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Abstract

Background: Osteoporosis (OP) is projected to be a major issue significantly impacting the well-being of middle-aged and
old populations. Machine learning (ML) and deep learning (DL) models developed based on medical imaging have enhanced
clinicians’ diagnostic accuracy and work efficiency. However, the diagnostic performance of different types of medical
imaging for OP has not been systematically assessed.

Objective: By summarizing related literature, this study aims to elucidate the role of DL models based on different medical
imaging modalities in OP detection.

Methods: PubMed, Embase, the Cochrane Library, and Web of Science were systematically searched for studies using ML
for the diagnosis of OP based on medical imaging. The final search was conducted on May 16, 2024. The risk of bias in the
included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. A bivariate mixed-effects
model was applied to perform meta-analyses of sensitivity (SEN) and specificity (SPC), stratified by imaging modality (x-ray,
computed tomography [CT], magnetic resonance imaging [MRI]). In addition, subgroup analyses were carried out based on the
type of ML algorithm, the method of validation dataset generation, and the anatomical site of assessment.

Results: A total of 60 studies comprising 66,195 participants were encompassed in this systematic review and meta-analysis.
Among these, 22 studies used x-ray imaging, 37 applied CT imaging, and 3 used MRI for ML-based OP diagnosis. For
x-ray—based models, the pooled SEN and SPC for studies focusing on the appendicular skeleton were 0.97 (95% CI 0.83-0.99)
and 0.90 (95% CI 0.75-0.96), respectively. For studies using the mandible as the target site, SEN and SPC were 0.94 (95%
CI 0.89-0.97) and 0.80 (95% CI 0.56-0.93), respectively. For those focusing on the lumbar spine, the pooled SEN and SPC
were 0.87 (95% CI 0.77-0.93) and 0.82 (95% CI 0.75-0.87), respectively. For CT-based models, studies targeting the hip joint
reported a pooled SEN and SPC of 0.87 (95% CI 0.83-0.90) and 0.92 (95% CI 0.81-0.96), respectively. For the thoracic spine,
SEN and SPC were 0.91 (95% CI 0.86-0.94) and 0.94 (95% CI 0.92-0.95), respectively, while for the lumbar spine, they were
0.91 (95% C10.87-0.94) and 0.92 (95% CI 0.86-0.95), respectively.

Conclusions: ML based on medical imaging demonstrates high diagnosis accuracy for OP, particularly DL models using
x-ray and CT modalities. However, this study included only a limited number of original studies using MRI-based ML, and
there remains a lack of adequate external validation across studies, which poses interpretative limitations. Future research
should aim to develop artificial intelligence tools with broader applicability and enhanced diagnostic precision.
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Introduction

Osteoporosis (OP), a metabolic disorder, features a sys-
temic reduction in bone mass and impaired bone micro-
architecture and elevates the risk of fragility fractures. As
the most prevalent chronic metabolic bone disease, it is
strongly associated with advancing age, posing significant
health threats. However, due to its insidious onset, prolonged
disease course, and challenges in treatment, public aware-
ness and attention toward OP prevention and management
remain insufficient [1,2]. With the emerging global trend of
population aging, OP is projected to become a major issue
adversely affecting the quality of life of middle-aged and
older people. Epidemiological studies estimate that by 2050,
the global population at high risk of fractures will surge to
6.26 million from 1.66 million in 1990 [3]. This escalation
imposes immense social pressures and substantial economic
burdens on early OP screening, prevention, and treatment.

At present, a variety of diagnostic methods are availa-
ble for the clinical assessment of OP. Among them, dual-
energy x-ray absorptiometry (DXA) for measuring 7' scores
recommended by the World Health Organization is regarded
as the authoritative and standardized technique [4]. Although
DXA is widely used, it is unable to assess whole-body
skeletal, fat, and lean mass, which restricts its utility in the
routine diagnosis or evaluation of OP [5]. Moreover, due
to disparities in socioeconomic development across different
regions worldwide, DXA is not accessible in underdeveloped
countries and regions. Therefore, some high-risk populations,
such as postmenopausal women and older adults, are not
detected and untreated. Medical imaging is crucial in clinical
diagnosis and treatment. However, the hidden features within
imaging techniques including x-rays, computed tomography
(CT), and magnetic resonance imaging (MRI) are often
overlooked due to low spatial resolution and high contrast
resolution [6].

In the 1980s, computer-aided diagnosis (CAD) systems
were developed to deeply interpret key features in medical
images, providing radiologists with valuable insights into
image interpretation [7]. Currently, CAD tools primarily
include traditional machine learning (ML) models built on
explainable clinical features and deep learning (DL) models
developed using pathological or nuclear medicine images.
They assist clinicians in disease diagnosis and prognostic
prediction. Increasing evidence has demonstrated the utility of
CAD in diagnosing conditions such as autism [8], pulmonary
embolism [9], breast cancer [10], and bone metastases [11].
DL approaches based on medical imaging have attracted
substantial research interest. Against this backdrop, ML
models based on various imaging modalities such as x-rays,
CT, and MRI have been constructed to diagnose OP [12].
However, the diagnostic performance of various imaging
methods in OP is not supported by systematic evidence. This
hindered the application of artificial intelligence (AI)-based
CAD tools in OP and posed challenges for further systematic
development.
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Therefore, our study seeks to provide a comprehensive
review of DL research in the diagnosis of OP based on
medical imaging modalities, including x-ray, CT, and MRI.
Furthermore, this study aims to analyze and evaluate the
feasibility and accuracy of Al-driven DL in enhancing the
screening and diagnostic rates of OP, thereby offering robust
support for the prevention and management of the disease.

