algorithm architecture MLa or DLb

Transfer
learning applied

Wei et al [62],
2024

Ultrasound Yes BETUj DL Yes

Ganitidis et al [60],
2021

Ultrasound NR CNNsk DL No

Shi et al [50], 2023 CTl and MRI Yes LASSO regression ML models based on radiomics
algorithms (LASSO algorithm)

No

Gui et al [49], 2023 MRI Yes 3D-SE-DenseNet121m;
ANOVA_spearman_LASSO and
MLPn

ML models based on radiomics
algorithms (LASSO,
ANOVA_LASSO and
ANOVA_spearman_LASSO) and
DL

No

Ali et al [71], 2024 Ultrasound No CAROTIDNeto DL No
Amitay et al [48],
2023

PRs Yes InceptionResNetV2 (minimum-
maximum)

DL Yes

Ayoub et al [72],
2023

MRI NR HViTp DL No

Cilla et al [55],
2022

CT Yes SVM RBFq kernel ML models based radiomics
algorithms (logistic regression
[LR]), support vector machine
(SVM), and CARTr

No

Guang et al [57],
2021

Ultrasound Yes DL-DCCPs DL Yes

He et al [69], 2024 Ultrasound Yes BCNNt-ResNetu DL No
Latha et al [73],
2021

Ultrasound NR CART; logistic regression; random
forest; CNN; Mobilenet; Capsulenet

ML models based radiomics
algorithms (CART, logistic
regression, and random forest
algorithm) and DL

Yes

Ma et al [59], 2021 Ultrasound NR MSPv-VGG DL Yes
Pisu et al [43],
2024

CT Yes GB-GAMw ML models based radiomics
algorithms (NR)

No

Wang et al [74],
2024

CT Yes SRx DL Yes

Gago et al [53],
2022

Ultrasound NR End-to-end framework DL No

Omarov et al [40],
2024

Ultrasound Yes YOLOv8y DL Yes

Wang et al [45],
2023

MRI Yes ResNet-50 DL Yes

Vinayahalingam et
al [42], 2024

PRsz Yes Faster R-CNNaa with Swin
Transformer (Swin-T)

DL Yes

Singh et al [37],
2024

Ultrasound Yes GoogLeNetab ML models based on radiomics
algorithms (SVM algorithms) and
DL

Yes

Shan et al [46],
2023

CT and
ultrasound

Yes LRac; SVMad; RFae; LGBMaf;
daBoost; XGBoostag; MLP

ML models based on radiomics
algorithms (Pyradiomics package
in Python software)

Yes

Li et al [38], 2024 Ultrasound NR U-Net; CNN DL No
Jain et al [54],
2022

Ultrasound NR SegNet-UNetah DL No

Molinari et al [36],
2018

Ultrasound NR SVM ML models based on radiomics
algorithms (BEMDai)

No

Kats et al [61],
2019

PRs NR Faster R-CNN DL No
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Study, year Indicator definition Algorithm

Device

Exclusion of
poor quality
cases Algorithm architecture MLa or DLb

Transfer
learning applied

Chen et al [52],
2022

MRI Yes LASSO ML models based on radiomics
algorithms (mRMRaj algorithm
and LASSO algorithm)

No

Zhao et al [63],
2025

CTAak Yes XGBoost ML models based on radiomics
algorithms (XGBoost)

No

Hu et al [64], 2025 CTA Yes LASSO regression; SVM; logistic
regression

ML models based on radiomics
algorithms (LASSO algorithm)
and classifier (SVM)

No

Li et al [75], 2025 Ultrasound NR XGBoost; RF; LASSO regression ML models based on radiomics
algorithms (XGBoost, RF,
LASSO regression)

No

Yu et al [66], 2025 MRI Yes Plaque-R model; PVAT-Ral model;
ensemble model

ML models based on radiomics
algorithms (LASSO algorithm)
and ensemble learning

No

Liapi et al [65],
2025

Ultrasound NR Xception DL Yes

Kuwada et al [67],
2025

Ultrasound NR GoogLeNet; YOLOv7 DL No

Lao et al [68],
2025

CTA Yes mRMR algorithm; LASSO regres-
sion

ML models based on radiomics
algorithms (mRMR algorithm;
LASSO algorithm)

