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Abstract
Background: Global digitalization continues to advance, extending its influence into medicine and health care systems
worldwide. In recent years, substantial advancements have been made in the research and development of artificial intelligence
(AI), raising questions about its potential in medicine. The integration and application of AI in intensive care medicine,
particularly in sepsis treatment, presents significant potential for advancing patient outcomes and enhancing patient-relevant
benefits. However, a comprehensive and systematic overview of the full spectrum of patient-relevant benefits associated with
AI-based clinical decision support systems (CDSS) remains lacking.
Objective: This scoping review aimed to identify and categorize evidence on patient-relevant benefits of AI-based CDSS in
sepsis care.
Methods: Systematic research was conducted in 4 electronic databases: MEDLINE via PubMed, Embase, the ACM Digital
Library, and IEEE Xplore. In addition, a comprehensive search on the websites of relevant international organizations, along
with a citation search of the included articles, was conducted. Articles were included if they (1) focused on sepsis and
(2) described patient-relevant benefits of AI-based CDSS. Articles published between January 1, 2008, and March 2, 2023,
were considered for inclusion. Study selection was performed independently by 2 reviewers. The manuscript was drafted
in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) checklist. The analysis of the included articles was conducted using the program MAXQDA (VERBI
Software GmbH), with systemization finalized in a consensus workshop.
Results: A total of 3368 records were identified across the 4 databases, of which 24 met the inclusion criteria and were
included in the scoping review. The additional search on international websites and in reference lists identified 6 more
relevant articles, resulting in 30 included studies. Of these, 20 were quantitative, comprising 7 prospective and 13 retrospective
designs. In addition, 1 qualitative study, 1 mixed methods study, 6 review articles, and 2 articles from institutional websites
were included. Patient-relevant benefits were systematized in six main categories: (1) prediction, (2) earlier treatment and
prioritization of high-risk patients, (3) individualized therapy, (4) improved patient outcomes (including improved Sequential
Organ Failure Assessment score, reduced length of stay, and reduced mortality), (5) general improvements in care, and (6)
reduced readmission rate.
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Conclusions: This scoping review underscores the potential of AI-based CDSS to positively impact patient-relevant benefits,
particularly in sepsis care, where they demonstrate considerable promise for improving intensive care. However, the majority
of the identified studies rely on retrospective database analyses. Future research should focus on validating these findings
through prospective studies.
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Introduction
The treatment of infectious diseases has historically resulted
in medical progress, exemplified by antibiotics and vaccines.
Despite all medical advances, infections remain a major
global cause of morbidity and mortality [1,2]. Sepsis, defined
as “life-threatening organ dysfunction caused by a dysregula-
ted host response to infection” [3], remains among the top
contributors to worldwide mortality. It accounts for 30%‐50%
of all hospital deaths in high-income countries, such as the
United States [1], and approximately 11 million annual deaths
worldwide [2]. Sepsis is a heterogeneous syndrome with
variable phenotypes and outcomes. Thus, the interpretation
of initial symptoms can be difficult for health care providers
[3,4].

The effectiveness and accuracy of established rule-based
scoring systems used for the assessment of patients in the
intensive care unit (ICU), such as the systemic inflammatory
response syndrome (SIRS) criteria, which were historically of
importance, the sequential organ failure assessment (SOFA)
score or the quickSOFA (qSOFA) score, the acute physiol-
ogy and chronic health evaluation II (APACHE II) score,
or the national early warning score 2 (NEWS2), is limited.
This is partly because these scoring systems are not always
specifically developed for sepsis patients and are therefore
of limited use to health care providers in this context [5,6].
Nevertheless, timely identification and treatment are crucial
to enhance patient outcomes [7-9], as untreated sepsis can
progress to septic shock, exacerbating the patient’s condition
[10] and leading to multiple organ failure, which carries an
even higher mortality rate than sepsis itself [11].

This is where recent developments in artificial intelligence
(AI) become particularly relevant, as they are considered to
hold substantial potential for improving sepsis diagnostics.
Especially machine learning (ML), a branch of AI, has the
ability to rapidly analyze vast amounts of data, exceeding
human capacity to process. By evaluating numerous data
points, ML can derive conclusions and recognize correlations
that a human health care provider would be incapable of
identifying. This is why ML is well-suited as a technologi-
cal foundation for clinical decision support systems (CDSS),
particularly in the complex clinical picture of sepsis [3].
The use of ML in the development of CDSS can make the
sepsis diagnosis more reliable, with the prospect of long-
term improvements in patient outcomes. Machine learn-
ing algorithms (MLAs) demonstrated potential to enhance
patient-relevant benefits in distinct studies. Documented
benefits include, for example, reductions in sepsis-related

mortality and the average hospital length of stay (LOS).
Additionally, MLAs facilitate earlier interventions, such as
the timely administration of antibiotics [12-14].

Despite the high clinical relevance of sepsis and signifi-
cant advancements in both the availability of digital patient
data and in the field of ML, the real-world application of
AI-based CDSS remains negligible. The majority of these
algorithms remain in the prototype phase, with deployment
limited to a single hospital or a single hospital operator.
This gap is highlighted by an analysis of the Food and Drug
Administration’s database of medical devices using AI or
ML. As of April 2025, none of the over 1000 listed products
are specifically dedicated to intensive care [15], the medical
field at the forefront of sepsis treatment. This illustrates the
discrepancy between technological progress and its real-world
implementation in the critical care environment. For AI-based
CDSS to be successfully implemented in clinical practice, it is
a necessary prerequisite that they demonstrate tangible added
value. Accordingly, patient-relevant benefits should constitute
a primary focus.