Methods

Study Registration

This study followed the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guide-
lines and was prospectively registered on PROSPERO
(CRDA42024567736).

Eligibility Criteria

The eligible studies were (1) case-control, cohort, or cross-
sectional studies; (2) papers with comprehensively devel-
oped image-based DL models for OP diagnosis; and (3)
English publications. The following studies were excluded:
(1) studies that only developed traditional ML models, (2)
those that performed image segmentation without a com-
plete DL model, and (3) those lacking outcome measures
for evaluating the DL model’s accuracy. Outcome measures
must include at least 1 of the following: c-statistic, sensi-
tivity (SEN), specificity (SPC), accuracy, recall, precision,
confusion matrix, F'|-score, or calibration curve.

Data Sources and Search Strategy

PubMed, Cochrane, Embase, and Web of Science databa-
ses were thoroughly retrieved up to May 16, 2024. Both
MeSH and free-text terms were used without restrictions on
geographic location or study type. The search strategy is
detailed in Multimedia Appendix 1.

Study Selection

The retrieved literature was uploaded to EndNote (Thom-
son Corporation), and duplicates were ostracized. Titles
and abstracts were reviewed to identify potentially eligi-
ble studies. Full-text papers were subsequently screened
to determine the eligible ones. Two researchers (RZ and
HY) independently conducted the literature screening and
cross-checked their results. Dissents were addressed by a
third researcher (YL).

Data Extraction

The eligible papers were imported into EndNote, and
data extraction was performed. A standard electronic data
extraction form was developed beforehand to capture the
following information: title, DOI, first author, publication
year, author’s country, study type, patient source, OP
diagnosis criteria, medical imaging, background population,
gender, age, use of image segmentation, number of OP cases,
total cases, number of OP and total cases in the training
or validation set, validation set generation method, model
type, and comparison with clinical practitioners. Data were
independently extracted by 2 researchers (RZ and HY),
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followed by cross-checking. There was a high level of
agreement between the 2 reviewers in the screening process
(Cohen #=0.879). In cases of disagreement, a third reviewer
(YL) would assist in addressing it.

Risk of Bias in Studies

The bias of risk in the eligible studies was assessed via
Quality Assessment of Diagnostic Accuracy Studies-2, a tool
for evaluating the collation risk of bias and clinical applica-
bility of original diagnostic studies [13]. Quality Assessment
of Diagnostic Accuracy Studies-2 covers 5 domains: case
selection, trials to be evaluated, reference standard, case flow,
and progress, with each involving a few specific questions.
The answer of “Yes,” “No,” or “Uncertain” corresponds
to a low, high, or uncertain risk of bias. The risk of bias
was deemed low if all of the landmark questions within a
range were answered with “Yes”; if one of the informative
questions was answered with “No,” bias may exist, and the
evaluators must determine the risk of bias in line with the
established guidelines. The risk of bias must be judged by the
evaluation authors as per the established criteria. An unclear
risk indicated that the studies reported sufficient details.
Therefore, evaluators could not make a definitive judgment.

The risk of bias in studies was independently conducted
by 2 researchers (RZ and HY), followed by cross-checking.
If any dissent arose, a third researcher (YL) would assist in
addressing it.

Synthesis Methods

The meta-analysis was carried out via a bivariate mixed-
effects model based on diagnostic 2x2 contingency tables.
However, some of the original studies did not provide
complete 2x2 diagnostic data. In such cases, the necessary
information was derived using SEN, SPC, positive predictive
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value, negative predictive value, and accuracy, in conjunc-
tion with the corresponding sample sizes. The meta-analysis
reported pooled estimates of SEN, SPC, positive likelihood
ratio (PLR), negative likelihood ratio (NLR), diagnostic odds
ratio (DOR), and the summary receiver operating character-
istic (SROC) curve along with their corresponding 95%
CIs. Publication bias across studies was assessed through
Deeks’ funnel plot, while the clinical utility of the predic-
tive models was evaluated via Fagan’s nomogram. Subgroup
analyses were performed based on imaging modality (x-ray,
CT, and MRI), modeling approach (traditional ML vs DL),
and validation strategy. It is important to note that the
bivariate mixed-effects model requires a minimum of four
2x2 diagnostic tables. As the ML models based on MRI
images only provided 3 such tables, a narrative synthesis was
performed for this subgroup instead. A 2-sided P value of
<.05 denoted statistical significance.