No

aML: machine learning.
bDL: deep learning.
cNR: not reported.
dVCG: VGG visual geometry group network.
eMRI: magnetic resonance imaging.
fLASSO: least absolute shrinkage and selection operator.
gHRPMM: high-risk plaque MRI-based model.
hDefinition of ML models based on radiomics algorithms and deep learning (DL): ML models based on radiomics algorithms are models that rely
on artificially designed features (such as texture and shape features) and use traditional algorithms (such as random forest, support vector machine,
logistic regression, etc) to complete classification, without the need for DL algorithms to be in the core task. The DL model was defined as a
model that automatically extracts features and completes classification through neural networks (such as convolutional neural network, ResNet, etc),
regardless of whether the input contains a small number of artificial features, as long as the core task relies on the DL algorithm.
iCPTV: classification of plaque by tracking videos.
jBETU: be easy to use.
kCNN: convolutional neural network.
lCT: computed tomography.
m3D-SE-DenseNet121: 3D squeeze-and-excitation DenseNet with 121 layers.
nMLP: multilayer perceptron.
oCAROTIDNet: carotid symptomatic/asymptomatic plaque detection network.
pHViT: hybrid vision transformer.
qSVM RBF: kernel support vector machine with radial basis function kernel.
rCART: classification and regression tree.
sDL-DCCP: deep learning-based detection and classification of carotid plaque.
tBCNN: bilinear convolutional neural network.
uResNet: deep residual network.
vMSP: multilevel strip pooling.
wGB-GAM: gradient-boosting generalized additive model.
xSR: super resolution.
yYOLOv8: you only look once version 8.
zPR: panoramic radiograph.
aaFaster R-CNN: faster region-based convolutional network.
abGoogLeNet: Google network.
acLR: logistic regression.
adSVM: support vector machine.
aeRF: random forest.
afLGBM: light gradient boosting machine.
agXGBoost: extreme gradient boosting.
ahSegNet-UNet: segmentation network-UNet.
aiBEMD: bidimensional empirical mode decomposition.
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ajmRMR: minimum redundancy maximum relevance.
akCTA: computed tomography angiography.
alPVAT: perivascular adipose tissue.

Meta-Analysis of Diagnostic Performance

Synthesized Results
The meta-analysis revealed pooled sensitivity, specificity, and
an area under the SROC curve (SROC AUC) of 0.88 (95%
CI 0.85‐0.91; I2=93.58%; P<.001; in Multimedia Appendix
2 [36-69]), 0.89 (95% CI 0.85‐0.92; I2=91.38%; P<.001;
in Multimedia Appendix 2 [36-69]), and 0.95 (95% CI
0.92‐0.96) for all 34 studies (Figure 2A); 0.88 (95% CI
0.84‐0.92; I2=93.70%; P<.001; Multimedia Appendix 3 [36-

69]), 0.91 (95% CI 0.86‐0.94; I2=95.55%; P<.001; Multime-
dia Appendix 3 [36-69]), and 0.95 (95% CI 0.93‐0.97) for all
DL models (Figure 2B); 0.89 (95% CI 0.82‐0.93; I2=90.20%;
P<.001; Multimedia Appendix 3 [36-69]), 0.83 (95% CI
0.76‐0.88; I2=78.92%; P<.001; Multimedia Appendix 3 [36-
69]), and 0.92 (95% CI 0.89‐0.94) for all ML models based
on radiomics algorithms (Figure 2C), respectively. Notably,
some studies used multiple diagnostic models; however, the
diagnostic accuracy of certain models was not thoroughly
assessed.

Figure 2. Receiver operating characteristic curves based on the overall performance of different algorithms. (A) All studies included in the
meta-analysis (34 studies with 34 tables). (B) Deep learning (DL) models (24 studies with 24 tables). (C) Machine learning (ML) models based
on radiomics algorithms (10 studies with 10 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity; SROC: summary receiver
operating characteristic.

Subgroup Analysis
Medical Imaging Modalities
The pooled sensitivity, specificity, and SROC AUC were 0.91
(95% CI 0.80‐0.96), 0.93 (95% CI 0.84‐0.97), and 0.97 (95%
CI 0.95‐0.98) for the 5 studies using PRs (P<.001; with 5
contingency tables; Figure 3A); 0.89 (95% CI 0.84‐0.93),
0.90 (95% CI 0.84‐0.94), and 0.95 (95% CI 0.93‐0.97) for the
16 studies using ultrasound images (P<.001with 16 contin-
gency tables; Figure 3B); 0.87 (95% CI 0.87‐0.92), 0.87 (95%
CI 0.76‐0.93), and 0.93 (95% CI 0.91‐0.95) for the 5 studies
using MRI images (P<.001; with 5 contingency tables; Figure
3C); 0.83 (95% CI 0.76‐0.88), 0.83 (95% CI 0.75‐0.89), and
0.90 (95% CI 0.87‐0.92) for the 8 studies using CTA images

