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Abstract
Background: Adolescents are particularly vulnerable to mental disorders, with over 75% of lifetime cases emerging before
the age of 25 years. Yet most young people with significant symptoms do not seek support. Digital phenotyping, leveraging
active (self-reported) and passive (sensor-based) data from smartphones, offers a scalable, low-burden approach for early risk
detection. Despite this potential, its application in school-going adolescents from general (nonclinical) populations remains
limited, leaving a critical gap in community-based prevention efforts.
Objective: This study evaluated the feasibility of using a smartphone app to predict mental health risks in nonclinical
adolescents by integrating active and passive data streams within a machine learning (ML) framework. We examined the utility
of this approach for identifying risks related to internalizing and externalizing difficulties, eating disorders, insomnia, and
suicidal ideation.
Methods: Participants (n=103; mean age 16.1 years, SD 1.0) from 3 UK secondary schools used the Mindcraft app (Brain and
Behaviour Lab) for 14 days, providing daily self-reports (eg, mood, sleep, and loneliness) and continuous passive sensor data
(eg, location, step count, and app usage). We developed a deep learning model incorporating contrastive pretraining with triplet
margin loss to stabilize user-specific behavioral patterns, followed by supervised fine-tuning for binary classification of 4
mental health outcomes, namely, the Strengths and Difficulties Questionnaire (SDQ)-high risk, insomnia, suicidal ideation, and
eating disorder. Performance was assessed using leave-one-subject-out cross-validation (LOSO-CV), with balanced accuracy
as the primary metric. Comparative analyses were conducted using CatBoost (Yandex) and multilayer perceptron (MLP)
models without pretraining. Feature importance was assessed using Shapley Additive Explanations (SHAP) values, and
associations between key digital features and clinical scales were analyzed.
Results: Integration of active and passive data outperformed single-modality models, achieving mean balanced accuracies of
0.71 (0.03) for SDQ-high risk, 0.67 (0.04) for insomnia, 0.77 (0.03) for suicidal ideation, and 0.70 (0.03) for eating disorder.
The contrastive learning approach improved representation stability and predictive robustness. SHAP analysis highlighted
clinically relevant features, such as negative thinking and location entropy, underscoring the complementary value of combin-
ing subjective and objective data. Correlation analyses confirmed meaningful associations between key digital features and
mental health outcomes. Performance in an independent external validation cohort (n=45) achieved balanced accuracies of
0.63‐0.72 across outcomes, suggesting generalizability to new settings.
Conclusions: This study demonstrates the feasibility and utility of smartphone-based digital phenotyping for predicting
mental health risks in nonclinical, school-going adolescents. By integrating active and passive data with advanced machine
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modeling techniques, this approach shows promise for early detection and scalable intervention strategies in community
settings.

J Med Internet Res 2026;28:e72501; doi: 10.2196/72501
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Introduction
Children and young people are particularly vulnerable to
mental health problems due to critical developmental changes
in emotion, behavior, and cognition [1], with over 75% of
mental disorders emerging before the age of 25 years [2]. The
World Health Organization estimates that one in 7 adoles-
cents aged 10‐19 years at the time of this writing lives with a
diagnosable mental disorder [3].

Adolescent mental health symptoms are typically
classified as internalizing (eg, anxiety, depression, and
suicidal thoughts) or externalizing (eg, aggression and
impulsivity) [4,5]. These symptoms can impair social,
academic, and interpersonal functioning, and if left unad-
dressed, may lead to long-term psychiatric disorders [6].
Anxiety, depression, and eating disorders are among the most
prevalent conditions, with sleep problems often acting as both
a symptom and a risk factor [7,8]. Among the most severe
manifestations of internalizing psychopathology is suicidal
ideation, a particularly serious concern during adolescence;
when unaddressed, it may progress to suicide, which ranks as
the third leading cause of death globally among individuals
aged 15-29 years [3]. Yet only 18%‐34% of young people
with significant symptoms seek professional help [9]. This
critical gap in receiving care underscores an urgent need for
scalable, accessible, and youth-friendly solutions in mental
health care.

Given the central role of schools in adolescents’ daily
lives, digital health interventions in schools offer a promising,
cost-effective, and scalable way to support mental well-being
in children and young people [10,11]. The proliferation
of smartphones has enabled a new class of digital mental
health interventions that leverage their unique data collec-
tion capabilities [12-14]. Smartphones can gather active data
(subjective self-reports of behaviors and experiences) and
passive data (sensor-based measures such as GPS, step count,
and ambient light). These behavioral markers, collectively
termed “digital phenotyping,” reveal dynamic interactions
between individuals and their environments [15-17].

Active data capture internal states such as mood, sleep
quality, or loneliness, but it depends on user engagement and
is vulnerable to recall bias. In contrast, passive data offer
continuous, objective insights into daily routines, capturing
behavioral patterns that may reflect underlying mental health
states. For instance, lower location entropy and reduced
movement are associated with depression [18], fewer steps
with lower mood [19,20], and variations in ambient light with
circadian disruption [21]. However, passive data alone may
miss crucial psychological context and can be challenging to
interpret in isolation [22].

Although several studies [23-41] have explored either
active or passive data for mental health monitoring, few have
examined their integration, particularly in community-based
adolescent populations. Combining these modalities provides
a more comprehensive view of mental health, connecting
how young people feel with how they behave in real-world
settings [42]. This fusion can enhance model robustness,
uncover hidden patterns, and address mismatches between
self-report and behavior. For example, a young person may
report feeling fine (active data) while showing signs of
social withdrawal or sleep disruption (passive data), a critical
challenge for unimodal approaches. Multimodal approaches
are better suited to detecting such discrepancies, enabling
earlier and more nuanced detection in nonclinical settings [42,
43].

The complexity of digital phenotyping data, such as
its high dimensionality, multimodal nature, and nonlinear
interaction patterns, poses challenges for traditional statis-
tical approaches, which rely on strong parametric assump-
tions and may require extensive a priori feature engineering.
In contrast, machine learning (ML) can model complex,
heterogeneous data and automatically learn nonlinear latent
patterns without predefined hypotheses [44,45]. This makes
ML particularly well-suited to adolescent mental health
prediction using digital data, where subtle behavioral signals
may be distributed across multiple features and modalities
[17].

Despite growing interest in applying ML to digital mental
health [23-41], existing studies often present one or more
limitations in the context of adolescent-focused research: (1)
they are primarily conducted in adult populations, limiting
relevance to younger age groups such as adolescents; (2) they
typically involve clinical samples, reducing generalizability to
community-based or non–help-seeking populations; (3) they
focus on a single condition (eg, depression or anxiety); and
(4) they rely on either active or passive data, but not both.
These limitations constrain the generalizability, robustness,
and real-world utility of current approaches for children and
young people.

This study advances the field in several ways. First, it
uses a nonclinical adolescent sample, enabling evaluation
in a real-world prevention context, which is critical for
early detection and scalable screening. Second, it investi-
gates 4 distinct mental health outcomes (internalizing and
externalizing difficulties, insomnia, eating disorder risk, and
suicidal ideation) rather than focusing on a single condition.
Third, it integrates both subjective (active) and objective
(passive) smartphone data to develop multimodal predictive
models that capture patterns that may be missed when
using either modality alone. Finally, it uses a contrastive
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learning framework, a novel ML technique for learning stable
behavioral representations, enhancing generalizability.