Results

Study Registration

A total of 3427 papers were retrieved, including 685 from
PubMed, 15 from Cochrane, 1942 from Embase, and 785
papers from Web of Science. Among them, 639 papers were
duplicates and were excluded. After the title and abstract
review, 2587 studies unrelated to the study topic were
removed. Full texts of the rest were subsequently reviewed.
In total, 23 conference abstracts without full-text publications
and 68 that did not include medical imaging in the modeling
process were ostracized. Ultimately, 60 studies were included
in the analysis (Figure 1) [14-73]. This study was conducted
in accordance with the PRISMA 2020 checklist (Checklist 1).
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Figure 1. Literature screening process. RCT: randomized controlled trial.
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Among the 60 studies included in our analysis, 55 were
case-control studies [14-21,25-35,37-67,69-73], and 5 were
cohort studies [22-24,36,68]. These studies were predomi-
nantly published between 2012 and 2024 and involved 66,195
cases. These studies were published in 11 countries, including
China (n=27), South Korea (n=10), the United States (n=8),
and Japan (n=5) [15-17,20,22,23,26-33,35-48,50,51,53-60,
62-73]. A smaller number of studies were from India (n=3),
Saudi Arabia (n=2), Jordan (n=1), Latvia (n=1), Malaysia
(n=1), Poland (n=1), and Switzerland (n=1) [14,18,19,21,24,
25,34.39,52.,61]. In total, 57 studies reported patient sources,
of which 42 were single-center studies [14,15,17,19-23,26,29,
31,32,36-42 47 48,50-60,62,64-67,69-73], 12 were multicen-
ter studies [16,27,28,30,33,34,43-45,61,63,68], and 4 used
database sources [24,41,46.49]. In terms of OP diagnosis, 47
studies explicitly provided diagnosis criteria [16,17,20-23,25,
27-33,35-42 44 45 47,50-58,60-64,66-73]. Regarding medical
imaging, 37 studies developed CT-based imaging mod-
els [15,16,18,19,21-23,25,26,29,31-33,38-41,43-45 47,48 ,50-
54,56-58,65,67-69,72,73], 22 developed x-ray—based models
[14,17,20,24,27,28,30,34-37 42 ,46,49,55,59-63,70,71], and 3
focused on MRI-based models [45,64,66]. Concerning the
population, 4 studies specifically examined postmenopausal
women [16,35,36,52,71], and 1 study focused on men aged
50 years and older [16]. In terms of image processing,
48 studies used manual segmentation techniques to define
regions of interest for analysis [14-19,21-23,25-36,38,39,
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define regions of interest [20,24,37,40,43,46,48,50,51,58,67,
69]. Regarding the skeletal parts, 33 studies used lumbar
vertebrae images [15-17,20,22,23,26,29-32,36,38-41,45 47,
48,50,53-55,57,62,64-68,70,71,73], 9 used thoracic vertebrae
images [23,25,31,38,44,48,53,55,56], 10 used hip images
(including femoral neck, femoral head, and pelvis) [18,21,33,
36,57,62,68,70,72], 7 used mandible images [17,36,42,52,60,
63,71], and 10 used images of limb bones [14,28,34,35,43 51,
58.,59,61,69]. Regarding the generation of validation sets, 35
studies adopted random sampling [15-17,20-23,25,27,29-32,
36,38,40-42 44 48,50-53,56,57 ,60-62,64,65,67,69,71,72], 12
used K-fold cross-validation [14,24,34,37,39,46,49,58,59,66,
70,73], and 5 applied external validation [28,33,45,54,
63]. In total, 9 studies compared their results with the
screening results of clinicians [22,25,28,45-47,60,62,65]. In
terms of model construction, 32 built DL models [18,21,
23-31,33,37-42,44-47 ,52-56,59-62,66], and 28 constructed
ML models [14-17,19,20,22,32,34-36,43,48-51,57,58,63-65,
67-73] (Multimedia Appendix 2).

Risk of Bias in Studies

In all eligible studies, consecutive cases were included.
Although most studies were case-control studies, 32
developed DL models, with variables derived from medical
images. Therefore, these studies demonstrated a low risk
of bias in case selection. In total, 28 studies applied ML
models, where the process of variable generation might be
influenced by the case-control study design, thereby leading
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to a higher risk of bias. Since this research is a meta-analy-
sis of ML, whether or not the reference standards for OP
diagnosis are known does not affect the results. Additionally,
the criteria for determining positive results were pre-estab-
lished, indicating that the trials under evaluation posed a low
risk of bias. The implementation of a reference standard for

Figure 2. Risk of bias plot [14-73].
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OP diagnosis was considered reasonable, thus introducing a
low risk of bias. Furthermore, there was a proper time interval
between the trial and reference standard, and all patients in a
given study followed the same diagnosis rules, with no cases
omitted. Therefore, there was a low risk of bias in clinical
applicability [14-73] (Figure 2 and Multimedia Appendix 3).
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Meta-Analysis

ML Based on X-Ray

Synthesized Results

This validation set comprised 24 diagnostic 4-fold tables,
which were used to verify the ML models based on x-rays
for OP diagnosis. The results were summarized through the
bivariate mixed-effects model. The pooled SEN, SPC, PLR,
NLR, DOR, and SROC curves were 0.92 (95% CI 0.88-0.94),

Zhao et al

0.83 (95% CI 0.76-0.88), 54 (95% CI 3.8-7.6), 0.10 (95%
CI 0.07-0.15), 54 (95% CI 28-105), and 0.94 (95% CI
0.92-0.96), respectively (Figures 3 and 4) [14,17,20,24,27 28,
30,34-37,42.,46,49,55,59-63,70,71]. There was no discernible
publication bias in the studies according to Deeks’ funnel

plot (Figure 5). In the included study participants, approxi-
mately 48.44% (n=6429) had OP. Assuming this as the prior
probability, if the ML prediction result was OP, the actual
probability of OP was .83. If the ML prediction result was
non-OP, the actual probability of non-OP was .92 (Figure 6).

Figure 3. Forest plot of sensitivity and specificity for x-ray—based machine learning for diagnosing osteoporosis [14,17,20,24,27,28,30,34-36,42 46,

49,56,60,62,63,70,71].