The research objective of the present study differs from
those of previous scoping reviews on AI-based CDSS in
sepsis care. Certain reviews focused specifically on neona-
tal [16] or pediatric [17] sepsis, whereas others concentra-
ted on tasks for which MLAs were designed—such as risk
assessment, treatment planning, or process support—and thus
focused on the process of medical service delivery rather than
on actual patient-relevant benefits [18] or on the actual design
of the CDSS and its intended users [19]. Importantly, none
of the aforementioned reviews [16-19] focused exclusively
on patient-relevant benefits. Furthermore, several existing
scoping reviews used narrow methodological approaches, for
example, being restricted to a single ML method [17] or
considering only antibiotic treatment of sepsis [16]. To the
authors’ knowledge, no other scoping review has explicitly
examined the patient-relevant benefits of AI-based CDSS in
the context of sepsis while applying a broad and exploratory
methodological approach, without restrictions regarding the
ML methods used or the types of patient-relevant benefits
assessed. Accordingly, the objective of the present study is to
identify patient-relevant benefits of AI-based CDSS in sepsis
care compared with the current standard of care, thereby
addressing this research gap, as patient-relevant benefits
constitute a meaningful benchmark for evaluating the value
of any medical innovation. In this context, a taxonomy of
benefits comprising 6 main categories has been developed.

This scoping review was conducted within the frame-
work of the KI@work (User-Oriented Requirements for
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AI-Based Clinical Decision Support Systems) project, which
is funded by the German Federal Joint Committee (fund-
ing code: 01VSF22050). The research project is led by the
Institute for Health Care Management and Research at the
University of Duisburg-Essen. Consortium partners include
the Department of Anesthesiology, Intensive Care Medicine
and Pain Therapy at the University Hospital Knappschaft-
skrankenhaus Bochum, the Knappschaft Kliniken GmbH, the
Department of Medical Informatics, Biometry and Epidemiol-
ogy at the Ruhr University Bochum and the German Sepsis
Society. This scoping review addressed 2 additional research
questions. However, to ensure a coherent presentation of the
findings, this article focuses exclusively on patient-relevant
benefits.

Methods
Overview
This scoping review is based on the methodology framework
of the Joanna Briggs Manual for evidence synthesis [20], a
further development of the work of Arksey and O’Malley
[21] and Levac et al [22]. The review process followed
the five stages originally described by Arksey and O’Mal-
ley: (1) identifying the research question, (2) identifying
relevant studies, (3) study selection, (4) charting the data,
and (5) collating, summarizing, and reporting the results [21].
The manuscript was prepared according to the PRISMA-
ScR (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) checklist by
Tricco et al [23] (Checklist 1). As scoping reviews encompass
a broad range of study types in order to present a comprehen-
sive overview of the research field [20-22], comparability
between studies is limited. Consequently, no formal quality
appraisal was conducted. Although no distinct protocol for
the scoping review was published, the methodology was
described in detail in a protocol for the overarching multime-
thod research project [24].
Search Strategy
The development of the search strategy commenced with an
initial limited search in MEDLINE via PubMed and Embase
to identify relevant search terms. Subsequently, the identified
terms were discussed in recurring team discussions within the
consortium. In a third step, the consented search terms were
combined into search queries.

The electronic databases MEDLINE via PubMed, Embase,
as well as the ACM Digital Library and IEEE Xplore,
were searched for relevant literature on March 2, 2023.
The databases were selected to ensure that the interdisci-
plinary research question could be adequately addressed
from both a medical and a computer science perspective.
The search string was developed using the PCC (popula-
tion=persons with or at risk of sepsis, concept=CDSS, and
context=AI) framework. The MEDLINE via PubMed search
string was quality-assured by the chief librarian at the library
of the University Medical Centre Essen before the database
search was conducted. The other 3 search strings were
developed based on the same quality assurance principles

as the MEDLINE via PubMed search query. The individual
search terms were limited to occurrences in title, abstract,
and keyword searches but were supplemented by indexing
terms (MeSH and Emtree) and truncations. The final search
strategies for each database can be found in Multimedia
Appendices 1-4.

In agreement with ML experts (NT, HN), the search
was limited to articles published in the last 15 years.
Further explanation for the time restriction is provided in the
discussion of this article. The search was restricted to English
and German. In cases of missing full texts, the interlibrary
loan service of the University of Duisburg-Essen was used.
If that approach was not successful, the reviewers contacted
the respective authors of the papers of interest. The identi-
fied citations were imported into the reference management
program Endnote 20 (Clarivate Analytics).