Specifically, this study addresses the following research
questions: (1) Can integrating active and passive smartphone
data improve the prediction of mental health risks in a
nonclinical adolescent population using ML? (2) How well
does this multimodal approach generalize across different
mental health outcomes? (3) Which digital features are most
relevant to predicting specific mental health outcomes?

Methods
Recruitment and Data Collection
Participants were recruited from secondary schools in
northwest London between November 2022 and July 2023.
We contacted schools via email and followed up via
telephone. Three schools that expressed interest in taking
part in our study were recruited. The inclusion criteria were
young people aged 14‐18 years attending 10-13 years with a
sufficient level of English to respond to the study instrument
and use the app and who had access to an iOS- or Android-
compatible smartphone.

Students initially completed an online survey accessed via
a Qualtrics link included in the promotional materials. This
survey began with the Strengths and Difficulties Question-
naire (SDQ) [46], a screening tool whose predictions have
been largely consistent with clinical diagnoses with good
levels of internal consistency and test-retest stability. To
detect eating disorders, we included the Eating Disorder-15
Questionnaire (ED‐15), which has been described as a
valuable tool to assess eating disorder psychopathology in
young individuals quickly [47]. We excluded the compensa-
tory behaviors section to simplify the data collection process.
Its ability to detect changes early in treatment means that it
could be used as a routine outcome measure within thera-
peutic contexts. We also incorporated a question from the
Patient Health Questionnaire version 9 (PHQ-9) [48], which
is validated for young people, to identify suicidal ideation
[49]. Finally, we used the Sleep Condition Indicator (SCI), a
brief scale to evaluate insomnia disorder in everyday clinical
practice [50,51].

Upon completing the online survey, participants received
a link to download the Mindcraft app (Brain and Behaviour
Lab) [52] from the App Store or Play Store, along with a

unique login. Participants were asked to use the app for at
least 2 weeks. The Mindcraft app is a user-friendly mobile
app designed to collect self-reported well-being updates
(active data) and phone sensor data (passive data). Partici-
pants set their data-sharing preferences during onboarding
and can adjust them at any time through the app’s settings.
Detailed technical specifications of the Mindcraft app are
available in the reference [52].
Active and Passive Data Features
Once participants began using the app, we gathered active
data and 8 categories of raw passive data sourced from
phone sensors and usage metrics. Active data responses
(eg, mood, sleep quality, and loneliness), scored on a scale
of 1-7, were directly incorporated as features for the ML
model.

Passive sensing data were collected via the Mindcraft
mobile app, which continuously monitored phone-based
sensors and system events in the background. Sensor
sampling frequencies were set to balance data resolution
with device energy efficiency. All sensors except the location
sensor were collected at 15-minute intervals. GPS location
data were triggered by significant location changes (as
determined by the operating system). From the passive
data, we engineered 92 distinct features (Table 1). Location-
derived features such as total distance, radius of gyration,
and maximum distance from the day’s center of mass were
derived from GPS logs using Haversine distance metrics and
filtered for spurious location jumps. Features were aggregated
over 2 time windows, the full 24-hour day and the nighttime
period, defined as 10 PM to 6 AM.

A complete list of all active and passive features, along
with descriptions and correlations with mental health scales,
is provided in Multimedia Appendices 1 and 2, respectively.
We highlight the key active and passive data features most
strongly associated with each mental health outcome (the
union of the top 3 per modality per outcome, ranked by
absolute Spearman correlation) in Table 2.

Passive features that were unavailable due to user
permission settings or OS-level constraints were set to a
sentinel value of –1, indicating “sensor unavailable.” This
allowed the model to learn platform- or user-specific absence
patterns without biasing distributions. All continuous features
were z score normalized using training set means and SDs.
Binary indicator features were kept in their original form.
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Table 1. Summary of features engineered from passive data sensors.
Passive sensor Number of features Feature list
Ambient light (Android only) 8 Total, mean, median, and SD of ambient light reading in the day; total,

mean, median, and SD of ambient light reading during night hours
App usage (Android only) 36 Total app usage count; unique apps; total, mean, and median time

usage in the day; total app usage count; unique apps; total, mean, and
median time usage during the night hours; total time in app categories
of camera, communication, entertainment, gaming, physical health,
mental health, Mindcraft, news, productivity, and social media;
percentage time in app categories of camera, communication,
entertainment, gaming, physical health, mental health, Mindcraft,
news, productivity, and social media

Background noise level
(Android only)

10 Total, median, mean, maximum, and SD of background noise levels in
the day; total, median, mean, maximum, and SD of background noise
levels during night hours

Battery 8 Min, maximum, mean, and median of battery level; number of charges
per day; mean battery use per hour; time below 20 percent; nighttime
usage count

Location 15 Mean latitude; mean longitude; total distance traveled in a day;
location count; maximum distance from home; mean distance from
home; median distance from home; nighttime movement; radius of
gyration; SD of latitude; SD of longitude; location entropy; time spent
at home

Mindcraft usage 3 First hour of use; last hour of use; nighttime usage;
Screen brightness (iOS only) 8 Total, mean, median, SD of screen brightness sensor reading in the

day; total, mean, median, SD of screen brightness sensor reading
during night hours

Step count 4 Daily step count; is daily step count greater than 5000 steps or 7500
steps or 10,000 steps?

Table 2. Key active data and passive data features and their Spearman correlations with mental health outcomes (Strengths and Difficulties
Questionnaire [SDQ], Sleep Condition Indicator [SCI], Eating Disorder-15 Questionnaire [ED-15], and suicidal ideation).
Feature type Feature SDQa SCIb Suicidal ideation ED-15c

Active Loneliness - “How lonely are you feeling today?” 0.48d –0.42d 0.46d 0.31d

Active Negative thinking - “How negative do you think today?” 0.48d –0.47d 0.57d 0.46d

Active Racing thoughts - “Are you experiencing racing thoughts
today?”

0.45d –0.44d 0.52d 0.48d

Active Sleep quality - “How did you sleep last night?” –0.37d 0.44d –0.34d –0.20d

Active Self-care - “How is your self-care today?” –0.37d 0.33d –0.24d –0.42d

Passive Max background noise levels over the full day –0.49e 0.36 –0.39 –0.1
Passive Mean latitude of GPS samples over the full day 0.38f –0.23 0.44e –0.03
Passive Number of entertainment app usage events over the full day 0.37e –0.37f 0.51d 0.41e

Passive Median ambient light at night 0.06 –0.39e 0.14 0.27
Passive Mean longitude of GPS samples over the full day 0.19 –0.38f 0.25 –0.01
Passive SD of background noise levels over the full day –0.43 0.36 –0.63d –0.31
Passive Median app session duration over the full day 0.37f –0.19 0.44d 0.19
Passive Mean background noise level at night 0.2 –0.23 0.42 0.46f

Passive Total number of app usage events at night 0.09 –0.06 0.27 0.39e
aSDQ: Strengths and Difficulties Questionnaire.
bSCI: Sleep Condition Indicator.
cED-15: Eating Disorder-15 Questionnaire.
dP<.001.
eP<.01.
fP<.05.
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To reduce day-to-day variability and enhance the stability
of daily feature measurements, we computed the cumulative
median of each feature for every participant, that is, the
median of all values up to each day. This approach pro-
gressively aggregates behavioral signals over time, dampen-
ing the influence of short-lived anomalies (eg, a one-day
spike due to sensor glitches or atypical behavior, which
are common in smartphone data) while preserving sustained
trends. Multimedia Appendix 3 illustrates how the cumulative
median stabilizes noisy input without suppressing genuine
behavioral shifts, such as a consistent drop in activity due
to worsening mood. In preliminary analyzes, using the same
model architecture, hyperparameters, and evaluation protocol,
we compared models trained on raw daily features versus
those trained on cumulative median-aggregated features.
We found that the latter consistently improved balanced
accuracy across all outcomes (Multimedia Appendix 4). We
further compared the cumulative median and the cumulative
mean aggregation. While both methods yielded comparable
predictive accuracy, we selected the cumulative median as the
primary aggregation function due to its superior robustness to
outliers, a common artifact in passive mobile sensing, thereby
ensuring greater stability in user representation.