(P<.001; with 8 contingency tables; Figure 3D), respectively.
In addition, we conducted subgroup analyses using the same
imaging modality based on differentiation. However, only
subgroups of identifying the presence and stability of plaque
had sufficient data for the ultrasound modality to perform
statistical analyses and obtain pooled diagnostic performance
metrics (Table S5 in Multimedia Appendix 1). The pooled
sensitivity, specificity, and SROC AUC were 0.88 (95%
CI 0.72‐0.96), 0.91 (95% CI 0.80‐0.96), and 0.95 (95% CI
0.93‐0.97) for determining the presence of plaques (P<.001;
with 5 contingency tables; Figure 3E), 0.90 (95% CI 0.84‐
0.94), 0.92 (95% CI 0.83‐0.96), and 0.96 (95% CI 0.94‐0.97)
for distinguishing the stability of plaques (P<.001; with 8
contingency tables; Figure 3F).
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Figure 3. Receiver operating characteristic curves for different medical imaging modalities. (A) Periapical radiographs (PRs) imaging models (5
studies with 5 tables). (B) Ultrasound imaging models (16 studies with 22 tables). (C) Magnetic resonance imaging (MRI) models (5 studies with 7
tables). (D) Computed tomography angiography (CTA) models (8 studies with 10 tables). (E) Models based on ultrasound modality for detecting the
presence of carotid plaque (5 studies with 5 tables). (F) Models based on ultrasound modality for distinguishing the stability of carotid plaques (8
studies with 8 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity; SROC: summary receiver operating characteristic.
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Use of Transfer Learning
The pooled sensitivity, specificity, and SROC AUC were
0.92 (95% CI 0.87‐0.95), 0.93 (95% CI 0.88‐0.96), and
0.97 (95% CI 0.95‐0.96) for the 10 studies using transfer
learning (P<.001; with 10 contingency tables; Figure 4A)

and 0.86 (95% CI 0.82‐0.90), 0.86 (95% CI 0.81‐0.90), and
0.93 (95% CI 0.90‐0.95) for the 24 studies without transfer
learning (P<.001; with 24 contingency tables; Figure 4B),
respectively.

Figure 4. Receiver operating characteristic curves demonstrating transfer learning application. (A) Models using transfer learning (10 studies with 10
tables). (B) Models without transfer learning (24 studies with 24 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity; SROC:
summary receiver operating characteristic.

Carotid Plaque Type
The pooled sensitivity, specificity, and AUC were 0.89 (95%
CI 0.81‐0.94), 0.91 (95% CI 0.86‐0.95), and 0.96 (95% CI
0.94‐0.97) for the 11 studies identifying the presence or
absence of carotid plaques (P<.001; with 11 contingency
tables; Figure 5A); 0.90 (95% CI 0.85‐0.94), 0.91 (95% CI
0.85‐0.95), and 0.96 (95% CI 0.94‐0.97) for the 12 studies

identifying stable or vulnerable carotid plaques (P<.001; with
12 contingency tables), respectively (Figure 5B); and 0.86
(95% CI 0.78‐0.91), 0.81 (95% CI 0.74‐0.87), and 0.90 (95%
CI 0.87‐0.92) for the 10 studies identifying symptomatic or
asymptomatic plaques (P<.001; with 10 contingency tables;
Figure 5C), respectively.

Figure 5. Receiver operating characteristic curves for different carotid plaque types. (A) Presence versus absence of carotid plaques (11 studies with
11 tables). (B) Stable versus vulnerable carotid plaques (12 studies with 12 tables). (C) Symptomatic versus asymptomatic carotid plaques (10 studies
with 10 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity; SROC: summary receiver operating characteristic.
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Pure Artificial Intelligence Models Versus
Models Constructed by Combining Clinical
Features
The pooled sensitivity, specificity, and SROC AUC were
0.82 (95% CI 0.74‐0.88), 0.74 (95% CI 0.69‐0.79), and
0.77 (95% CI 0.73‐0.80) for the 7 studies involving pure

artificial intelligence models meeting the inclusion criteria
(P<.001; with 7 contingency tables; Figure 6A) and 0.85
(95% CI 0.76‐0.92), 0.75 (95% CI 0.70‐0.80), and 0.77 (95%
CI 0.73‐0.81) for models constructed by combining clinical
features (P<.001; with 7 contingency tables; Figure 6B),
respectively.