Studyld

Jingnan Cui (2023)

Miso Jang(2022)

Miso Jang(2022)

Ki-Sun Lee(2020)
Mohammad A(2019)

Chisako Muramatsu(2018)
Muthu Subash Kavitha(2015)
Muthu Subash Kavitha(2015)
Muthu Subash Kavitha(2013)
Bin Zhang(2023)

Mahmud Uz Zaman(2024)

R. Dhanagopal(2024)

Khalaf Alshamrani(2024)
Takashi Nakamoto(2022)
Takashi Nakamoto(2022)
Liting Mao(2022)

Jae-Seo Lee(2019)

Ju Hwan Lee(2015)
Sangwook Kim, B5(2022)
Ran Su(2019)

Xinghu Yu(2018)

M S Kavitha(2012)

M S Kavitha(2012)

M 8 Kavitha(2012)

17
58]
156]
B2
M
B3]
o)
o)
1
po)
B3]
4]
1
B2]
152]
[27]
0]
B3]
28]
[46]
[20]
B)
B3]
£

COMSINED

https://www .jmir.org/2026/1/e75965

ot 8 — — —

R
= - -

e

e

=

0.4 1.0

SENSITIVITY

SENSITIVITY (85% ClI) Studyld
0.93 [0.77 - 0.89] Jingnan Cui023)  [17]
0.83[0.81 - 0.85] Miso Jang(2022) [56]
0.01[0.89 - 0.83] Miso Jang(2022) [56]
0.0 [0.80 - 0.98] Ki-Sun Lee(2020)  [42]
0.97 [0.94 - 0.89] Mohammad A(2019) 4]
0.83[0.52-0.98] Chisako Muramatsu(2018) (s3]
0.85[0.76 - 1.00] Muthu Subash Kavitha(2015)  [70]
0.95[0.76 - 1.00] Muthu Subash Kavitha(2015) [70]
0.02 [0.74 - 0.99] Muthu Subash Kavitha(2012)  [M1]
0.56 [0.42 - 0.70] Bin Zhang(2023) [30]
0.80[0.59 - 0.93] Mahmud Uz Zaman(2024)  [34]
0.93 [0.88 - 0.87] R. Dhanagopal(2024) [24]
0.93([0.82-0.89] Khalaf Alshamrani(2024) [49]
0.87 [0.80 - 0.93] Takashi Nakamoto(2022)  [62]
0.83[0.81-0.95] Takashi Nakamoto(2022) [62]
0.85[0.79-0.89] Liting Mao(2022) [27]
0.08[0.93 - 1.00] Jae-Seolee(2019) gy
1.00 [0.60 - 1.00] Ju Hwan Lee(2015) [35]
0.69[0.95 - 1.00] Sangwook Kim, BS(2022)  [28]
0.72[0.59 - 0.83] Ran Su(2019)  [46]
0.85[0.77 - 1.00] Xinghu Yu(2016)  [20]
0.88[0.64-0.09] M S Kavitha(2012)  [36]
0.88[0.64 - 0.99] M S Kavitha(2012)  [386]
0.88[0.84 - 0.99] M S Kavitha(2012)  [36]
0.92[0.85 - 0.94] COMBINED

Q=184.11, df=23.00. p= 0.00

12 = 88.15 [84.34 - 91.66]

.
‘_,91.__._

-

?
-

O

-

.

sl
w0 A g ®

@
-

=

o ® g

0

= = — —

SPECIFICITY (85% CI)

0.68 [0.52 - 0.82)
0.82(0.76 - 0.87]
0.70 [0.85 - 0.75)
0.81(0.70 - 0.89]
0.96 [0.94 - 0.95]
0.83 [0.72 - 0.80)
0.82 [0.74 - 0.88]
0.80(0.72 - 0.87)
0.88 (0.76 - 0.63)
0.74 [0.84 - 0.83]
0.88 (0.89 - 0.87]
0.92 (0.8 - 0.67)
0.8 [0.67 - 0.69)
0.73(0.62 - 0.82)
0.71(0.60 - 0.81)
0.87 [0.83 - 0.90)
0.20[0.13 - 0.29)
0.84(0.71 - 1.00)
0.96 (0.94 - 0.97)
0.72 [0.50 - 0.83)
0.97 (0.84 - 1.00]
0.70 (0.47 - 0.87]
0.82 (0.61 - 0.95)
0.82(0.81 - 0.95)

0.52{0.78 - 0.85]
Q=49140,df=23.00,p= 0.00
12 =05.32[04.18 - 98.48]

J Med Internet Res 2026 | vol. 28 175965 | p. 6
(page number not for citation purposes)


https://www.jmir.org/2026/1/e75965

JOURNAL OF MEDICAL INTERNET RESEARCH Zhao et al

Figure 4. 95% Confidence contour for x-ray. AUC: Area underthe curve;SEN: Sensitivity; SPC: Specificity;SROC: Summary receiver operating
characteristic.
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Figure 6. Pretest probability for x-ray. LR:Likelihood ratio.
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Subgroup Analysis: Types of ML

Deep Learning

The validation set included 9 diagnostic 4-fold tables to
assess the performance of DL models based on x-ray images
for OP diagnosis. The results summarized from the bivariate
mixed-effects model showed that SEN, SPC, PLR, NLR,
DOR, and the SROC curve were 0.90 (95% CI 0.79-0.95),
0.79 (95% CI 0.62-0.89), 4.2 (95% CI 2.2-8.0),0.13 (95% CI
0.06-0.29), 32 (95% CI 9-107), and 0.92 (95% CI 0.89-0.94),
respectively (Figures S1 and S2 in Multimedia Appendix
4). Deeks’ funnel plot revealed no marked publication bias
(Figure S3 in Multimedia Appendix 4). In the encompassed
studies, approximately 30% (n=2556) of the participants had
OP. Therefore, assuming this as the prior probability, if
the result from ML indicated OP, the actual probability of
OP was .64. If the ML result indicated non-OP, the actual
probability of non-OP was .95 (Figure S4 in Multimedia
Appendix 4).