In addition to the systematic search of electronic databases,
a structured search for gray literature (eg, working papers and
guidelines) from various governmental and nongovernmental
stakeholders was conducted via their websites. The selection
of countries included in the search was based on the results of
the Bertelsmann #SmartHealthSystem study, which examined
the degree of digitalization of various health care systems
in 2018. It was assumed that the prospect of identifying
information on AI-based CDSS would be particularly high
in countries with highly digitalized health care systems.
According to the Bertelsmann study, this applies to the
health care systems of Canada, Denmark, Estonia, Israel,
and Spain. In addition, 3 large economies—Germany, the
United Kingdom, and the United States—were included in
the structured research. Alongside institutional websites from
these countries, websites of relevant international stakehold-
ers were also examined. These included the World Health
Organization (WHO) and the Organisation for Economic
Co-operation and Development (OECD), as well as websites
of international sepsis, intensive care, and medical informat-
ics associations. Further information about included websites
can be found in Multimedia Appendix 5. To supplement
further evidence, reference lists of articles identified through
the systematic and structured search were screened, and the
cited articles were subsequently assessed for eligibility. If
eligible, the referenced articles were included in the scoping
review.
Eligibility Criteria
Exploratory research and internal discussions contributed to
the development of inclusion and exclusion criteria, which
were refined iteratively during the initial stages of the
research process. The search strategy was designed to address
3 different research questions. Studies were considered for
inclusion if they described (1) patient-relevant benefits of
AI-based CDSS in the context of sepsis as well as (2)
problems in their development, implementation, or appli-
cation, or (3) suggestions for improving these processes.
Patient-relevant benefits were identified entirely explora-
tively and categorized independently of existing frameworks,
allowing AI-based CDSS benefits to be classified with-
out reliance on established definitions or patient-relevant
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endpoints. This approach provides a comprehensive and
complete overview of the potential benefits of this emerging
technology, without constraining the findings of this paper
to predefined frameworks and definitions. Patient-relevant
benefits were defined as the positive impact of an intervention
on patients, irrespective of whether these comprise general
qualitative observations or specific, measurable quantitative
endpoints. Specific inclusion and exclusion criteria were
developed for each research question to ensure a tailored
approach to the unique scope of each question. AI was
defined as ML-based algorithms that operate as a “black
box” for the user (physician or caregiver), meaning their
output is not directly interpretable for health care providers.
Consequently, all ML-based technologies developed through
data-driven training and sufficiently complex to preclude
full comprehension by the user were eligible for inclusion.
In contrast, rule-based algorithms, such as those relying on
SIRS or SOFA criteria, did not meet this definition and were
therefore excluded in this review. Moreover, earlier diagnosis
facilitated by AI-based CDSS was not considered a patient-
relevant benefit, as earlier diagnosis itself has no impact
on patient outcomes. It is the interventions that follow an
earlier diagnosis—such as increased attention by health care
providers to patients developing sepsis or earlier initiation of
treatment—that positively influence patient-relevant benefits.

Accordingly, these parameters are pertinent to the scope of
this review. Articles were selected regardless of the research
method used. The inclusion criteria are presented in Textbox
1.

Exclusion criteria for this review were not answering
the research question, an exclusively technical description
of the algorithms developed, or exclusively mathemati-
cal approaches not providing evidence for patient-relevant
benefit. In addition, articles were excluded if they focused
only on the evaluation of binary classifiers such as sen-
sitivity, specificity, positive predictive value, or negative
predictive value, as the superiority of AI-based algorithms
over rule-based scores was considered a prerequisite for such
systems. AI-based CDSS developed exclusively for neonates
and/or children or for animals were also not included, because
(1) the treatment of neonatal or pediatric sepsis patients
differs significantly from the treatment of adult patients [25-
27] and (2) the focus of the study is on human sepsis.
Articles published before 2008 were also excluded, as were
those written in languages other than English or German.
Research protocols, conference abstracts, letters to the editor,
and articles that were only expressions of opinions were also
excluded. The exclusion criteria are listed in Textbox 1.

Textbox 1. Inclusion and exclusion criteria.
Inclusion criteria

• Articles focusing on sepsis and
• Involving AI-based CDSS, that

○ Describe patient-relevant benefits, or
○ Describe problems with development, implementation, or application, or
○ Describe strategies for success

Exclusion criteria
• Exclusively technical description of systems, or
• Focus on description of the evaluation of binary classifiers, or
• Articles describing AI-based CDSS for neonates and children or animals, or
• Not addressing any of the research questions in more detail, or
• Research protocols, conference abstracts, theses, letters to the editor, or expression of opinions, or
• Article published before 2008, or
• Language other than English or German

Evidence Screening, Selection, and Data
Extraction
After identification and deletion of duplicates, title and
abstract screening was conducted independently by 2
reviewers (PR and GDG) to decide whether an article was
eligible for full-text screening. In a second step, the same
2 reviewers conducted a full-text screening of the included
articles against the inclusion and exclusion criteria. In case
of disagreement between the 2 reviewers during step 2 of
the screening process, other members of the study team (NB,
HN, and NT) were involved to decide whether an article was
eligible for inclusion.

MAXQDA (VERBI Software GmbH) software was used
to identify and tag relevant content in the included articles
and to precategorize the patient-relevant benefit categories

(PR) using an inductive coding approach. The preliminary
categories were discussed and further refined in an in-person
workshop based on the affinity mapping technique (PR, NB,
and GDG). For this purpose, all relevant text passages were
printed as snippets and physically assigned to the respective
preliminary categories before being refined and finalized
during the workshop. Each assignment was discussed in detail
until full consensus among all 3 team members was reached.
The results of the workshop were subsequently digitalized in
Microsoft Excel. In addition to the patient-relevant benefits
of AI-based CDSS, metadata, such as participating authors,
year of publication, country of study, database for MLA, or
study type, were extracted and summarized (see Multimedia
Appendix 6).

JOURNAL OF MEDICAL INTERNET RESEARCH Raszke et al

https://www.jmir.org/2026/1/e76772 J Med Internet Res 2026 | vol. 28 | e76772 | p. 4
(page number not for citation purposes)

https://www.jmir.org/2026/1/e76772


Analysis and Presentation of Results
The results of the included studies were summarized
descriptively, and analysis was conducted to derive implica-
tions for policy, practice, and research. The patient-relevant
benefits were grouped into 6 main categories. The main
categories were presented in tabular form in an Excel file
and diagrammatically. The patient-relevant benefit categories
are presented chronologically in Multimedia Appendix 7.

Results
Selection of Sources of Evidence

Selection Process
In the systematic search, a total of 3368 titles and abstracts
were retrieved. After removing 850 duplicates, 2518 articles

remained for screening (Figure 1). Of these, 141 articles
were screened for full text, and 39 met the inclusion criteria.
Among these, 24 provided statements on patient-relevant
benefits [28-51]. In addition, reference lists of the articles
identified through the systematic search were analyzed,
resulting in the identification of 5 additional articles, 2 of
which reported information on patient-relevant benefits [52,
53]. A complementary search of institutional websites led to
the inclusion of 5 additional articles, 4 of which contained
relevant information on patient-relevant benefits [54-57]. In
total, 30 articles were included in the scoping review about
patient-relevant benefits. The full-text screening process,
including a detailed account of the reasons for exclusion, is
presented in Multimedia Appendix 8.