Using the engineered features, we developed an ML model
for each of the 4 mental health outcomes, namely SDQ

risk, insomnia, suicidal ideation, and eating disorders. We
used 3 distinct feature sets, including active data, passive
data, and a combination of both. This design enabled us to
assess the predictive strength of each feature set individually
and in combination, allowing us to systematically quantify
each modality’s contribution to prediction performance across
mental health outcomes.

Participants were classified as high-risk or low-risk for
each outcome using validated thresholds specific to each
mental health measure, framing the prediction task as a binary
classification problem. Each scale’s total score range is as
follows: SDQ score 0‐40, SCI 0‐32, ED-15 0‐6, and suicidal
ideation 0‐4 (based on response frequency to the question,
“Over the last two weeks, how often have you been both-
ered by thoughts that you would be better off dead or of
hurting yourself in some way?”). High-risk classifications
were defined as follows: for SDQ, a self-reported score of
≥16 [53]; for insomnia, if their SCI score was ≤16 [51];
for suicidal ideation, if they responded at least once to the
question regarding frequency of suicidal thoughts over the
last 2 weeks, and for eating disorders, an ED-15 total score
exceeded 2.69, which corresponds to the mean plus one SD in
a nonclinical population [54]. The proportions of participants
classified as high-risk for each mental health outcome are
summarized in Table 3.

Table 3. Demographics and mental health measures of the study population (N=103).
Variables Values
Sex (Female), n (%) 73 (70.9)
Age (years), mean (SD) 16.1 (1)
Strengths and Difficulties Questionnaire (SDQ) score, mean (SD) 12.8 (6.2)
High-risk SDQ category (SDQ score≥16), n (%) 31 (30.1)
Eating Disorder (ED-15) scale, mean (SD) 2.2 (1.8)
High-risk eating disorder category (ED-15 score≥2.7), n (%) 38 (36.9)
Sleep Condition Indicator (SCI) score, mean (SD) 19.9 (7.8)
High-risk insomnia category (SCI score<17), n (%) 34 (33)
“Over the last two weeks, how often have you been bothered by thoughts that you
would be better off dead or of hurting yourself in some way?” mean (SD)

0.6 (0.9)

High-risk suicidal ideation category (≥1), n (%) 38 (36.9)

ML Workflow and Model Development
Figure 1A outlines our ML pipeline, starting with active
and passive data collection via the Mindcraft app. The data
were preprocessed and engineered to create a comprehensive
feature set, which was subjected to a pretraining phase with
contrastive learning using triplet margin loss. This pretraining
step clustered user-specific features from different days,

minimizing day-to-day variability and preserving individual
behavioral patterns. The resulting stable embeddings were
fine-tuned on labeled data in a supervised setting to predict
mental health outcomes. This end-to-end pipeline, combin-
ing pretraining and fine-tuning, enabled the development of
a predictive model evaluated using balanced accuracy and
additional metrics.
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Figure 1. Overview of the machine learning (ML) framework for predicting adolescent mental health outcomes using smartphone-based digital
phenotyping. (A) Workflow of the ML pipeline, from data acquisition to mental health outcome prediction, incorporating contrastive pretraining with
triplet loss and fine-tuning. (B) t-SNE visualization of feature embeddings for a sample of 10 test users before (left) and after (right) contrastive
pretraining, showing enhanced user-specific clustering following pretraining. t-SNE: t-distributed Stochastic Neighbor Embedding.

Contrastive Pretraining Model
Architecture and Training
To accurately predict mental health risks, it is essential to
distinguish between a user’s stable behavioral patterns and
random daily fluctuations. Raw smartphone data can vary
significantly day to day due to external factors (such as school
holidays) unrelated to mental health. To address this, we used
an ML technique known as contrastive learning with triplet
margin loss. In simple terms, this technique teaches the model
to recognize a user’s unique digital fingerprint. It does so by
examining 3 data points (a “triplet”) simultaneously:

• Anchor: data from a specific user on a particular day
(eg, User A, Monday).

• Positive: data from the same user on a different day (eg,
User A, Thursday).

• Negative: data from a different user entirely (eg, User
B, Monday).

The model is trained to minimize the distance between the
Anchor and the Positive (pulling them together in mathemati-
cal space) while maximizing the distance between the Anchor
and the Negative (pushing them apart). Repeating this process
across thousands of triplets many times helps the model learn
to ignore irrelevant daily noise and form a stable, underly-
ing behavioral fingerprint unique to that user. These stable
representations are then used for the subsequent supervised
prediction of mental health risk. A simplified visual explan-
ation of this idea is provided in Figure 1B, which helps
understand why contrastive pretraining is valuable in datasets
with naturally high daily variability, such as smartphone-
based behavioral data.

We implemented a custom contrastive learning pipeline
in PyTorch (Meta AI), based on established principles of
triplet-based metric learning [55,56], with the objective
of learning robust, user-specific feature embeddings that
remain consistent across days, thereby reducing intrasubject
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variability while maximizing intersubject separability. For
this pretraining phase, we selected triplet margin loss
over other contrastive objectives (eg, InfoNCE) due to its
suitability for instance-level metric learning, where the aim is
to ensure that embeddings from the same user are closer in
the latent space than those from different users. Compared to
InfoNCE, triplet loss is more stable with moderate mini-batch
sizes and is better suited to high-dimensional tabular data [55,
57].

Triplets were constructed without using mental health
outcome labels, as the pretraining phase was fully self-super-
vised. A user was first randomly selected from the training
set, and a single day from their data was sampled as the
Anchor. The Positive sample was randomly chosen from
a different day for the same user, while the Negative was
drawn from a random day of a different user. The triplet loss
requires that an Anchor data point is closer to a Positive data
point than it is to a Negative data point, by at least a specified
margin m.

The contrastive learning model consisted of a 2-layer
multilayer perceptron (MLP) encoder, which mapped input
features to a latent embedding space, followed by a 2-layer
MLP projection head. The projection head was trained using
the triplet loss, allowing the encoder to retain generalizable
behavioral representations while the projection space focused
on the contrastive objective [58]. The Adam optimizer was
used for pretraining with a fixed learning rate of 1×10−3. The
model was pretrained for 3 epochs with a batch size of 256
triplets. The margin m was set to 1.0 in our experiments.
Supervised Fine-Tuning Model
Architecture and Training
Following contrastive pretraining, the learned encoder was
used as a fixed base for the downstream classification tasks.
Its weights were frozen to preserve the stable user-specific
embeddings. A new 2-layer MLP classification head was
added on top of the frozen encoder to perform binary
classification for each mental health outcome. The fine-tun-
ing model was trained using the Adam optimizer with a
learning rate of 1×10–³ for 20 epochs and a batch size of
1024. Binary cross-entropy with logits loss was used as
the training objective, with class weights applied to account
for imbalance. These weights were calculated based on the
inverse frequency of each class within the training set of each
cross-validation fold.