https://www.jmir.org/2026/1/e75965

Traditional ML

The validation set encompassed 15 diagnostic 4-fold tables
for validating the traditional ML models based on x-ray
imaging for OP diagnosis. The bivariate mixed-effects model
was leveraged. The pooled SEN, SPC, PLR, NLR, DOR,
and SROC were 0.93 (95% CI 0.92-0.95), 0.85 (95% CI
0.79-0.89), 6.0 (95% CI 4.3-8.5), 0.08 (95% CI 0.06-0.10),
78 (95% CI 44-139), and 0.96 (95% CI 0.94-0.97), respec-
tively (Figures S5 and S6 in Multimedia Appendix 4). Deeks’
funnel plot showed no significant publication bias in studies
(Figure S7 in Multimedia Appendix 4). Approximately 61%
(n=3863) of the participants had OP. Therefore, assuming
this as the prior probability, if the result from ML indicated
OP, the actual probability of OP was .90. If the ML result
indicated non-OP, the actual probability of non-OP was .81
(Figure S8 in Multimedia Appendix 4).
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Generation Method of the Validation Set
K-Fold Cross-Validation

Among models constructed through x-ray for OP diagnosis,
7 diagnostic 4-fold tables used the K-fold cross-validation to
generate the validation set. The results summarized by the
bivariate mixed-effects model demonstrated that the SEN,
SPC, PLR, NLR, DOR, and SROC curve were 0.90 (95% CI
0.83-0.95), 0.87 (95% C1 0.79-0.93), 7.2 (95% CI 4.0-12.7),
0.11 (95% C10.06-0.21), 64 (95% CI 20-204), and 0.95 (95%
CI 0.93-0.96), respectively (Figures S9 and S10 in Multime-
dia Appendix 4). Deeks’ funnel plot did not exhibit signifi-
cant publication bias (Figure S11 in Multimedia Appendix
4). Among the participants in our included studies, approxi-
mately 42% (n=1287) had OP. Therefore, assuming this as
the prior probability, if the ML result indicated OP, the actual
probability of OP was .84. If the ML result indicated non-
OP, the actual probability of non-OP was .92 (Figure S12 in
Multimedia Appendix 4).

Random Sampling

In total, 14 diagnostic 4-fold tables used the random sampling
method to generate the validation set. The results summarized
by the bivariate mixed-effects model showed that the pooled
SEN, SPC, PLR, NLR, DOR, and SROC curve were 0.90
(95% CI 0.84-0.93), 0.76 (95% CI 0.67-0.84), 3.8 (95% CI
2.7-5.4), 0.14 (95% CI 0.09-0.20), 28 (95% CI 16-48), and
0.91 (95% CI 0.88-0.93), respectively (Figures S13 and S14
in Multimedia Appendix 4). Significant publication bias was
not noted in Deeks’ funnel plot (Figure S15 in Multimedia
Appendix 4). Among the participants in our included studies,
approximately 60% (n=4049) had OP. Therefore, assuming
this as the prior probability, if the ML result indicated OP,
the actual probability of OP was .85. If the ML result showed
non-OP, the actual probability of non-OP was .83 (Figure S16
in Multimedia Appendix 4).

Examination Parts

Limbs

In the OP diagnosis models constructed based on x-rays,
4 diagnostic 4-fold tables focused on the limb bones. The
results summarized by the bivariate mixed-effects model
showed a SEN of 0.97 (95% CI 0.83-0.99), SPC of 0.90
(95% CI 0.75-0.96), PLR of 9.6 (95% CI 3.5-25.9), NLR of
0.03 (95% CI 0.01-0.22), DOR of 277 (95% CI 20-3783),
and the SROC curve of 0.98 (95% CI 0.96-0.99; Figures S17
and S18 in Multimedia Appendix 4). Deeks’ funnel plot did
not demonstrate significant publication bias (Figure S19 in
Multimedia Appendix 4). In the included study participants,
the proportion of OP cases was approximately 19% (n=1114).
Assuming this as the prior probability, if the ML result
indicated OP, the actual probability of OP was .69. If the
ML result indicated non-OP, the actual probability of non-OP
was <.001 (Figure S20 in Multimedia Appendix 4).
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Mandible

In total, 6 diagnostic 4-fold tables focused on the mandible.
The bivariate mixed-effects model was used. The pooled
SEN, SPC, PLR, NLR, DOR, and SROC were 0.94 (95% CI
0.89-0.97), 0.80 (95% CI 0.56-0.93), 4.8 (95% CI 1.9-12.1),
0.07 (95% CI1 0.04-0.14), 69 (95% CI 20-241), and 0.96 (95%
CI10.94-0.97), respectively (Figures S21 and S22 in Multime-
dia Appendix 4). Deeks’ funnel plot indicated no significant
publication bias (Figure S23 in Multimedia Appendix 4). In
all included study participants, the proportion of OP cases
was approximately 42% (n=1153). Assuming this as the
prior probability, if the ML result indicated OP, the actual
probability of OP was .78. If the ML result indicated non-
OP, the actual probability of non-OP was .95 (Figure S24 in
Multimedia Appendix 4).

Lumbar Vertebrae

In total, 8 diagnostic 4-fold tables focused on the lumbar
vertebrae. The bivariate mixed-effects model was used to
summarize data. The pooled SEN, SPC, PLR, NLR, DOR,
and SROC were 0.87 (95% CI 0.77-0.93), 0.82 (95% CI
0.75-0.87), 4.8 (95% CI 3.4-6.7), 0.16 (95% CI 0.08-0.30),
31 (95% CI 12-77), and 0.90 (95% CI 0.87-0.92), respec-
tively (Figures S25 and S26 in Multimedia Appendix 4).
Significant publication bias was not found in Deeks’ funnel
plot (Figure S27 in Multimedia Appendix 4). In the included
study participants, the proportion of OP cases was approxi-
mately 32% (n=1281). Assuming this as the prior probability,
if the ML result indicated OP, the actual probability of having
OP was .69. If the ML result indicated non-OP, the actual
probability of non-OP was .93 (Figure S28 in Multimedia
Appendix 4).