Figure 6. Receiver operating characteristic curves showing the diagnostic performance of pure artificial intelligence models or models constructed by
combining clinical features. (A) Artificial intelligence models (7 studies with 7 tables). (B) Combined models (7 studies with 7 tables). AUC: area
under the curve; SENS: sensitivity; SPEC: specificity; SROC: summary receiver operating characteristic.

Different Sets of Datasets
The pooled sensitivity, specificity, and AUC were 0.90 (95%
CI 0.87‐0.93), 0.91 (95% CI 0.87‐0.93), and 0.96 (95% CI
0.94‐0.97) for testing sets (P<.001; with 27 contingency

tables; Figure 7A); 0.78 (95% CI 0.71‐0.83), 0.80 (95%
CI 0.73‐0.86), and 0.86 (95% CI 0.82‐0.88) for external
validation sets (P<.001; with 7 contingency tables; Figure
7B), respectively.

Figure 7. Receiver operating characteristic curves showing different sets of datasets. (A) Testing (27 studies with 27 tables). (B) External validation
(7 studies with 7 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity; SROC: summary receiver operating characteristic.
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Low and High or Unclear Risk of Bias Studies
The pooled sensitivity, specificity, and AUC were 0.80 (95%
CI 0.73‐0.85), 0.80 (95% CI 0.71‐0.87), and 0.86 (95% CI
0.83‐0.89) for studies with a low risk of bias (P<.001; with 5

contingency tables; Figure 8A), and 0.89 (95% CI 0.86‐0.92),
0.90 (95% CI 0.86‐0.93), and 0.95 (95% CI 0.93‐0.97) for
studies with a high or unclear risk of bias (P<.001; with 29
contingency tables; Figure 8B), respectively.

Figure 8. Receiver operating characteristic curves showing studies with different risk of bias. (A) Studies with a low risk of bias (5 studies with 5
tables). (B) Studies with a high/unclear risk of bias (29 studies with 29 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity;
SROC: summary receiver operating characteristic.

Different Sample Sizes of Model
The pooled sensitivity, specificity, and AUC were 0.91 (95%
CI 0.86‐0.94), 0.92 (95% CI 0.87‐0.95), and 0.97 (95% CI
0.95‐0.98) for sample size≥200 (P<.001; with 14 contingency

tables) (Figure 9A), and 0.85 (95% CI 0.80‐0.88), 0.86 (95%
CI 0.80‐0.90), and 0.91 (95% CI 0.89‐0.94) for sample
size<200 (P<.001; with 20 contingency tables; Figure 9B),
respectively.

Figure 9. Receiver operating characteristic curves showing different sample sizes of model. (A) Sample size ≥200 (14 studies with 14 tables). (B)
Sample size <200 (20 studies with 20 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity; SROC: summary receiver operating
characteristic.
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Models With Different Research Designs
(Multicenter Studies and Single-Center
Studies)
The pooled sensitivity, specificity, and AUC were 0.84 (95%
CI 0.77‐0.89), 0.87 (95% CI 0.81‐0.91), and 0.92 (95% CI

0.90‐0.94) for multicenter studies (P<.001; with 9 contin-
gency tables; Figure 10A), and 0.89 (95% CI 0.84‐0.92),
0.89 (95% CI 0.84‐0.93), and 0.95 (95% CI 0.93‐0.97) for
single-center studies (P<.001; with 22 contingency tables;
Figure 10B), respectively.

Figure 10. Receiver operating characteristic curves showing models with different research designs. (A) Multicenter studies (9 studies with 9 tables).
(B) Single-center studies (22 studies with 22 tables). AUC: area under the curve; SENS: sensitivity; SPEC: specificity; SROC: summary receiver
operating characteristic.

Heterogeneity Analysis and Meta-
Regression Analysis
The Cochran Q test was used to indicate the presence of
heterogeneity among subgroups (significance level P≤.05)
[15]. The I² index was used to assess the extent of heterogene-
ity among studies [15], revealing high sensitivity (I²=93.58%)
and specificity (I²=91.38%; Multimedia Appendix 2). The
Deek funnel plot asymmetry test, with P=.21, indicated
no apparent publication bias (Multimedia Appendix 4).
Subgroup analyses were performed using the random-effects
models to identify the potential sources of heterogeneity,
particularly when I² exceeded 50% [16]. Results were as
follows:

1. AI model for carotid plaques: Both ML models based
on radiomics algorithms and DL models exhibited high
sensitivity, with an I2 of 90.20% and 93.70%, and
high specificity, with an I2 of 78.92% and 95.55%,
suggesting high performance and significant heteroge-
neity (Multimedia Appendix 3 [36-69]).