Figure 1. Flow diagram illustrating the selection process of evidence. CDSS: clinical decision support system.

Included Studies
Of the 30 articles included, 16 originated from North
America, all of which are from the United States (53.3%) [28,
30-32,34,36-38,42,43,45,49,52,53,56,57]. Seven articles stem
from Europe (23.3%); 3 from the Netherlands (10%) [46,48,
50], 2 from Spain (6.6%) [33,44], 1 from Austria (3.3%) [29],
and 1 from the United Kingdom (3.3%) [39]. Five articles are
from Asia (16.7%), including 2 each from China [41,51] and

Taiwan [40,54] (6.6% each), and 1 from Singapore (3.3%)
[35]. There is 1 article from Australia (3.3%) [55] and 1
article from South America (Brazil) (3.3%) [47].

The study designs used in the included articles cover a
wide range. Overall, 20 quantitative articles were identified.
Of these, 7 used a prospective study design, of which 2 are
multicenter studies [28,31] and 5 are single-center studies
[34,43,49,52,54]. Thirteen of the quantitative studies used
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a retrospective approach, comprising 6 research database
studies [29,30,39,40,46,53] and 7 electronic health record
database studies [33,35,41,42,45,47,50]. In addition to the
quantitative articles, 1 article used a qualitative approach
[37] and another applied a mixed methods approach [36].
Additionally, 6 review articles [32,38,44,48,51,55] and 2
articles from news sections of institutional websites were
identified [56,57]. All articles are listed in Multimedia
Appendix 6.
Synthesis of Results
In total, 6 main categories of patient-relevant benefit were
identified. The 6 main categories identified reflect the patient

pathway from pretreatment to posttreatment period. They
include (1) prediction, (2) earlier treatment and prioritiza-
tion of high-risk patients, (3) individualized therapy (which
encompasses patient-centered care), (4) improved patient
outcomes (which includes improved SOFA score, reduced
length of stay, and reduced mortality), (5) general improve-
ments in care, and (6) reduced readmission rate (see Figure
2). Multimedia Appendix 7 gives a detailed overview of the
benefit categories addressed in each study.

Figure 2. Patient benefit categories related to artificial intelligence-based clinical decision support systems.

Pretreatment Period (Prediction)
Prediction of sepsis, septic shock, or sepsis-related organ
dysfunction was addressed in 12 articles [31,33,35,37,38,
40,42,45,48,51,53,56], comprising 7 quantitative studies (1
prospective [31] and 6 retrospective [33,35,40,42,45,53]), 1
qualitative study [37], 3 reviews [38,48,51], and 1 institu-
tional news report [56]. The MLAs identified in this review
indicate predictive capacity [48], which may be further
optimized through algorithm fine-tuning [45]. Findings
suggest that these models may predict sepsis between 4 and
48 hours prior to its onset [35,38,40,51,56], even before
significant changes in vital or laboratory parameters become
apparent [40]. MLAs were reported to support the identifica-
tion of appropriate preventive measures [33]. Such predic-
tions may have the potential to improve patient outcomes
by providing timely warning of sepsis onset [31,37]. Beyond
sepsis, the studies also reported the prediction of septic shock,
with MLA predictions occurring between 4 and 7 hours
before the onset of septic shock [42,51]. Compared with
traditional rule-based routine screening protocols, predictive
MLAs demonstrated superior early warning performance,
identifying 58.6% more patients before organ dysfunction
[53] and potentially contributing to a reduction in septic
shock incidence [38]. Moreover, MLAs were shown to
predict sepsis-related organ dysfunction approximately 7.5
hours earlier than rule-based routine screening protocols [53].

Treatment Period

Earlier Treatment and Prioritization of High-
Risk Patients
Earlier treatment facilitated by MLAs was reported in
10 articles [28,31,33,36,37,40,49,52,53,57], including 7
quantitative studies (4 prospective [28,31,49,52] and 3
retrospective [33,40,53]), 1 mixed methods study [36], 1
qualitative study [37], and 1 institutional news report [57].
One retrospective study reported that the used MLA enabled
earlier treatment up to 40 hours before the onset of sep-
sis [40], while another indicated that the use of ML may
reduce the time to treatment, not providing a specific time
reduction [33]. Earlier treatment was reported to enable
intervention before or during clinical deterioration [53] and
potentially prevent sepsis progression [52]. It may allow for
early identification and intervention of patients at high risk
for severe sepsis prior to clinical onset [31]. Additionally,
the literature highlighted early identification and control of
the pathogen causing sepsis [52]. Detecting patients before
the onset of septic shock may facilitate earlier clinical
assessment, diagnostic testing, therapeutic interventions, and
transfer to appropriate levels of care [53]. Ultimately, earlier
treatment may improve patient outcomes [37] and lead to an
alteration in the prevalence of septic shock through timely
intervention by health care providers from 5.3% in the control
group to 1.5% in the experimental group (–71.7%) of the
corresponding study [49]. MLAs were also associated with
shorter times to obtain blood cultures (0.98‐2.79 hours)
[49,57], fluid administration (1.05 hours) [57] and earlier
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administration or adjustment of antibiotics (0.55‐2.76) [28,
36,49,57]. A positive correlation between timely evaluation
of MLA alerts and quicker administration of antibiotics
was reported, as earlier evaluation of alerts leads to faster
use of antibiotics [36]. Finally, a quantitative prospective
study reported that MLAs allow prioritization of high-risk
patients, with the targeted real-time early warning system
(TREWS) identifying who is most likely to benefit from
timely treatment [28].