ML Based on CT
Synthesized Results

The validation set consisted of 24 diagnostic 4-fold tables
for validating CT-based ML models for diagnosing OP.
The bivariate mixed-effects model was used to pool data.
The pooled SEN, SPC, PLR, NLR, DOR, and SROC were
091 (95% CI 0.89-0.93), 092 (95% CI 0.89-0.94), 11.6
95% CI 8.5-9.7), 0.09 (95% CI 0.07-0.12), 123 (95% CI
80-90), and 0.97 (95% CI 0.53-1.00), respectively (Figures
7 and 8) [15,16,18,19,21-23,25,26,29,31-33,38-41,43-45 47,
48,50-54,56-58,65,67-69,72,73]. According to Deeks’ funnel
plot, there was no significant publication bias (Figure 9).
Among the included research participants, the proportion of
individuals with OP was approximately 50% (n=10,995).
Therefore, assuming this as the prior probability, if the ML
models predicted OP, the actual probability of OP was .92.
If the ML models predicted no OP, the actual probability of
non-OP was 91 (Figure 10).
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Figure 7. Forestplot of sensitivity and specificity for computed tomography-based machine learning for diagnosing osteoporosis [15,16,18,19,21-23,
25.26,29,31-33,38-41 ,43-45 47 48,50-54,56-58,65,67-69,72,73].
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Figure 9. Diagnostic odds ratio for CT .CT: Computed tomography;ESS:Effective sample size.
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Figure 10. Pretest probability for CT. CT:Computed tomography;LR:Likelihood ratio.
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Subgroup Analysis: Types of ML

Deep Learning

In the validation set, there were 15 diagnostic 4-fold tables
for validating the CT-based DL models for diagnosing OP.
The bivariate mixed-effects model was used. The pooled
SEN, SPC, PLR, NLR, DOR, and SROC curve were 0.91
(95% CI 0.88-0.94), 0.94 (95% CI 0.92-0.96), 16.3 (95% CI
11.9-22.3),0.09 (95% CI 0.06-0.13), 178 (95% CI 106-299),
and 0.98 (95% CI 0.96-0.99), respectively (Figures S29 and
S30 in Multimedia Appendix 4). Deeks’ funnel plot exhibi-
ted no marked publication bias (Figure S31 in Multimedia
Appendix 4). Among the research participants included, the
proportion of individuals with OP was approximately 32%
(n=3197). Therefore, assuming this as the prior probability,
if the ML models predicted OP, the actual probability of
OP was .88. If the ML models predicted no OP, the actual
probability of non-OP was .96 (Figure S32 in Multimedia
Appendix 4).

Traditional ML

In the validation set, there were 15 diagnostic 4-fold tables for
validating traditional ML models based on CT for diagnos-
ing OP. The bivariate mixed-effects model was used. The
pooled SEN, SPC, PLR, NLR, DOR, and SROC curve were
0.92 (95% CI 0.88-0.95), 0.85 (95% CI 0.77-0.90), 6.1 (95%
CI 4.0-94), 0.09 (95% CI 0.06-0.15), 67 (95% CI 35-128),
and 0.95 (95% CI 0.93-0.97), respectively (Figures S33 and
S34 in Multimedia Appendix 4). Deeks’ funnel plot did not
show notable publication bias (Figure S35 in Multimedia
Appendix 4). Among the research participants, the proportion
of individuals with OP was approximately 60% (n=6486).
Therefore, assuming this as the prior probability, if the ML
models predicted OP, the actual probability of OP was .90.
If the ML models predicted no OP, the actual probability of
non-OP was .88 (Figure S36 in Multimedia Appendix 4).

Validation Set Generation Method

External Validation

In the OP diagnosis models constructed based on CT,
validation sets for 5 diagnostic 4-fold tables were gener-
ated through external validation. The bivariate mixed-effects
model was leveraged to pool data. The pooled SEN, SPC,
PLR, NLR, DOR, and SROC curve were 0.88 (95% CI
0.85-0.91), 0.97 (95% CI 0.96-0.98), 28.4 (95% CI 20.4-
39.7), 0.12 (95% CI 0.10-0.16), 229 (95% CI 148-355),
and 0.98 (95% CI 0.96-0.99), respectively (Figures S37 and
S38 in Multimedia Appendix 4). Deeks’ funnel plot indica-
ted no discernible publication bias (Figure S39 in Multime-
dia Appendix 4). Among the included study participants,
approximately 31% (n=1590) had OP. Assuming this as the
prior probability, if ML predicted OP, the actual probabil-
ity of OP was .93. Conversely, if ML predicted non-OP,
the actual probability of non-OP was .95 (Figure S40 in
Multimedia Appendix 4).
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Random Sampling

Validation sets for 24 diagnostic 4-fold tables were generated
using the random sampling method. The bivariate mixed-
effects model was leveraged. The pooled SEN, SPC, PLR,
NLR, DOR, and SROC were 0.91 (95% CI 0.87-0.94), 0.90
(95% CI 0.85-0.94), 94 (95% CI 6.0-14.9), 0.10 (95% CI
0.07-0.14), 96 (95% CI 57-161), and 0.96 (95% CI 0.94
-0.97), respectively (Figures S41 and S42 in Multimedia
Appendix 4). Deeks’ funnel plot presented no significant
publication bias (Figure S43 in Multimedia Appendix 4).
Among the included study participants, approximately 36%
(n=4175) had OP. Given this as the prior probability, when
the ML models predicted OP, the actual probability of OP
was .84. On the other hand, when the ML models predicted
non-OP, the actual probability of non-OP was .95 (Figure S44
in Multimedia Appendix 4).