2. Medical imaging modalities: the sensitivity and
specificity for PRs (sensitivity I2=82.28%; spe-
cificity I2=79.16%; Multimedia Appendix 5 [36-
69]) and ultrasound (sensitivity I2=96.92%; spe-
cificity I2=94.98%; Multimedia Appendix 5 [36-
69]). The sensitivity and specificity for MRI (sen-
sitivity I2=71.57%; specificity I2=73.21%; Multime-
dia Appendix 5 [36-69]) and the sensitivity for
CTA (I2=56.80%) displayed moderate heterogeneity

(Multimedia Appendix 5 [36-69]). The specificity of
CTA (I2=83.79%) was high (Multimedia Appendix
5 [36-69]). In the ultrasound modality, the sensitiv-
ity and specificity for determining the presence of
plaques (sensitivity I2=96.78%; specificity I2=97.97%;
Multimedia Appendix 5 [36-69]) and distinguishing the
stability of plaques (sensitivity I2=97.01%; sensitivity
I2=94.43%; Multimedia Appendix 5 [36-69]) were high.

3. Use of transfer learning: the specificity for mod-
els using transfer learning (specificity I2=74.85%;
Multimedia Appendix 6 [36-69]) displayed moder-
ate heterogeneity. The sensitivity for models using
transfer learning (sensitivity I2=79.84%; Multimedia
Appendix 6 [36-69]) and the sensitivity and specif-
icity for the models without transfer learning (sensi-
tivity I2=94.12%; specificity I2=87.35%; Multimedia
Appendix 6 [36-69]) were high.

4. Carotid plaque type: all plaque types showed higher
sensitivity and specificity; presence or absence of
plaques (sensitivity I2=94.08%; specificity I2=97.60%;
part A in Multimedia Appendix 7 [36-69]), stable
or vulnerable plaques with (sensitivity I2=95.19%;
specificity I2=91.29%; part B in Multimedia Appendix
7 [36-69]), and symptomatic or asymptomatic plaques
(sensitivity I2=93.28%; specificity I2=84.67%; part C in
Multimedia Appendix 7 [36-69]).

5. Both pure AI models and combined clinical features
models did not exhibit high heterogeneity for AI
models (sensitivity I2=62.97%; specificity I2=2.41%;
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part B in Multimedia Appendix 8 [ 50,52,58,63,64,
66,68]) and combined models (sensitivity I2=69.77%;
specificity I2=40.08%) for combined models (part A in
Multimedia Appendix 8 [ 50,52,58,63,64,66,68]).

6. Different sets of datasets: both testing (sensitivity
I2=94.23%; specificity I2=93.45%; part A in Multi-
media Appendix 9 [36-69]) and external validation
(specificity I2=84.42%; part B in Multimedia Appen-
dix 9 [36-69]) were high heterogeneity, except the
sensitivity for external validation (I2=66.67%; part B
in Multimedia Appendix 9 [36-69]).

7. Different risk of bias studies: the sensitivity and
specificity for high or unclear risk of bias studies
(sensitivity I2=94.61%; specificity I2=92.59%; part B
in Multimedia Appendix 10 [36-69]) and the specificity
for low risk of bias studies (I2=87.10%) were high (part
A in Multimedia Appendix 10 [36-69]). The sensitivity
for low risk of bias studies (I2=62.20%) was moderate
(part A in Multimedia Appendix 10 [36-69]).

8. Different sample sizes of model: The sensitivity and
specificity for sample size ≥200 (sensitivity I2=97.91%;
specificity I2=97.40%; part A in Multimedia Appen-
dix 11 [36-69]) and the specificity for sample size
<200 (I2=78.02%; part B in Multimedia Appendix 11
[36-69]) were high. The sensitivity for sample size
<200 (I2=60.64%) was moderate (part B in Multimedia
Appendix 11 [36-69]).

9. Models with different research designs: The sensi-
tivity and specificity for multicenter studies (sensi-
tivity I2=81.36%; specificity I2=80.24%; part A in
Multimedia Appendix 12 [36,38,39,41-52,54-69]) and
single-center studies (sensitivity I2=95.07 %; specificity
I2=90.63%) were high (part B in Multimedia Appendix
12 [36,38,39,41-52,54-69]).