Individualized Therapy
MLAs were reported to support individualized, patient-cen-
tered therapy in 11 articles [29,30,33,39,41,44-47,50,54],
comprising 10 quantitative studies (1 prospective [54] and
9 retrospective [29,30,33,39,41,45-47,50]) and 1 review [44].
Four main approaches for individualization were identified:
(1) subgroup analyses and clustering, (2) optimized substance
administration, (3) personalized nursing care, and (4) general
statements. Three articles reported subgroup analyses and
clustering of patients [41,45,46], which may enable hospitals
to provide targeted treatments tailored to the specific needs
of defined subgroups [45] and classify patients according
to their diverging mortality risk due to factors such as
fluid overload or norepinephrine overdose. Such classifica-
tion might support the development of tailored resuscitation
strategies for patients with septic shock [41]. Furthermore,
subgroup analyses applied to populations with differing
disease severity and progression allow MLAs to adjust the
intensity of therapy [46]. The use of MLAs for optimal
substance administration was reported in 6 articles [29,33,39,
41,50,54]. Applications include personalized antibiotic dosing
[33], faster adjustment to the most effective antibiotics,
and drug resistance prediction. The comprehensive Intelli-
gent Antimicrobial System demonstrated potentially faster
drug resistance prediction times compared with conven-
tional methods, requiring 39.8 hours for carbapenem-resistant
Klebsiella pneumonia and 40.9 hours for methicillin-resistant
Staphylococcus aureus, compared with 99.5 and 106.4 hours,
respectively, using traditional methods [54]. MLA use was
also associated with an 8% reduction in antibiotic resist-
ance [50], may shorten the time to antimicrobial resistance
detection by 37 hours [54], and was reported to reduce the
duration of antibiotic treatment [50]. Furthermore, MLAs
may support physicians in selecting appropriate antibiotic
therapy [54], with AI-based antibiotic stewardship linked
to decreased Clostridium difficile infections [50]. Beyond
antibiotics, MLAs have demonstrated utility in optimizing
dosing strategies for norepinephrine [41], vasopressors [39],
corticosteroids [29], and fluid volume management [41].
MLAs also reported to enhance nursing competence and
support more evidence-based, personalized nursing care [47].
General statements on individualized therapy were identified
in 4 articles [30,33,44,54], including personalized treatment
to support physicians in diagnosing and managing bacteremia
[33], facilitation of shared decision-making through preopera-
tive discussions [30], improved physician adherence [44], and
more precise treatment tailored to individual patients [54].

Improved Patient Outcomes
Improved SOFA Score
Improved SOFA scores associated with the application of
and timely response to MLAs were reported in 1 quantitative
prospective study [28]. The SOFA score, the predominant
measure for assessing the severity of organ dysfunction, is
closely linked to the probability of mortality, with a higher
score indicating an increased probability of death [3,58].
Using the TREWS algorithm, Adams et al [28] reported a
SOFA score progression of –0.8 in their intervention group,
compared to –0.4 in the control group. The article highlights
a disproportionate reduction in the SOFA score for high-
risk patients compared to nonhigh-risk patients. Additionally,
timely evaluation and confirmation of the TREWS alerts is
associated with improvements in SOFA score progression.
Reduced Length of Stay
Seven quantitative articles reported reductions in LOS [28,
31,43,49,50,52,54], including 6 prospective [28,31,43,49,52,
54] and 1 retrospective study [50]. Based on the identified
literature, a distinction can be drawn between (1) specific
reductions, reported in absolute or relative terms [28,31,
43,49,52,54], and (2) general statements without precise
quantification [28,49,50]. Reported specific reductions in
hospital LOS ranged from 0.43 to 8.1 days [28,31,43,49,52],
corresponding to decreases of 12.84%-45.25% [31,43,49,52].
Reported reductions in ICU LOS varied between 2.09 and
10.5 days [49,50]. One study also highlighted that shorter
ICU stays may contribute to an overall reduction in hospi-
tal LOS, although LOS on the general ward increased by
2.4 days [50]. Another article reported a potential annual
reduction of 1100 days in emergency department stays and
the prevention of 34 ICU stays associated with MLA usage
in the examined hospital [54]. General statements indica-
ted a disproportionate, though not statistically significant,
reduction in LOS among high-risk patients as well as
reduced LOS when MLA-generated alarms were evaluated
and confirmed timely [28]. AI-based antibiotic stewardship
was also associated with shorter LOS [50] and MLAs were
reported to significantly shorten hospital LOS compared to
rule-based systems [49]. Furthermore, 1 study suggested that
timely physician responses to MLA-generated alerts may
contribute to reduced LOS [28].