Key architectural hyperparameters (eg, number of layers,
dimensions of embeddings, and projections) and training
hyperparameters (eg, learning rate, batch size, triplet margin,
and number of epochs) were selected based on common
practice in contrastive learning and refined through explora-
tory tuning on a validation split of the training data within the
first cross-validation fold. No test user data from any fold was
used during hyperparameter selection. All selected hyperpara-
meters were then fixed across folds to ensure methodological
consistency and reproducibility and to prevent data leakage.

To demonstrate the effect of contrastive pretraining, Figure
1B shows t-distributed Stochastic Neighbor Embedding

visualizations of feature embeddings for a sample of 10
test users. Before pretraining (left plot), user-specific data
points were scattered with minimal clustering, reflecting high
day-to-day variability. After applying contrastive learning
with triplet loss (right plot), data points from the same
user formed tighter clusters, indicating enhanced user-specific
feature stability.

Evaluation and Benchmarking
Day-wise prediction probabilities were averaged for each
test user to obtain a single, user-level prediction. Model
performance was evaluated using balanced accuracy as the
primary metric, along with other relevant metrics such as area
under the receiver operating characteristic curve (AUC) and
F1-score, to assess classification outcomes comprehensively.
For interpretability, Shapley additive explanations (SHAP)
values [59] were computed for test folds using DeepEx-
plainer [60], offering insight into the contributions of specific
features to classification outcomes.

We validated the model’s performance using leave-one-
subject-out cross-validation (LOSO-CV), where data from all
but one user were used for training and validation, with the
excluded user’s data serving as the test set. This approach
ensures the model’s generalizability to new individuals,
closely simulating real-world applications where accurate
predictions for unseen users are critical.

To benchmark our model, we compared it with a
CatBoost (Yandex) classifier [61] and an MLP network
that had a similar number of parameters but was trained
without pretraining. Both benchmarks used class-weight
balancing to address the class imbalance in the dataset.
CatBoost was selected for its strong performance on
tabular data and its built-in capability to handle class
imbalance [62], making it well-suited for datasets like
ours. These comparisons isolated the effect of contrastive
pretraining on model performance.
External Validation on an Independent
Cohort
We collected data from an additional cohort of 90 adoles-
cents across 5 new secondary schools in London. To create
an independent external validation set, we randomly split
this new cohort into 2 halves. One half (n=45) was added
to the original dataset to form an expanded training set,
while the remaining half (n=45) served as a fully held-out
external validation cohort. Importantly, no model architec-
ture, hyperparameters, preprocessing, or feature engineering
steps were modified after adding the new data; the complete
pipeline, including contrastive pretraining and supervised
fine-tuning, remained fixed. This design allowed us to assess
generalizability to users from different schools, collected at
a later time point, with different demographic characteristics
and smartphone-sensor enabling patterns. Model performance
on this external cohort was evaluated using balanced accuracy
following the same user-level prediction protocol used in the
original LOSO-CV analysis.
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Ethical Considerations
Ethics approval for the study was granted by the Impe-
rial College London Research Ethics Committee (reference
number: ICREC 20IC6132). All procedures complied with
relevant national and institutional ethical standards and with
the Declaration of Helsinki. Informed consent was obtained
digitally from all participants at the start of the survey; for
participants younger than 16 years, parental consent was
obtained before participation. Participants could withdraw
from the study at any time before the start of data analysis.
Study-specific identification numbers were used to maintain
participant anonymity, and data handling complied with the
General Data Protection Regulation (GDPR) for health and
care research. Participation was voluntary and uncompensa-
ted. Multimedia Appendix 5 provides a CONSORT (Con-
solidated Standards of Reporting Trials)-style flow diagram
outlining the subject inclusion process from the initial 205
survey respondents.

Results
Recruitment and App Usage
Figure 2A provides a conceptual overview of the study,
demonstrating how active data (eg, sleep quality, mood, and
loneliness) and passive data (eg, location, app usage, and
noise levels) collected via the Mindcraft app are integra-
ted into a contrastive learning-based deep neural network
to predict mental health outcomes, including SDQ risk,
insomnia, suicidal ideation, and eating disorders.

A total of 103 students from 3 London schools downloa-
ded and installed the Mindcraft app. The average age was

16.1 years (SD 1), with 71% identifying as female, 25%
as male, and 4% as other or nonbinary. The skew in gen-
der distribution is partially due to one of the participating
schools being girls-only. Of the participants, 78 used the app
on iPhones, and 25 used Android phones. Table 3 provides
demographic information and mental health outcome scores,
and Multimedia Appendix 6 illustrates the distribution of the
different mental health measures across our study population.

Participants contributed active data via self-reported
measures and passive data through smartphone sensors.
Active data included daily ratings of mental well-being
measures such as sleep quality, mood, confidence, and
loneliness on a 1‐7 scale. Passive data comprised data from
phone sensors like location, app usage, ambient noise, and
step count. Figure 2B shows user engagement patterns over
the 14-day study period. Initial engagement was high, with
all participants contributing at baseline. However, active data
engagement declined more rapidly than passive data, with
14 users contributing active data and 36 users contributing
passive data on day 14.

Engagement with active data measures (Figure 2C)
remained consistent across users, with slight variations
reflecting individual preferences. In contrast, passive data
collection exhibited substantial variability (Figure 2D). While
36 users opted not to enable any sensors, others enabled
multiple categories. The most frequently enabled sensors
were step count and battery usage, followed by Mindcraft
usage and screen brightness (Figure 2E). The heatmap
visualization of passive data coverage by users and sensor
type (Figure 2F) underscores substantial interuser variability,
with some users providing comprehensive coverage across
multiple sensors and others contributing sporadically.

JOURNAL OF MEDICAL INTERNET RESEARCH Kadirvelu et al

https://www.jmir.org/2026/1/e72501 J Med Internet Res 2026 | vol. 28 | e72501 | p. 8
(page number not for citation purposes)

https://www.jmir.org/2026/1/e72501


Figure 2. Study overview and participant engagement with active and passive data collection using the Mindcraft app. (A) Conceptual overview
of the study. (B) User engagement trends for active and passive data over the 14-day period. (C) User participation across active data questions.
(D) Distribution of enabled passive sensors among users. (E) User participation across different passive sensor types. (F) Heatmap of passive data
completeness by user and sensor type. SDQ: Strengths and Difficulties Questionnaire.
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Exploratory Analysis of Active and
Passive Data Features
Figure 3 provides an overview of descriptive statistics and
correlations among active and passive data features collected

from users. Figure 3A illustrates the distribution of self-repor-
ted active data features on a scale of 1-7. Positive indicators,
such as mood, motivation, and confidence, had higher mean
values than negative indicators, such as negative thinking,
racing thoughts, and irritability.

Figure 3. Descriptive statistics of active and passive digital phenotyping features. (A) Distribution of responses across active data features. (B)
Correlation heatmap of active data features. (C) Frequency distributions of passive data features: daily step count. (D) Number of unique apps opened
per day. (E) Location entropy reflecting movement variability. (F) Mean background noise levels at night.
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The correlation heatmap (Figure 3B) highlights relationships
among active data features. A fully annotated, high-resolu-
tion version of this heatmap is provided in Multimedia
Appendix 7. The strongest correlation (r=0.7) was observed
between motivation and productivity, followed by a strong
association between negative thinking and racing thoughts
(r=0.66). Positive correlations were also observed between 2
well-being indicators, energy levels and mood (r=0.58), and
between 2 distress indicators, loneliness and negative thinking
(r=0.57). Conversely, negative correlations were seen, such as
between mood and negative thinking (r=–0.56) and irritability
and sociability (r=–0.49).