The meta-regression did not explore the factors contributing
to heterogeneity (parts A-I in Multimedia Appendix 13 [36-
69]). The results of all subgroups are depicted in Table S4 in
Multimedia Appendix 1. The Fagan nomogram was used to
evaluate the diagnostic performance of ML models based on
radiomics algorithms and DL models for carotid plaques. The
results showed a P-post of 89% and 12% for the positive and
negative tests, respectively (Multimedia Appendix 14).
Sensitivity Analysis
Excluding the specific studies did not significantly change our
research results (Table S7-S8 in Multimedia Appendix 1).
Quality Assessment
The quality of the 34 studies was evaluated using the
QUADAS-AI tool (Multimedia Appendix 15). The QUA-
DAS-AI specifically evaluates bias risk and applicability
concerns in AI studies. Here, we observed that most studies
had significant bias or applicability concerns, particularly
regarding the selection of patients and index test. In the
“patient selection” domain, 20 studies were classified as
either high-risk or indeterminate due to reliance on closed-
access data or failure to present the rationale and breakdown
of its training, validation, and test sets. Only 7 externally
validated studies were classified as low-risk in the “index

test” category, while others showed elevated risks due to a
lack of validation. In the “reference standard” assessment, the
reference standard of all studies could be used to classify
the target condition correctly. For the “flow and timing”
assessment, 10 studies showed indeterminate risks due to
insufficient justification for the timing between index and
reference tests. Additionally, 20 studies presented significant
concerns regarding applicability in the “patient selection”
domain, receiving unclear ratings. In the “index test” domain,
7 studies were rated as having low applicability, while all
studies received low applicability ratings in the “Reference
Standard” domain.

Discussion
Principal Findings
This study represents the first systematic evaluation of ML
models based on radiomics and DL models for the charac-
terization of extracranial carotid plaques. Both approaches
demonstrated robust diagnostic performance, with high
SROC values of 0.95 and 0.92, respectively, highlighting
their promising potential for clinical application in plaque
detection and risk stratification.

Initially, the SP and SROC AUC of DL models were
improved compared to ML models based on radiomics
(0.91 vs 0.83; 0.95 vs 0.92), while their sensitivity was
similar to that of ML (0.88). Moreover, we observed that
radiomics and DL models used to identify the presence of
plaques and stable plaques had similar diagnostic capabilities
(SROC 0.96, 95% CI 0.94‐0.97), and both were effective
in identifying symptomatic plaques (SROC 0.90, 95% CI
0.87‐0.92). Notably, these differences may not be simply due
to model performance, but could result from a combination
of different clinical objectives (simple exclusion diagnosis
or differentiation of specific cases), imaging variations,
and model techniques. By using knowledge gained from
previous tasks, transfer learning enhances model performance
on new datasets and minimizes data requirements. It has
been successfully applied in various areas of cardiovascular
disease to boost the performance of models [2,76,77]. In
subgroup analyses, transfer learning significantly enhances
model performance in data-limited scenarios and prevents
overfitting. Large sample sizes can minimize sampling bias,
decrease overfitting, and enhance the stability and reproduci-
bility of the models. Moreover, we performed more detailed
subgroup analyses based on the same imaging modality.
Only the type of plaques in the ultrasound modality had
sufficient data to perform statistical analysis and obtain
summary diagnostic efficacy indicators. Results showed that
ultrasound-based models have demonstrated excellent and
similar performance in detecting the presence of plaques
and assessing their stability. Considering the differences in
equipment characteristics, patient demographics, and study
design, these findings should be interpreted with caution.
Nevertheless, these results provide valuable insights into
the efficacy of radiomics algorithms and DL models in the
diagnosis of carotid plaque.
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Analysis of the Main Aspects
This meta-analysis demonstrates that radiomics-based models
and DL models can diagnose extracranial carotid plaque, but
the advantages of DL models in specificity and SROC should
be interpreted with caution. A review of the included studies
revealed that, among the 24 investigations using DL models,
20 primarily focused on plaque characterization (11 on the
detection of plaques and 9 on plaque stability). Of these, 13
studies used ultrasound imaging to identify plaque-specific
features such as echogenicity, morphology, and composition.
In contrast, among the 10 studies using radiomics-based
ML models, 6 were dedicated to identifying symptomatic
plaques, predominantly using MRI (n=2) and CTA (n=3). The
accuracy of symptomatic plaque identification was influ-
enced not only by intrinsic imaging characteristics but also
by clinical indicators, including plaque rupture, thrombus
formation, and the occurrence of cerebral hypoperfusion.
The tasks were more complex, and model training seemed
to focus on reducing false negatives to lower the risk of
adverse outcomes such as stroke. In addition, traditional ML
algorithms may rely on manual preprocessing and struggle
to capture other subtle differences (such as the presence of
tiny thrombi or fibrous cap thickness), which may introduce
variability and additional costs. In contrast, the DL mod-
els (particularly convolutional neural networks) do not rely
on artificially designed features; instead, they can directly
process raw medical images, automatically filter noise, and
automatically extract more meaningful image features (eg,
slight echo attenuation behind plaques, differences in vascular
wall elasticity, etc) [78]. It can also analyze the preset
artificial extraction features, conduct independent learning,
and uncover potential rules, thereby addressing the aforemen-
tioned challenges [23,79]. It is worth noting that a mismatch
in the number of studies may also affect the interpretation of
the results. Therefore, these differences may not be simply
due to model performance, but could also be caused by
multiple factors, which need to be further investigated.