Reduced Mortality
A reduction in mortality was reported in 14 articles [28,29,
31-33,39,43,48,49,52,54-57], including 9 quantitative studies
(6 prospective [28,31,43,49,52,54] and 3 retrospective [29,
33,39]) as well as 3 reviews [32,48,55] and 2 institutional
news reports [56,57]. Reported mortality reductions varied
in type and presentation, encompassing (1) specific quantita-
tive statements, expressed in relative or absolute terms [28,29,
31,32,43,49,52,54,56,57], and (2) general statements without
numerical specifications [28,29,33,39,48,49,54,55]. Relative
reductions of mortality ranged from 13.19% to 74.94% [28,
31,43,49,52,56,57], whereas absolute reductions ranged from
1.33% points to 26.4% points [28,29,31,43,49,52,54]. One
study reported an increase in absolute survival rate of 11.7%
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and 23.7%, depending on the type of bacteria responsible
for the sepsis [54]. Two articles provided reductions in
natural numbers; one projected 22 potentially preventable
annual deaths in the emergency department of the China
Medical University Hospital [54], while another estimated
several thousand preventable deaths in the United States
alone [32]. General statements suggested that MLAs may
disproportionately reduce mortality among high-risk patient
cohorts, particularly when outputs are promptly evaluated and
confirmed by physicians [28]. Improved survival rates may
also be linked to the use of MLA-guided antibiotic recom-
mendations [54] and the application of the 3PM (predictive,
preventive, and personalized medicine) principles [33]. MLAs
are associated with lower mortality compared to traditional
physician assessments [29,39] and predictions generated
by rule-based tools [49]. Additionally, literature provided
general statements, offering limited informational depth and
indicating that the use of ML may contribute to reduced
mortality [29,39,48,49,55].

General Improvements in Care
Eight articles reported improvements in care associated
with MLAs [31,34,38,43,47-49,54], including 6 quantitative
studies (5 prospective [31,34,43,49,54] and 1 retrospective
[47]) as well as 2 reviews [38,48]. Reported benefits can
be divided into 2 domains: (1) statements related to time
and (2) statements on patient care enhancements. One study
reported a reduced duration of septic shock [48]. Within the
patient care enhancement category, MLAs were described as
posing no risk to patients and offering potential benefits to
patients and health care providers [31], reducing events of
clinical deterioration [38], improving care accuracy [47,54],
and increasing sepsis awareness among physicians [43,49].
Physicians and nurses also reported perceived improvements
in care [34].
Posttreatment Period (Reduced
Readmission Rate)
Predictive AI-based CDSS were associated with reduced
30-day readmission rates, as reported in 2 quantitative
prospective studies [31,43]. In Burdick et al [31], implemen-
tation of an MLA reduced the 30-day readmissions from
36.4% to 28.12%, representing a 22.74% reduction compared
to the baseline period. McCoy and Das [43] reported a
decline from 46.19% (188/407) during the preimplementation
baseline period to 29.8% (100/336) in a first postimplemen-
tation period and further to 25.2% (96/381) in a second
postimplementation period. In a subsequent steady-state
period, the 30-day readmission rate was further reduced to
7.84% (16/204). Across all surveyed months after implemen-
tation, the 30-day readmission rate was 23.03%, representing
a 50.14% reduction in the sepsis-related 30-day readmission
rate.

Discussion
Principal Findings
This scoping review presents the evidence on the patient-
relevant benefits of AI-based CDSS in sepsis care. All
articles focusing on sepsis and presenting the influence
of AI-based CDSS on patient-relevant benefits, identified
through the comprehensive search strategy, were included.
In total, 30 articles were identified and integrated into the
review. Investigating the literature, there is a number of
AI-based CDSS for sepsis treatment developed in the past
or currently under development. However, research typically
has no or only limited reference to patient-relevant benefits
and (1) mostly focuses on problems and/or success strategies
[32,55,59-61] and/or (2) is indication-independent [59]. To
the best of the authors’ knowledge, this represents the first
scoping review on this specific topic.

The findings of this scoping review, systematized into the
6 main categories, (1) prediction, (2) earlier treatment and
prioritization of high-risk patients, (3) individualized therapy
(which encompasses patient-centered care), (4) improved
patient outcomes (which includes improved SOFA score,
reduced length of stay, and reduced mortality), (5) general
improvements in care, and (6) reduced readmission rate,
underscore the potential patient-relevant benefits of AI-based
CDSS in sepsis care across the entire inpatient pathway.
The literature indicates that MLAs can potentially predict
sepsis before its clinical onset [35,38,40,51,56]. Additionally,
septic shock [42,51] and sepsis-related organ dysfunction [53]
may be predicted in advance. These predictive capabilities
can contribute to reducing the incidence of septic shock
[38] and supporting decreased mortality rates among sepsis
patients [12]. Sepsis prediction may facilitate timely treatment
initiation through the use of MLAs [40]. This was associated
with improved patient outcomes and a decreased prevalence
of septic shock [49]. Furthermore, individualized therapy can
potentially have a positive impact on patient-relevant benefits
by reducing the time to treatment or LOS for each individual
patient [33]. Moreover, the disproportionate reduction in the
SOFA score through the use of ML compared to a control
group whose treatment was not supported by MLAs should
be mentioned. According to the Sepsis-3 definition, the level
of the SOFA score positively correlates with the probability
of death [3], and a SOFA score of ≥2 points corresponds to
a mortality risk of over 10% in hospitalized patients outside
the ICU [25]. The TREWS algorithm presented by Adams et
al was able to reduce the SOFA score by 0.8 points, while
a reduction of only 0.4 points was observed in the control
group. Accordingly, the use of this MLA may contribute to
the reduction in mortality. In general, the usage of MLAs was
associated with a mortality reduction of up to 74.94% [28,31,
43,49,52,56,57], with faster response times being associated
with greater reductions in mortality [28]. This demonstrates
the medical potential of ML in the treatment of sepsis,
particularly when clinical recommendations are accepted and
promptly implemented by physicians. With approximately
11 million deaths annually from sepsis according to the
WHO [2], a corresponding reduction in mortality could
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translate into a substantial global health impact. Addition-
ally, MLAs were linked to reduced hospital LOS [31,43,49,
52] and ICU LOS [49,50]. Beyond their predictive capabil-
ities, facilitation of timely treatment, mortality, and LOS
reductions, AI-based CDSS in sepsis care provide further
patient benefits, including shortened duration of septic shock
[48], reduced antibiotic resistance, and reduced duration of
antibiotic treatment [50]. MLAs may also contribute to a
reduction of events of clinical deterioration [38] and increased
physician awareness of sepsis [43,49]. Finally, the literature
indicates that AI-based CDSS in sepsis care can contribute to
reducing hospital readmission rates [43], further demonstrat-
ing their potential to improve patient-relevant benefits.
Comparison With Prior Work
While 6 reviews were included in this work, they pri-
marily focused on other topics and predominantly used
less systematic approaches [32,38,44,48,51,55]. Among the
included reviews, 4 adopted a narrative review methodol-
ogy [32,44,48,51]. By design, this approach is inherently
less systematic than systematic reviews or scoping reviews,
and this was evident in the search and selection process
of the included narrative reviews. Two relied exclusively
on limited, nonsystematic keyword searches, one using 8
keywords across 4 search engines [44] and another restric-
ted to 3 keywords in a single database [32]. Moreover,
the review conducted by Ferreira et al [32] focused primar-
ily on problems and success strategies related to AI-based
CDSS, thereby addressing a different thematic focus than the
present scoping review. Another narrative review applied a
brief and partial search string without predefined inclusion
and exclusion criteria and was limited to a single database
[51], representing considerable methodological limitations
relative to the present comprehensive scoping review. The
narrative review conducted by Schinkel et al [48] adopted a
more systematic approach, using a predefined search string
and assessing the clinical value of AI-based systems by
evaluating the AUROC as a criterion for article selection.
While methodologically more robust, this review nonetheless
differed from the present article, as it primarily evaluated
the advantage of MLAs over rule-based scores, reflecting
the status quo using a binary classifier. The advantage of
MLAs over rule-based scores was considered a prerequisite
for AI-based CDSS in the present study. With the excep-
tion of 1 review, where a manual search of reference lists
was conducted [32], none of the narrative reviews [44,48,
51] undertook a comprehensive search for gray literature
or an analysis of the reference lists. Furthermore, only 1
narrative review reported a screening process conducted by
2 independent reviewers [48], whereas the other 3 reviews
did not provide methodological detail [32,44,51]. By contrast,
the present scoping review implemented a rigorous screening
process with 2 independent reviewers to enhance objectiv-
ity, reliability, and reproducibility. Beyond these narrative
reviews, 1 study followed an integrative review approach,
explicitly focusing on predictive algorithms and embedding
this narrow focus within a brief predefined search string [38].
In contrast, the present exploratory scoping review aimed
to inductively derive patient benefit categories associated