Figures 3C-3F illustrate 4 of the 92 engineered passive
data features. The distribution of daily step counts (Figure
3C) is right-skewed, with most users taking fewer than 10,000
steps per day. Figure 3D shows the frequency of unique
apps opened daily, peaking at 15‐20 apps, indicating varying
levels of mobile engagement. The entropy of locations
visited (Figure 3E) reflects movement variability, with higher
values suggesting diverse activity patterns. Finally, Figure 3F
highlights the distribution of mean background noise levels at
night, clustering between 30 and 50 decibels.
Associations Between Active and Passive
Features and Clinical Outcomes
To assess the alignment between digital phenotyping features
and clinical mental health symptoms, we examined Spear-
man correlations between active and passive features and
continuous scores on the SDQ, SCI, ED-15, and suicidal
ideation frequency. Among active features, negative thinking
consistently showed the strongest associations across all
outcomes (ρ=0.48 with SDQ, ρ=–0.47 with SCI, ρ=0.57 with
suicidal ideation, ρ=0.48 with ED-15, all P<.001). Higher
levels of racing thoughts and loneliness were associated
with more severe mental health symptoms, whereas greater
confidence and hopefulness were linked to reduced risk.
Key passive features also demonstrated moderate associa-
tions with outcomes. For instance, greater entertainment app

usage consistently showed associations across all outcomes
(ρ=0.37 with SDQ, ρ=–0.37 with SCI, ρ=0.51 with suicidal
ideation, ρ=0.41 with ED-15, all P<.05). Nighttime ambient
light exposure and location variability (latitude and longi-
tude) were also relevant across multiple outcomes, particu-
larly for insomnia and eating disorder symptoms. Key active
and passive features, along with their correlations with each
outcome, are summarized in Table 2. Multimedia Appendices
1 and 2 list detailed descriptions and Spearman correlations
for all active and passive features used in the predictive
modeling pipeline, offering an overview of their associations
with SDQ, SCI, ED-15, and suicidal ideation.

To further illustrate the discriminative capacity of key
digital phenotyping features, we compared the top 5 active
and passive features between high- and low-risk groups
for each mental health outcome. Multimedia Appendix 8
shows the variability in these features across the 4 outcomes
(SDQ, insomnia, suicidal ideation, and eating disorder). The
observed group differences are consistent with the correla-
tion-based findings and reinforce the predictive relevance
of both active and passive data streams in distinguishing
individuals at elevated mental health risk.
Performance of Models Predicting
Mental Health Outcomes
Building on these associations, we evaluated how well
ML models could predict mental health outcomes using
active, passive, and combined data. Figure 4A illustrates the
balanced accuracy of predictive models for the 4 mental
health outcomes (SDQ-high risk, insomnia, suicidal idea-
tion, and eating disorder) evaluated across 10 repetitions of
LOSO-CV. The analysis involved 3 feature sets, including
passive data, active data, and a combination of both. This
evaluation was restricted to the 67 participants who provided
both active and passive data to ensure a fair comparison.
The red dashed line indicates chance-level performance, and
statistically significant differences are denoted by asterisks
(*P<.05, **P<.01, ***P<.001; Wilcoxon signed-rank test).
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Figure 4. Model performance for predicting mental health outcomes using active and passive digital phenotyping data. (A) Balanced accuracy of
mental health outcome predictions (SDQ-high risk, insomnia, suicidal ideation, and eating disorder) using passive, active, and combined data. (B)
Comparison of balanced accuracy for models with contrastive pretraining, without pretraining, and a CatBoost model, showing the performance
benefit of pretraining (P<.001, paired t test). (C) Confusion matrices for the combined data model’s predictions, showing true-positive and
true-negative classifications across mental health outcomes. *: P<.05; **: P<.01; ***: P<.001; SDQ: Strengths and Difficulties Questionnaire.
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For SDQ-high risk, the model using passive data achieved a
balanced accuracy of 0.63, while active data alone reached
0.67 (Multimedia Appendices 1 and 2). The combined model,
leveraging both data types, achieved a significantly higher
balanced accuracy of 0.71 compared to active data alone
(P=.003, Wilcoxon signed-rank test). Similarly, the combined
data model outperformed the active data alone for eating
disorder predictions, with balanced accuracies of 0.70 and
0.63, respectively (P=.003; Wilcoxon signed-rank test). In
predicting insomnia, the combined model achieved a balanced

accuracy of 0.67, while passive data alone performed below
the chance level (0.44). For suicidal ideation, the com-
bined model achieved the highest balanced accuracy of
0.77, significantly outperforming both active data (0.71) and
passive data (0.62; P=.003; Wilcoxon signed-rank test). Table
4 summarizes additional performance metrics, including the
AUC, the area under the precision-recall curve, F1-scores,
sensitivity, specificity, precision, and recall for each mental
health outcome.

Table 4. Detailed performance metrics for mental health outcome predictions.

Metric SDQa-high risk, mean (SD) Insomnia, mean (SD) Suicidal ideation, mean (SD)
Eating disorder,
mean (SD)

Balanced accuracy 0.71 (0.03) 0.67 (0.04) 0.77 (0.03) 0.70 (0.03)
AUCb 0.77 (0.03) 0.74 (0.02) 0.82 (0.03) 0.73 (0.02)
AUC-PRc 0.53 (0.04) 0.52 (0.05) 0.64 (0.05) 0.52 (0.03)
F1-score 0.61 (0.04) 0.59 (0.04) 0.70 (0.04) 0.61 (0.03)
F1 macro 0.69 (0.03) 0.66 (0.04) 0.76 (0.03) 0.68 (0.03)
Sensitivity 0.71 (0.06) 0.68 (0.03) 0.78 (0.05) 0.74 (0.03)
Specificity 0.71 (0.05) 0.66 (0.07) 0.77 (0.04) 0.67 (0.04)
Precision 0.53 (0.04) 0.52 (0.05) 0.64 (0.05) 0.52 (0.03)
Recall 0.71 (0.06) 0.68 (0.03) 0.78 (0.05) 0.74 (0.03)

aSDQ: Strengths and Difficulties Questionnaire.
bAUC: area under the receiver operating characteristic curve.
cAUC-PR: area under the precision-recall curve.

Figure 4B demonstrates the effectiveness of contrastive
pretraining. Models with pretraining achieved the highest
balanced accuracy (0.67), significantly outperforming both
the model without pretraining (0.65; P<.001; paired 2-tailed t
test) and the CatBoost model (0.64; P<.001; paired 2-tailed t
test).

Figure 4C presents the confusion matrices for the
combined data models. For SDQ-high risk, the model
correctly identified 33 negatives and 15 positives, with 6
false negatives and 13 false positives. The model had higher
misclassification rates for insomnia, with 7 false negatives
and 15 false positives. In predicting suicidal ideation, the
model demonstrated strong performance, correctly classifying
34 negatives and 18 positives, with only 5 false negatives and
10 false positives. Similarly, for eating disorders, the model
accurately identified 30 negatives and 16 positives, with 6
false negatives and 15 false positives.

To assess whether the active-only model’s predictive
performance generalizes across user subgroups, we compared
balanced accuracy for the subset (n=67) who provided both
active and passive data with that of the full cohort (n=103),
which includes participants who shared only active data
(Multimedia Appendix 9). The consistent results across these
2 groups indicate that the active-only model’s performance
is stable and not restricted to a specific subgroup, thereby
confirming that restricting the analysis to the subset of users
with both active and passive data (as done in Figure 4A) has
not introduced bias in model performance.