Examination Parts

Hip Joint

In the OP diagnostic models constructed based on CT, 6
diagnostic 4-fold tables focused on the hip joint. The bivariate
mixed-effects model was used. The pooled SEN, SPC, PLR,
NLR, DOR, and SROC were 0.87 (95% CI 0.83-0.90), 0.92
(95% CI 0.81-0.96), 104 (95% CI 4.4-24.7), 0.14 (95%
CI 0.10-0.19), 76 (95% CI 24-239), and 092 (95% CI
0.90-0.94), respectively (Figures S45 and S46 in Multimedia
Appendix 4). Deeks’ funnel plot did not show any marked
publication bias (Figure S47 in Multimedia Appendix 4).
Among the included study participants, approximately 69%
(n=2719) had OP. Assuming this as the prior probability, if
ML predicted OP, the actual probability of OP was .96. If the
models predicted non-OP, the actual probability of OP was
.77 (Figure S48 in Multimedia Appendix 4).

Thoracic Vertebrae

In total, 9 diagnostic 4-fold tables focused on the thoracic
vertebrae. The bivariate mixed-effects model was leveraged
to pool data. The pooled SEN, SPC, PLR, NLR, DOR,
and SROC were 091 (95% CI 0.86-0.94), 0.94 (95% CI
0.92-0.95), 144 (95% CI 10.7-19.3), 0.10 (95% CI 0.06-
0.15), 150 (95% CI 75-300), and 0.97 (95% CI 0.95-0.98),
respectively (Figures S49 and S50 in Multimedia Appen-
dix 4). Significant publication bias was not observed in
Deeks’ funnel plot (Figure S51 in Multimedia Appendix 4).
Among the encompassed study participants, approximately
29% (n=2523) had OP. Assuming this as the prior probability,
if ML predicted OP, the actual probability of OP was .85. If
ML predicted non-OP, the actual probability of non-OP was
.96 (Figure S52 in Multimedia Appendix 4).

Lumbar Vertebrae

For OP diagnostic models using the lumbar vertebrae as the
target part, 26 diagnostic 4-fold tables were analyzed. The
bivariate mixed-effects model yielded a SEN of 091 (95%
CI 0.87-0.94), SPC of 0.92 (95% CI 0.86-0.95), PLR of
10.7 (95% CI 6.7-17.2), NLR of 0.10 (95% CI 0.07-0.14),
DOR of 110 (95% CI 63-191), and SROC curve of 0.96
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(95% CI 0.94-0.98; Figures S53 and S54 in Multimedia
Appendix 4). Deeks’ funnel plot did not reflect discernible
publication bias (Figure S55 in Multimedia Appendix 4).
Among the encompassed study participants, approximately
42% (n=7327) had OP. Assuming this as the prior probability,
if ML predicted OP, the probability of actual OP was .89.
Conversely, if ML predicted non-OP, the actual likelihood of
non-OP was .93 (Figure S56 in Multimedia Appendix 4).

ML Based on MRI

Only 3 studies have constructed diagnostic models for OP
based on MRI [45,64,66], all of which used the lumbar
vertebrae as the examination part. Due to the limited number
of studies of this type and the substantial heterogeneity noted
in the meta-analysis, the conclusions drawn lack sufficient
reference significance. Therefore, this study presents only a
narrative analysis of this part.

Among these, 2 studies used traditional ML models, while
1 used a DL model. The SEN of these models was 0.857,
0.872, and 0.892, and the SPC was 0.944, 0.688, and 0.892,
respectively. The validation strategies used in these studies
included external validation, K-fold cross-validation, and
random sampling.

Discussion

Main Findings of This Study

Medical imaging is an indispensable tool in the diagnosis,
treatment, and management of OP. Conventional imaging
methods such as x-ray, CT, and MRI are pivotal clinically.

X-ray imaging enables clinicians to visually assess
reductions in vertebral height, cortical bone thickness, and
morphological changes in appendicular and mandibular
bones, thus screening OP. However, as DXA is updated and
improved, clinicians can more accurately know bone mineral
density and structural parameters of the lumbar vertebrae
and hip, thereby facilitating the diagnosis of OP. The
World Health Organization has designated DXA as the gold
standard for determining bone mineral density and diagnos-
ing postmenopausal OP [74,75]. However, in low-resource
environments and economically underdeveloped regions, the
clinical application of DXA is limited due to factors such
as insufficient medical knowledge and constrained health
care infrastructure. In contrast, Al tools have the potential
to maximize the extraction of clinically relevant information
from various medical images, thereby enabling the early
identification of the population with OP or low bone mass.
This significantly supports the early prevention, diagnosis,
and management of the disease.