with AI-based CDSS in sepsis care. This integrative review
relied on a single reviewer for screening [38], representing
a methodological limitation in comparison with the dual-
reviewer approach of the present scoping review. Finally,
1 systematic review included in this study used a largely
rigorous and systematic methodology, with the notable
exception of a gray literature search, which was not repor-
ted. In addition, this systematic review focused primarily
on problems and success strategies [55], thereby diverging
from the present scoping reviews’ explicit focus on patient-
relevant benefits. In sum, the present scoping review can
be clearly distinguished from the included reviews both
methodologically and thematically. By applying a compre-
hensive, exploratory design, centered on patient-relevant
benefits, it makes a substantive and valuable contribution to
closing the research gap regarding patient-relevant benefits of
AI-based CDSS in sepsis care.
Implications and Recommendations
Patient-relevant benefits identified in the literature are not
sufficient to ensure successful implementation of AI-based
CDSS. Equally critical is the acceptance of the underly-
ing technology by health care providers and their belief
that its use possesses tangible benefits. The unified theory
of acceptance and use of technology (UTAUT) provides
a framework to understand factors influencing behavio-
ral intention and use behavior using four constructs: (1)
performance expectancy, (2) effort expectancy, (3) social
influence, and (4) facilitating conditions. In this context,
effective design of AI-based CDSS should ensure that
providers perceive the system as both beneficial and easy to
use, corresponding to the first 2 constructs of the UTAUT.
Specifically, (1) users should believe that using AI-based
CDSS enhances gains in job performance, and (2) the
system is intuitive and easy to operate. Equally important are
contextual factors: health care providers should perceive that
(3) important others endorse system use, and (4) organiza-
tional and technical infrastructure is in place to support
usage [61]. A meta-analysis by Dingel et al [62] apply-
ing the UTAUT to health care practitioners’ intention to
use AI-enabled CDSS confirms that implementation must
address not only technical and organizational aspects but also
psychological and social factors, particularly fostering user
trust. Successful implementation of AI-based CDSS therefore
depends only partly on system performance; it is largely
contingent on user attitudes and framework conditions.