External Validation Performance on an
Independent Cohort
Model performance on the held-out external validation cohort
(n=45 adolescents from 5 additional schools; none of these
adolescents’ data were used for model development) showed
a similar pattern to the LOSO-CV results, albeit with reduced
accuracy for some outcomes (Figure 5). Figure 5 shows
balanced accuracy for models trained using passive data only,
active data only, and combined active and passive data; error
bars indicate standard deviation across 10 repeated runs.
The red dashed line indicates chance-level performance, and
statistically significant differences are denoted by asterisks
(*P<.05, **P<.01, ***P<.001; Wilcoxon signed-rank test).
Using combined active and passive data, balanced accuracy
in the external cohort was 0.72 for SDQ-high risk, 0.63
for insomnia, 0.63 for suicidal ideation, and 0.63 for eating
disorder risk (vs 0.71, 0.67, 0.77, and 0.70, respectively, in
the LOSO-CV analysis). Models trained using passive data
only and active data only showed the same qualitative pattern,
with active and combined data generally outperforming
passive data alone, but with lower accuracies than in LOSO-
CV, particularly for suicidal ideation and eating disorders.
A full set of evaluation metrics for the combined model
in the external validation sample is provided in Multimedia
Appendix 10. Overall, the external validation results showed
a similar performance pattern to the LOSO-CV analysis, with
reduced accuracy for suicidal ideation and eating disorder.
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Figure 5. External validation performance on an independent cohort. Balanced accuracy for predicting SDQ high risk, insomnia, suicidal ideation,
and eating disorder risk in an external validation sample (n=45 adolescents not used for model development). Error bars indicate SD across 10
repeated runs. *: P<.05; **: P<.01; ***: P<.001; SDQ: Strengths and Difficulties Questionnaire.

Model Fairness Across Gender and
School Contexts
Given known differences in smartphone use and mental
health between demographic groups, we examined whether
model performance varied systematically by gender (Multi-
media Appendix 11). Participants were grouped into female
(n=46) and male and other (n=21). For the combined active
and passive model, balanced accuracy was broadly compa-
rable across gender for all 4 outcomes, with differences
modest in magnitude and inconsistent in direction (eg,
suicidal ideation: 0.73 vs 0.74). Error bars overlapped for
all outcomes, and no subgroup was consistently disadvan-
taged, suggesting no evidence of systematic gender-related
performance degradation in this sample.

Because individual-level socioeconomic status (SES) data
were unavailable, we used school as a contextual proxy for
both SES and the institutional environment. The 3 participat-
ing schools differed in selectivity, gender composition, and
catchment-area deprivation: School 1 (girls-only, partially
selective grammar in a mid-SES area), School 2 (mixed-gen-
der community school in a deprived urban area), and School 3
(mixed-gender selective sixth-form college in a mid-to-higher
SES area). For each school, we compared balanced accuracy
for students from that school with that for students from the
other 2 schools combined (Multimedia Appendix 11). Across
all 4 outcomes, differences were varied in direction rather
than systematically favoring or disadvantaging any single
school (eg, School 1 vs others: SDQ 0.71 vs 0.73; insomnia

0.76 vs 0.59; suicidal ideation 0.68 vs 0.76; eating disorder
0.65 vs 0.71), with overlapping CIs in all cases. Overall,
these analyses provide no evidence of systematic performance
degradation associated with school context or school-level
SES, although the study was not powered to detect more
subtle or intersectional fairness effects.
Robustness to Heterogeneous Sensor
Activation
To evaluate whether missing passive-sensor streams
introduced systematic bias, we stratified participants based on
the number of passive sensors enabled. The median number
of sensors in the dataset was 3; therefore, we compared model
performance between users with ≤3 sensors enabled and those
with >3 sensors enabled (Multimedia Appendix 12). Model
performance was evaluated separately for each subgroup
for all 4 outcomes using the combined active-and-passive
model. Differences in balanced accuracy were inconsistent
in direction across outcomes, indicating no evidence of
systematic performance degradation for users with more
missing sensor data. Notably, for suicidal ideation, the 2
subgroups performed nearly identically (0.74 vs 0.72). For
eating disorder risk, the ≤3-sensor group performed better
(0.80 vs 0.56), suggesting that the core predictive signals for
this outcome are captured within the most commonly enabled
sensors and that additional sensors may introduce noise
for this specific target. These results provide no evidence
that heterogeneous sensor activation introduced systematic
group-level bias against users with fewer sensors. They also
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suggest that the combined model is reasonably robust to
the observed patterns of missing passive data. However,
our sample size limits the detection of more subtle fairness
effects related to specific sensor combinations or intersec-
tional subgroups.
Predictive Accuracy Across Mental
Health Risk Groups
Figure 6 illustrates model accuracy in predicting men-
tal health risks using combined active and passive data,

segmented by risk levels for various mental health measures.
The model performed exceptionally well at extreme risk
levels, achieving near-perfect accuracy for high-risk groups
(eg, SCI scores 0‐8 and EDQ scores 4‐6) and low-risk
groups (eg, SDQ scores 1‐8). However, accuracy decreased
significantly in ranges near thresholds (eg, SDQ scores 9‐16
and SCI scores 9‐16).

Figure 6. Accuracy of mental health risk prediction across different levels of (A) Strengths and Difficulties Questionnaire (SDQ) total score. (B)
Sleep Condition Indicator (SCI) score. (C) Frequency of suicidal ideation thoughts. (D) Eating Disorder (ED-15) total score.

Model Interpretability: Active and Passive
Data Contributions
Figure 7A illustrates the feature importance calculated using
SHAP values for predicting the SDQ high-risk category
using a combination of both active and passive data, with
passive data aggregated by sensor type and active data shown
individually. The top predictors included negative thinking,

location features, app usage, racing thoughts, and self-care.
Cognitive and emotional indicators (eg, negative thinking and
racing thoughts) ranked highest among active data features,
while movement and environmental stability (eg, location
entropy and step count) dominated passive data contributions.
Corresponding SHAP-based feature importance plots for
predicting insomnia, suicidal ideation, and eating disorders
are provided in Multimedia Appendices 13-15, respectively.
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Figure 7. Feature importance analysis for predicting the SDQ high-risk category using both active and passive data. (A) SHAP-based feature
importances, with passive data aggregated by sensor type and active data shown individually. (B) Distribution of the top five active data features
across SDQ risk categories. (C) Distribution of the top five passive data features across SDQ risk categories. Statistically significant differences
between low-risk and high-risk groups are indicated (*: P<.05, **: P<.01, ***: P<.001, t test). SDQ: Strengths and Difficulties Questionnaire; SHAP:
Shapley Additive Explanations.
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The distribution of the top five active data features (nega-
tive thinking, racing thoughts, self-care, hopefulness, and
loneliness) showed clear distinctions between low- and
high-risk SDQ groups (Figure 7B). Negative thinking and
racing thoughts were significantly higher in the high-risk
group (P<.001; t test). Conversely, self-care (P<.001; t test)
and hopefulness (P<.001; t test) were significantly lower.
Loneliness was also notably higher in the high-risk group
(P<.001; t test).

The distribution of the top 5 passive data features
(ambient light, location entropy, step count, latitude SD, and
mean distance from home) highlighted significant differen-
ces between risk groups (Figure 7C). High-risk individu-
als showed greater ambient light exposure (P<.001; t test),
potentially reflecting greater exposure to light at night and
sleep disruptions. They also exhibited higher location entropy
(P=.02; t test) and latitude variability (P<.001; t test).
Additionally, fewer high-risk individuals exceeded 5000 daily
steps (P=.002; t test).