Besides, the “black box” nature of AI algorithms,
particularly DL models, raises concerns about the transpar-
ency and reliability of decision-making. Of the 34 studies
reviewed, only 2 used explainable DL models, achiev-
ing an accuracy of 98.2% [37,65]. The explainable AI
(XAI) approach leverages visualization techniques, feature
attribution analysis, and both global and local explanations
to clarify how models derive predictions from input data.
By enhancing transparency, XAI fosters greater trust among
medical professionals, strengthens model reliability and
accountability, and helps mitigate concerns related to opaque
decision-making [80]. The integration of XAI in medicine not
only represents a technological advancement but also ensures
safe, efficient, and robust medical decision-making, which
needs to be further investigated. To realize this potential, a
clinically oriented XAI implementation framework needs to
be developed. First, the reporting criteria for interpretable
techniques (including clinical applicability evaluation and
operational guidelines) should be standardized to lower the
threshold for physician use. Second, the design of algorithms
should be optimized through collaborative efforts of medical

professionals and engineers to improve the specificity of
feature attribution methods based on real clinical needs.
Further clinical validation studies are needed to evaluate the
practical utility of XAI across diverse diagnostic settings—
such as varying regions, hospital levels, and clinician
experience—and to determine its true value in supporting
clinical decision-making beyond algorithmic performance
[28]. Furthermore, incomplete disclosure of model develop-
ment processes in reports, selective presentation of results
by investigators, and heterogeneity in diagnostic standard
implementation across practitioners with different levels of
experience may decrease the reliability and generalizability
of findings. Therefore, we recommend the formulation of
standardized imaging protocols, reporting procedures, and
quality control measures for carotid plaque assessment and
advocate for the establishment of specialized AI reporting
guidelines for cardiovascular diseases.

Advances in imaging technology have now largely met
the diagnostic requirements of current clinical practice, and
current guidelines place heavy reliance on imaging tests for
carotid plaque assessment. Among the 34 included studies, 27
constructed diagnostic models based only on imaging data.
However, this should not be interpreted as rendering other
clinical parameters irrelevant. Multidimensional diagnostic
models combined with clinical features have been shown to
achieve good diagnostic performance in identifying various
diseases, such as pancreatic ductal adenocarcinoma [81],
HCC recurrence after liver transplantation [82], hemorrhagic
brain metastases [83], malignant BI-RADS 4 breast masses
[84], and others. In our study, the diagnostic performance
of combined models did not slightly improve, which may
be due to the small sample size or some features could not
provide more diagnostic information (for example, Hu et
al [2] constructed a model relying only on indirect perivas-
cular adipose tissue radiomic features and clinical features
to identify symptomatic plaques, lacking direct imaging
features). Considering this evidence, we strongly recom-
mend that future research should aim to not only systemati-
cally incorporate laboratory tests, medical history, and other
clinical parameters to develop multidimensional diagnostic
models, but also to summarize the most meaningful features
for specific types of plaques. This could address the limita-
tions in current studies regarding single imaging modalities.
This will also improve the precise classification of carotid
plaques and personalized risk assessment.