Advantages of Different Imaging
Modalities in the Diagnosis of OP

This shift has diminished the application of x-rays in
quantitative analysis for OP. Nevertheless, ML and DL
models have improved the diagnostic performance of x-ray
imaging, providing significant impetus for its broader clinical
application. CT, with its high resolution, enables clinicians
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to observe cortical and trabecular bone integrity, offering
distinct advantages in evaluating spinal OP and changes
in trabecular bone volume ratios in the hip [76]. Conven-
tional CT generates images by measuring differences in the
linear attenuation coefficients of x-ray beams as they pass
through various biological tissues. However, when tissues
possess similar densities, such as calcium and bone, conven-
tional CT often yields comparable Hounsfield unit values
due to the use of a single x-ray energy spectrum, limiting
its ability to differentiate between such tissues. In contrast,
spectral CT imaging, which is based on tissue-specific
photoelectric effect weighting, offers enhanced resolution in
distinguishing fine bone microarchitecture. This technologi-
cal advancement holds significant potential for improving
the diagnostic accuracy of OP. MRI is highly efficient in
assessing bone microarchitecture [77]. However, MRI is
not the first choice to detect OP because of its high cost,
extended scan times, and obstacles faced by patients with
metallic implants or claustrophobia. Our database search
corroborated that most studies have focused on x-ray and CT
imaging, while comparatively fewer have investigated MRI.
Nevertheless, existing evidence supports the robust diagnos-
tic performance of ML models based on imaging data. For
example, the pooled SEN and SPC of ML models based on
x-ray for OP diagnosis were 0.92 (95% CI 0.88-0.94) and
0.83 (95% CI 0.76-0.88), respectively. Similarly, ML models
developed via CT achieved SEN and SPC of 091 (95%
CI 0.89-0.93) and 0.92 (95% CI 0.89-0.94), respectively.
These findings demonstrate the high accuracy of x-ray and
CT in OP diagnosis. In addition, quantitative ultrasound is
another commonly used modality for OP detection. Quanti-
tative ultrasound relies on 2 primary parameters: speed of
sound and broadband ultrasound attenuation, which assess the
ability of ultrasound waves to propagate through bone both
horizontally and longitudinally [78]. In summary, diverse
imaging modalities and bone types provide flexible and
enriched diagnostic options for OP. Furthermore, this variety
brings ample opportunities for the development of advanced
ML models tailored to different imaging techniques.

Status Quo of Research on ML

With advances in computer science, numerous researchers
have sought to use these techniques in the prevention and
treatment of OP. Compared with clinicians, who visually
observe positive imaging features, Al-assisted tools signifi-
cantly improve the efficiency and accuracy of diagnosing OP
[46,60]. In addition, Yang et al [79] developed an ML-based
predictive model using data from surveys on risk factors
for OP, which is highly prospective for early screening and
treating OP in the Hong Kong population. Similarly, ML
models based on community health examinations and serum
bone turnover markers have demonstrated a high area under
the receiver operating characteristic curve, Fj-scores, and
accuracy [80,81]. These findings highlight the efficiency of
ML in the diagnosis and management of OP.

Mechanism of Image-Based ML

Image-based ML can broadly be categorized into traditional
ML and DL. Traditional ML involves dividing data into

J Med Internet Res 2026 | vol. 28 175965 | p. 13
(page number not for citation purposes)


https://www.jmir.org/2026/1/e75965

JOURNAL OF MEDICAL INTERNET RESEARCH

a training set for model development and a test set for
model validation. Through processes such as image segmen-
tation, texture extraction, and feature selection, traditional
ML models are constructed for predicting outcome events.
However, the process of texture feature extraction and
selection carries a significant risk of data loss. In contrast,
DL incorporates feature extraction directly into the training
process, thereby maximizing the retention of meaningful
information within the image data. Convolutional neural
networks, as a representative DL approach, can simultane-
ously extract and select features across multiple hidden
layers to accomplish classification tasks. Moreover, DL-based
models can correct image blurring in panoramic x-rays caused
by patient mispositioning and mitigate the impact of metal
artifacts in CT images on feature extraction [82-84]. This
study further demonstrates that ML models based on x-ray
and CT outperform traditional ML models, suggesting that
DL is more accurate than traditional ML approaches. Image
analysis using DL can leverage AI to develop more effi-
cient and user-friendly image interpretation tools, providing
valuable insights into the development of medical imaging
software.

The Impact of Validation Set Generation
Methods on ML Performance

Validation methods are critical metrics for assessing the
performance of ML models. These methods can be cate-
gorized into external validation and internal validation.
Internal validation can be further subdivided into random
sampling, leave-one-out validation, and K-fold cross-vali-
dation. External validation, which can accurately reflect
the clinical applicability of ML, is widely preferred by
researchers. In contrast, internal validation typically generates
validation sets via random methods, which inherently carries
a risk of similarity in features and distribution trends between
the validation and training sets. This issue is prominent in
image-based studies, where the application of ML is restricted
in medical research due to the high similarity in images
and parameters between internal validation sets. Although
external validation offers a superior means of assessing model
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performance, conducting such validation requires access to
independent research cohorts and often entails consideration
of factors such as periods, geographical regions, populations,
and health care institutions. These requirements inevitably
lead to substantial increases in both the time and financial
costs of research. This perspective provides an objective
explanation for the limited external validation in this study.

Advantages and Limitations

This study is the first to summarize the evidence of the
application of ML based on various imaging modalities in the
diagnosis of OP. This study provides theoretical support for
the subsequent development of clinical scoring systems and
medical software. However, our research has the following
limitations: first, despite a substantial number of included
studies, only a small number of studies on MRI were
encompassed in view of the practicability in clinical work.
Therefore, in future research, our emphasis will be put on
meta-analyses involving MRI studies, aiming to evaluate the
utility of ML in the diagnosis of OP through medical imaging.
As a result, only a narrative review was performed, without
a direct evaluation of its diagnostic performance. Most of
the included studies rely primarily on internal validation,
with insufficient external validation, which imposes certain
limitations on the interpretability and generalizability of our
findings. This study encompassed only English publications,
with the majority of research originating from countries
where Al is more widely applied. In addition, the external
validation conducted in this study was limited, constituting an
objective constraint that may have influenced the outcomes of
the meta-analysis. Future studies will endeavor to comprehen-
sively incorporate globally available literature to enhance the
authority and generalizability of the conclusions.

Conclusions

Image-based ML, particularly DL based on x-ray and CT
images, is highly accurate in the diagnosis of OP. Future
focus should be placed on developing Al-based software
to expand its clinical applicability and enhance diagnostic
precision.
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