Discussion
Principal Findings
Our study demonstrated the effectiveness of integrating
active self-reported and passive smartphone sensor data to
predict adolescent mental health risks using a novel ML
framework. By leveraging data collected via the Mindcraft
app, we evaluated predictions across 4 critical mental
health outcomes, namely SDQ-high risk, insomnia, suicidal
ideation, and eating disorders. Combined models consistently
outperformed unimodal approaches, achieving competitive
balanced accuracies across all outcomes (eg, 0.77 for suicidal
ideation and 0.71 for SDQ-high risk), even in a broad,
nonclinical adolescent sample (Figure 4A). These results
highlight the complementary value of passive data, which
unobtrusively captures continuous behavioral patterns that
enrich the subjective insights provided by active data.

Importantly, these results were obtained in a nonclinical,
school-based adolescent cohort that was deliberately broad,
behaviorally diverse, and not selected for help-seeking status.
Such populations introduce substantial intragroup variabil-
ity, natural fluctuations in engagement, and noise in both
active and passive measures, making predictive modeling
especially challenging. Previous digital phenotyping studies
in non-clinical adolescent or student samples have reported
the AUC or F1-scores typically ranging from 0.60 to 0.80
when predicting stress, depression, or anxiety using mobile
sensing [35-41]. Many of these studies also involved smaller
or more homogeneous samples and often focused on a single
outcome. Our balanced accuracies of 0.70‐0.77 are therefore
competitive, especially given that our study simultaneously
addressed 4 distinct mental health outcomes in a naturalistic,
non–help-seeking adolescent sample. The external validation
results suggest that the learned behavioral representations
generalize reasonably well to new schools and time periods,
while also highlighting some loss of accuracy for the more
challenging outcomes.

User engagement patterns indicated sustained utility of
passive data collection, underscoring its lower participant
burden and feasibility in scalable longitudinal mental health
monitoring. Participants preferred less intrusive metrics,
including step count, battery usage, and screen brightness,
emphasizing the importance of prioritizing user-friendly
data collection methods. Our innovative contrastive learning
approach effectively addressed variability inherent in daily
behavioral data, stabilizing user-specific feature representa-
tions. This methodological advancement yielded improved
performance and increased confidence in the model’s
applicability to the real world.
Comparison With Prior Work
Previous work has largely focused on adults or clinical
populations [23-40], limiting its applicability to adolescents in
community settings. Even among adolescent-focused studies
[25,33,34,63,64], most relied solely on passive sensing and
targeted depression or anxiety, limiting the generalizability of
their findings to broader, nonclinical groups.

Digital self-monitoring has a potential role in multiple
stages of the clinical pathway, from prevention to clini-
cal intervention. Our work addresses a broader range of
mental health outcomes of internalizing and externalizing
disorders, eating disorders, insomnia, and the presence of
suicidal ideation in a nonclinical, non–help-seeking school-
going adolescent population. MacLeod et al [63], the closest
study to ours, included younger adolescents from clinical and
nonclinical settings but relied solely on passive sensing. To
our knowledge, this study is the first to use ML to accurately
predict mental health risk across a broad range of outcomes
in low- and higher-risk school-going adolescents, using a
combination of active and passive data in a general, nonclini-
cal population.

To interpret our results in light of previous literature, we
discuss the findings for each mental health outcome in our
study individually below.

SDQ
SHAP analysis highlighted key passive features (Figure
7C), including lower step count, increased location entropy,
and elevated ambient light exposure, which were linked
to behavioral and environmental patterns associated with
mental health risk, consistent with prior studies on phys-
ical inactivity, disrupted routines, and light exposure [18-
21]. Fewer high-risk individuals exceeded 5000 daily steps,
reinforcing associations with sedentary behavior [19,20].
Location entropy, capturing variability in movement, may
signal a lack of daily structure [18], while ambient light
patterns could reflect disturbed circadian rhythms [21]. In
parallel, active features such as negative thinking, racing
thoughts, and poor self-care also ranked highly (Figure 7B)
and aligned with literature on internalizing and externalizing
symptomatology [65-67].
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Insomnia
Predictions were driven by active features such as self-care,
negative thinking, and appetite, and by passive measures such
as app usage hours, nighttime movement, and ambient light
(Multimedia Appendix 13). This aligns with earlier research
highlighting subjective perceptions, such as increased
negative thinking, loneliness, and decreased self-care and
hopefulness, as critical factors in sleep disturbances [68,69].
The significance of ambient light exposure further supports
evidence linking circadian disruptions to poor sleep quality in
adolescents [70,71].
Suicidal Ideation
Key active features (Multimedia Appendix 10), including
negative thinking, loneliness, and reduced hopefulness, reflect
core cognitive-affective vulnerabilities and are consistent
with prior evidence linking these traits to elevated sui-
cide risk in adolescents [72,73]. Passive features (Multi-
media Appendix 13) such as screen brightness variability
and late-night Mindcraft app usage may indicate disrupted
circadian rhythms, which have been associated with poorer
mental health outcomes and suicidal ideation [70,74-76].

Eating Disorder
High-risk individuals reported lower appetite and energy,
poorer self-care, and more negative thinking (Multimedia
Appendix 11), consistent with links between cognitive-emo-
tional dysregulation, somatic symptoms, and disordered
eating in adolescents [77,78]. Passive data (Multimedia
Appendix 11) showed consistently elevated screen brightness
and earlier app use in the high-risk group, possibly indicating
compulsive nighttime device use and disrupted sleep-wake
cycles, both associated with emotional dysregulation and
body image concerns [79,80].
Strengths and Limitations
This study offers several strengths that advance the field
of adolescent digital mental health. By integrating active
self-reports and passive smartphone sensor data via the
Mindcraft app, we provide a scalable, unobtrusive, and
practical framework for early risk detection. Notably, our
models maintained strong performance despite high attrition
in active data, underscoring the robustness and low par-
ticipant burden of passive sensing. Additionally, our use
of contrastive learning to stabilize day-to-day behavioral
features enhanced model robustness. SHAP-based interpreta-
bility increased transparency and clinical relevance, both of
which are key attributes for adoption in real-world settings.

Several limitations warrant consideration. First, the sample
was relatively small and drawn from 3 London-based
schools, which may limit the generalizability of our findings,
particularly regarding socioeconomic and regional representa-
tiveness. Prior research has shown that digital phenotyping
features, such as smartphone usage patterns and affective
expression, as well as the manifestation and reporting of
mental health symptoms, can differ by gender, geography,
and cultural context [81-83]. Our geographic concentration
in an urban, high-resource setting may therefore not capture

behavioral or contextual variability observed in rural or
culturally distinct environments, where access to technol-
ogy, school structures, and sociocultural norms may differ
substantially. Furthermore, the gender imbalance driven by
the inclusion of a girls-only school may have biased the
learned representations toward behavioral and emotional
patterns more characteristic of female adolescents, potentially
reducing performance for male or nonbinary young people.
Consequently, while our findings provide novel insights
into adolescents’ behavioral monitoring, caution is warran-
ted when extrapolating these results to nonurban, gender-bal-
anced, and resource-limited populations. Future work should
therefore include socioeconomically and demographically
diverse samples to assess the generalizability of this approach
more robustly.