This meta-analysis identified significant heterogeneity,
while meta-regression and subgroup regression analysis did
not identify the source, primarily attributable to the intrinsic
challenges in regulating all potential confounding factors.
Different imaging techniques can affect model performance
based on the type of images used (static images vs dynamic
videos), the equipment, and the operators. Guang et al
[57] used a contrast-enhanced ultrasound video-based DL
model to evaluate the diagnostic efficacy of a new caro-
tid network structure for assessing carotid plaques, whereas
other ultrasound studies consistently used static images. The
sequence of MRI scans also influences diagnostic outcomes.
Zhang et al [58] reported that a model incorporating a
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combination of T1-weighted, T2-weighted, dynamic contrast-
enhanced, and postcontrast (POST) MRI sequences achieved
a higher AUC for identifying high-risk carotid plaques
compared to models using individual sequences or partial
combinations. This enhanced performance is attributed to
the complementary nature of these imaging sequences, each
capturing distinct pathophysiological characteristics of the
plaque, thereby improving diagnostic accuracy when used
in combination. PRs have limited resolution, only detecting
calcified components of carotid plaques and missing features
such as lipid-rich necrotic cores or thin or ruptured fibrous
caps. There are also notable differences in model architec-
ture. Yoo et al [39] found performance variations among
different convolutional neural network architectures within
the CACSNet framework on the same dataset. Gui et al [49]
compared multiple DL models (eg, 3D-DenseNet, 3D-SE-
DenseNet) with 9 ML algorithms (including Decision Tree,
Random Forest, SVM, etc) using identical datasets. They
found that DL models generally performed better across key
metrics like AUC and accuracy, with significant performance
differences between and within the two model types. These
suggest that scanning parameters, model architectures, image
segmentation, and algorithms may explain the heterogene-
ity in the research results. However, the small number of
studies limits our ability to perform comprehensive subgroup
analyses, which need to be further investigated.

The use of AI has significantly promoted the diagnosis
of carotid plaque; however, its application requires cautious
evaluation. Only 9 studies were multicenter (most used
external validation), with diagnostic performance lower than
single-center studies. Most studies (n=29) had a high risk of
bias due to a lack of open-source data and external vali-
dation and failure to present the rationale and breakdown
of its sets, which led to overestimation of the research
results and affected the reproducibility and generalizability
of the findings. Similar issues have been noted in previous
reports, highlighting a broader deficiency in rigorous research
standards within the field [85-87]. Furthermore, the contin-
gency tables mostly come from the testing sets. Although
the testing set achieved the best diagnostic performance, it
had higher data quality or similar data distribution to the
training, or overfitting noise, resulting in inaccurate perform-
ance estimation, and strong regularization may also decrease
its performance, ultimately undermining clinical confidence
in these models.

This study has certain clinical significance. We con-
ducted an in-depth literature review and methodological
quality evaluation, presenting the most current and compre-
hensive systematic review of AI-based diagnostic approaches
for assessing carotid plaque. The findings reveal that AI
technology shows considerable potential for diagnosing

carotid plaque, but the findings need to be further valida-
ted by conducting more rigorous external validation using
large-scale, high-quality independent datasets.
Limitations
This study has several limitations. First, the heterogene-
ity in model architectures and validation methods across
studies prevents definitive conclusions regarding the most
effective AI approaches. Second, many studies lack multi-
center external validation, leading to a high risk of bias.
The model overfitting and clinical applicability need to be
carefully evaluated. Third, meta-regression and subgroup
analysis did not identify the sources of high heterogeneity that
existed in most of the included studies. We hypothesize that
this heterogeneity may be caused by scanning parameters,
model architectures, image segmentation, and algorithms.
However, the overly scattered distribution of subgroups due
to the limited number of studies restricts more in-depth
subgroup analyses. Finally, although the Deeks test did not
show significant publication bias, the included studies may
have intentionally unreported negative results and omitted
potentially relevant non-English literature.

Future studies should use a more comprehensive analyti-
cal methodology based on the current model. Researchers
should strictly follow regulatory norms and standardized
operating procedures. Prospective and multicenter studies
and additional external validation are warranted to enhance
the robustness and generalizability of the existing mod-
els. In the future, researchers should perform independent
systematic reviews on specific subtopics—such as imaging
modalities, lesion types, or model architectures—to facili-
tate targeted evaluations of AI performance across distinct
clinical scenarios. In addition, studies on imaging modalities
such as CT and MRI are advocated to generate more data,
conduct subgroup analyses, and clarify the optimal matching
of modality, plaque type, and algorithm. Future efforts should
focus on identifying more meaningful features and building
and evaluating the diagnostic performance of multidimen-
sional diagnostic models. In parallel, establishing clinically
oriented, XAI frameworks will be essential for enhancing
transparency.
Conclusions
Current findings indicate that radiomics algorithms and DL
models can effectively diagnose extracranial carotid plaque.
However, the irregularities in research design and the lack of
multicenter studies and external validation limit the robust-
ness of the present findings. Future research should aim to
reduce bias risk and enhance the generalizability and clinical
orientation of the models.
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