Beyond the 4 UTAUT constructs, specific barriers [63]
and facilitators [64] must be considered when evaluating
AI-based CDSS. A nuanced understanding of these fac-
tors is essential to accurately evaluate the potential impact
of AI-based CDSS on sepsis care. The current evidence
demonstrates a pronounced lack of prospective studies
investigating the optimal integration of such systems [29].
This paucity of implementation-oriented research, coupled
with limited clinician acceptance [37] and insufficient
knowledge of AI among health care providers [65], consti-
tutes a substantial barrier to clinical adoption. Concurrently,
extant literature highlights pivotal facilitators, emphasiz-
ing the importance of prioritizing research on effective
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integration strategies [38]. For instance, low acceptance may
be mitigated by involving health care providers directly
in the design and development of CDSS [66-68], while
targeted training and educational programs could address
knowledge gaps among service providers and enhance trust
in this technology [37,67]. These factors must therefore be
carefully considered by all stakeholders involved in imple-
mentation (eg, caregivers, physicians, and researchers) before
real-world adoption can occur. For clinicians, the findings
provide insights into realistic benefits, current limitations,
and evidence gaps that may guide expectations in clinical
decision-making. For researchers, this review underscores the
importance of conducting prospective studies and foster-
ing user-centered development to ensure that CDSS effec-
tively translate into clinical practice. In addition, although
patient-relevant benefits—and not only measurable patient-
relevant outcomes—have been investigated, the findings
may contribute to the development of a consistent set of
generic patient-relevant outcomes, as proposed by Kersting
et al [69]. This could, in turn, facilitate a shared under-
standing and enhance comparability across studies targeting
patient-relevant outcomes, particularly given the absence of a
clear, widely accepted definition and standardized criteria for
selecting such outcomes.
Strengths and Limitations
This scoping review was conducted by an interdisciplinary
team comprising computer scientists, physicians, statisticians,
and (health) economists. This diverse expertise facilitated
a comprehensive examination of all relevant aspects across
these fields, ensuring a thorough evaluation of the reviewed
literature. To address the interdisciplinary research ques-
tion comprehensively, 4 databases focusing on medicine
and informatics were included in the review. In addition,
the structured search for gray literature targeted various
institutions in 8 countries, including each country’s Ministry
of Health, diverse sepsis and intensive care associations for
each country, and diverse health informatics associations for
each country. The 8 countries were selected based on two
criteria: (1) having highly digitalized health care systems
and/or (2) holding the status of industrialized nations. These
countries were presumed to have a higher likelihood of using
AI-based systems. Furthermore, the search encompassed
internationally active stakeholders, such as the WHO and
OECD, alongside globally active health informatics organiza-
tions and sepsis and critical care associations.

Despite all efforts, this scoping review is not free of
limitations. Given the exploratory nature of the methodology,
publication bias must be considered a potential limitation
[70]. Studies in which AI-based CDSS do not demonstrate
improvements in patient-relevant benefits compared with
conventional scores may not be submitted in peer-reviewed
journals, potentially leading to an overestimation of their true
patient benefit. Although no formal risk of bias assessment
was conducted, the included studies demonstrated considera-
ble heterogeneity in design. Moreover, 65% (13/20) of the
quantitative studies relied solely on retrospective methodol-
ogies, in which evidence of patient benefits was demonstra-
ted only theoretically. Consequently, the findings of this

scoping review should be interpreted with caution, as the
reported effects may be overestimated in the context of
real-world care. The overall strength of evidence was limited
by the predominance of retrospective study designs and
the theoretical nature of reported benefits. In contrast, the
included prospective studies provided more robust support for
the identified benefit categories. Importantly, each bene-
fit category has been substantiated in prospective studies,
thereby affirming its validity in real-world clinical contexts
rather than solely theoretically in retrospective or descrip-
tive studies (Multimedia Appendix 9). Detailed information
on the study designs of all included articles is provided
in Multimedia Appendix 6. Multimedia Appendix 9 sum-
marizes benefit categories identified across the respective
study designs. Furthermore, the comparability of the reported
MLA performance across articles is limited due to vary-
ing definitions of sepsis (eg, different causative pathogens,
divergent sepsis definitions, and variations in the exam-
ined indications such as sepsis, septic shock, or sepsis-rela-
ted organ dysfunction). The same limitation applies to the
databases used for training and validation, which differed
substantially in size. In addition, no assessment of the applied
MLA methods was conducted, nor was the level of maturity
of the individual MLAs explicitly considered. Furthermore,
due to the heterogeneity of the included studies, no formal
quality assessment was conducted. Rather, the present review
was designed to exploratively map and comparatively present
the entirety of available evidence in order to identify research
gaps, without imposing methodological restrictions on the
literature to be included [20-22]. Finally, a methodological
limitation should be noted: Research conducted on institu-
tional websites could only be partially conducted for Estonia,
Denmark, and Spain due to language restrictions (English
and German), as some stakeholder websites were availa-
ble exclusively in the respective national languages. The
utilization of translation tools was deliberately avoided, as
the inclusion of material that none of the authors could fully
comprehend and critically appraise in the original language
was considered methodologically inappropriate.

The search restriction of 15 years should not be considered
a limitation. The inclusion period was defined in consulta-
tion with ML experts (NT, HN), and algorithms developed
prior to the review period (January 1, 2008-March 2, 2023)
were predominantly anticipated to be (1) rule-based systems
and/or nonblack-box systems for the users. Both types of
algorithms are outside the scope of this review. Moreover, an
initial limited search in the databases MEDLINE via PubMed
and Embase, which accounted for approximately 75% of the
screened literature (Figure 1), indicated that only a marginal
proportion of articles relevant to the research question were
published before 2008. Consequently, the time restriction
is unlikely to have affected the identification of relevant
literature.
Conclusion
The findings of this scoping review highlight the considerable
medical relevance of AI-based CDSS in sepsis care. These
systems offer benefits across the entire patient care pathway,
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from early detection and risk stratification to individualized
therapy and various improved outcomes. AI-based CDSS
has shown the ability to predict sepsis, septic shock, and
sepsis-related organ dysfunction, enabling earlier initiation
of treatment, prioritization of high-risk patients, and tailored
therapeutic strategies. In addition to supporting earlier and
more targeted interventions, AI-based CDSS contribute to
better clinical outcomes, including improved SOFA scores,
reduced LOS both in general wards and ICUs, and lower
mortality rates. They may also help reduce readmission
rates among sepsis patients, further enhancing long-term

care quality. With their transformative potential, AI-based
CDSS could fundamentally improve the global management
of sepsis. However, further research is needed to optimize
the development, implementation, and clinical application
of these systems to maximize patient benefits and further
improve outcomes for sepsis patients in the future. This
is particularly important given the highly heterogeneous
evidence base, with a substantial proportion of studies relying
on retrospective data, as the results of the included studies
cannot be directly generalized or applied without caution.
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