Second, passive sensor data quality varied across device
types, operating systems, permission settings, and user
engagement, with some participants not enabling key sensors,
such as location or app usage, resulting in heterogeneous
data completeness. We applied sentinel values to flag missing
sensor inputs, enabling the model to learn from patterns
of missingness. However, this may not fully eliminate
systematic differences, as participants with more complete
data may differ meaningfully from those with limited data,
potentially skewing model learning. Future work should
incorporate fairness-aware modeling and stratified evalua-
tion to ensure equitable performance across subgroups [84].
While cumulative median aggregation improves robustness
to short-term noise, it may dampen sensitivity to clinically
meaningful abrupt behavioral changes, such as those observed
during acute mood episodes or crisis events. Hybrid strategies
such as combining cumulative medians with volatility-sen-
sitive features may better capture both stable patterns and
sudden shifts.

Finally, this study did not include broader biological
and environmental factors, such as genetic risk, socioeco-
nomic status, family history, adverse childhood experiences,
or neurodevelopmental profiles, that are known to influ-
ence adolescent mental health [81,85]. The absence of such
contextual and historical information may limit the model’s
ability to capture all relevant sources of variance, poten-
tially constraining predictive accuracy. Future studies should
consider incorporating these factors to enhance explanatory
power and clinical utility.
Implications and Recommendations
Active data engagement declined markedly by day 14 (Figure
2B), underscoring a key longitudinal feasibility challenge.
Future iterations of Mindcraft will therefore incorporate
specific design adaptations to reduce burden and sustain
engagement. These include shifting from fixed-time prompts
to context-aware adaptive sampling triggered by behavio-
ral anomalies detected through passive data; incorporating
light gamification (such as streaks) to maintain motiva-
tion; and closing the feedback loop by providing personal-
ized behavioral insights and just-in-time recommendations
informed by each user’s active and passive data. Together,
these adaptations aim to shift Mindcraft from a one-way data
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collection tool to a personalized support platform, thereby
improving long-term engagement and feasibility.

Real-time digital phenotyping at a population level can
complement traditional screening methods by identifying
and prioritizing high-risk individuals and enabling tailored
prevention and early intervention strategies [76,86]. The
use of a mobile app for digital phenotyping is particularly
valuable for children and young people, for whom early
identification and intervention are essential to prevent the
onset of more severe mental health issues in adulthood. When
implemented in schools, it addresses barriers such as stigma
and accessibility, offering adolescents a preventive tool
that empowers them to manage their mental health. Digi-
tal phenotyping provides the opportunity to inform school-
based digital interventions that might be central to early
intervention and prevention of mental health problems in the
community [87]. While adherence to GDPR and secure data
protocols provides a legal baseline, the ethical landscape of
adolescent digital phenotyping extends far beyond regulatory
compliance [88,89]. Collecting continuous passive data from
minors introduces distinct tensions regarding autonomy and
informed consent; specifically, the invisible nature of passive
sensing means adolescents may habituate to the monitoring,
potentially eroding their ongoing awareness of data sharing
[89]. Furthermore, the deployment of predictive risk models
carries the risk of digital labeling, where algorithmic outputs,
if misinterpreted or generating false positives, could lead
to stigma, unnecessary anxiety, or oversurveillance [88].
Addressing these complexities demands more than static
consent forms; it requires ongoing participatory approaches
involving adolescents, parents, and clinicians, alongside
governance mechanisms that ensure transparency, prioritize
interpretability over black-box predictions, and maintain
human clinical oversight of algorithmic outputs [88]. To this
end, future work must empirically evaluate how adolescents
understand, experience, and respond to continuous passive
sensing, and determine how ethical frameworks can best
support safe, acceptable integration in school settings.

Achieving real-world feasibility requires distinguishing
between scientific interpretability and user-centric explaina-
bility [90,91]. While the SHAP values presented in this
study provide necessary transparency for model validation,
raw feature importance scores are unlikely to be meaning-
ful to non-expert stakeholders such as adolescents, parents,
or educators. For broad deployment, these technical outputs
must be bridged by a translation layer that converts granu-
lar risk estimates into accessible, actionable narratives. For
instance, rather than displaying a high SHAP value for
“location entropy,” a user-facing interface should translate
this into an intuitive insight, such as detecting “significant
changes in your daily routine.” Future implementation work
must prioritize the co-design of these explanatory interfaces
to ensure that algorithmic transparency supports understand-
ing rather than overwhelming users.

Digital biomarkers from sensors and ML have shown
accuracy in predicting disease progression [92,93], underscor-
ing the broader potential of sensor-based technologies for
personalized healthcare. Smartphones, being both ubiquitous
and affordable, enable continuous, real-time data collection
even in low-resource settings, reducing reliance on clinical
supervision [34,94]. Digital phenotyping offers a scalable
mechanism for continuous, context-aware monitoring [94],
which could feed into well-being dashboards accessible to
pastoral staff, school counselors, or clinical teams. In school
settings, such dashboards could support early identification
of distress and enable stepped-care approaches that match
support intensity to need. In clinical pathways, risk predic-
tions could support triage decisions and monitoring between
appointments, complementing existing services rather than
replacing them [86]. Achieving this will require implemen-
tation research on workflow integration, governance, and
alignment with school well-being policies and child mental
health services.

Traditional platforms such as Childline rely on proactive
engagement from children and young people, creating barriers
for disengaged users. In contrast, Mindcraft’s passive tracking
capabilities offer a proactive approach by identifying early
signs of poor mental health and prompting timely professional
interventions. Building on this pilot work, we have developed
a school-based intervention study that evaluates the effec-
tiveness of personalized artificial intelligence recommenda-
tions delivered through the Mindcraft app across schools in
the United Kingdom (ISRCTN11686798). With this further
development, Mindcraft is evolving into a comprehensive
platform that delivers in-app recommendations informed by
active and passive data, leveraging user profiles [95,96] to
tailor suggestions to individual needs, enhance engagement,
and improve intervention effectiveness. Subsequent phases
will focus on scaling and validation across diverse school
settings and on integrating Mindcraft with existing education
and mental health pathways to support sustainable, real-world
implementation. This integration of proactive detection and
tailored intervention could help address significant gaps in
traditional mental health support systems.
Conclusion
In conclusion, this study underscores the transformative
potential of integrating active and passive smartphone data
to predict adolescent mental health. By leveraging innova-
tive ML techniques, such as contrastive learning, and the
scalability of tools like the Mindcraft app, we present a robust
framework for early risk detection across diverse mental
health outcomes. These findings lay the groundwork for more
inclusive, accessible, and personalized early detection and
intervention strategies in adolescent mental health.
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were assessed using one-sided t-tests with Benjamini–Hochberg correction for multiple comparisons. Features were selected
based on adjusted p-values. Red asterisks indicate statistical significance (*P≤.05, **P≤.01, ***P≤.001). Normalization was
applied to enable comparison across features measured on different scales.
[PNG File (Portable Network Graphics File), 241 KB-Multimedia Appendix 8]

Multimedia Appendix 9
Comparison of balanced accuracy of mental health outcome predictions using active data only for all users in the study
(N=103) vs users who also enabled passive data collection (N=67).
[PNG File (Portable Network Graphics File), 156 KB-Multimedia Appendix 9]

Multimedia Appendix 10
Detailed performance metrics for predicting SDQ high risk, insomnia, suicidal ideation, and eating disorder risk using
combined active and passive data in an external validation sample (N=45 adolescents not used for model development).
[DOCX File (Microsoft Word File), 47 KB-Multimedia Appendix 10]

Multimedia Appendix 11
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