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Abstract

Background: Thrombolysis and mechanical thrombectomy represent the most successful stroke innovations over the last 30
years. Quantifying innovation in stroke is essential for identifying productive research lines and prioritizing funding, but health
care lacks validated methods for measuring innovation.

Objective: This study aimed to systematically evaluate the relationship between stroke-related patents and publications,
demonstrate the feasibility of using large language models (LLMSs) in this process, and identify the most rapidly advancing
innovations in stroke care by mapping them to atheoretical innovation life cycle.

Methods: The Open Patent Services (European Patent Office) and PubMed databases were searched between 1993 and 2023
for “stroke OR cerebrovascular.” In this bibliometric patent-publication analysis, a 13 billion—parameter LIamaLLM wastrained
to identify patents related to stroke disease, as opposed to other references to the word “stroke,” on amanually labeled subset of
5000 patents and assessed using 5-fold cross-validation. The LLM filtered irrelevant results, and the resulting patent codes were
grouped into innovation clusters. For each cluster, annual patent and publication counts were normalized to adjust for global
trends. Cluster-specific growth curves were plotted to analyze the rates and characteristics of growth. The innovation life cycle
stage for each innovation cluster was estimated by fitting a sigmoid curve to the patent and publication data consistent with the
diffusion of innovations theory by Rogers.

Results. The cross-validated accuracy of the LLM was 99.2%, with a sensitivity of 96.5% and a specificity of 99.6%. An initial
bibliometric search retrieved 237,035 patents and 486,664 research publications. A manual review of arandom sample of patents
before filtering revealed that only 11.2% (56/500) were relevant to stroke. After LLM filtering, of the 237,035 patents, 28,225
(11.9%) stroke-related patents remained. These were grouped into 7 innovation clusters: pharmacological treatment, alternative
medicine, rehabilitation devices, medical imaging, diagnostic testing, surgical devices, and artificial intelligence (Al) methods.
Patent and publication countswere strongly correlated across clusters (Spearman r=0.65-0.92; P<.006) except for pharmacol ogica
treatment (rs=0.09) and alternative medicine (r=0.55). Pharmacological treatments were the top-performing cluster over the last
30 years, accounting for 49.3% (36,005/73,094) of al patents, but patent activity in this area has plateaued since the late 2000s.
Al methods, rehabilitation devices, and medical imaging exhibited exponentia rates of patent growth, with annual normalized
increases of 39.2%, 15.9%, and 5.8% compared to 16.9%, 5.3%, and 2.2% for publications, respectively.

Conclusions: Applying an LLM to publicly available patent and publication data provides a scalable way to quantify innovation
in stroke. Pharmacol ogical treatment appears to have entered a saturation phase, whereas Al methods, rehabilitation devices, and
medical imaging remain in rapid growth, highlighting areas of greatest traction for future research and investment.
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Introduction

Turning points in stroke treatment occurred in 1995 and 2015
with the introduction of thrombolysis and mechanical
thrombectomy, respectively [1,2]. Such shifts are rare and, in
amore formal context, can be considered innovations: a term
defined as a process that ushers in new technologies or
techniques that induce a substantial change in practice [3,4].
Quantifying innovation in stroke careisvital asit helpsdiscern
which lines of research are productive, such asrevascularization
therapies, perfusion imaging, and decompressive surgery, as
opposed to those that have been less successful, such as
neuroprotective and neurorestorative therapies. Measures of
innovation output aid in research strategy planning, prioritizing,
and assessing the effectiveness of research funding. However,
while the study of innovation iswell established in other fields
[5], health care has relatively few validated methods for
quantifying innovation outputs, which can limit progress [6].

Prior evaluations of innovation in stroke have been limited,
consisting largely of qualitative reviews [7-9] or conventional
bibliometric analyses that track academic trends [10]. While
valuable for tracking academic discourse and research activity,
such bibliometric approaches have inherent limitations for
measuring tangible innovation. Metrics based on citations and
publications tend to reflect academic impact over practical
implementation, and they do not readily distinguish incremental
advances from transformative breakthroughs. Conseguently,
these methods primarily measure research inputs and academic
outputs, not the devel opment of novel, practical solutions.

An alternative approach, originally applied to surgery [4],
leverages original patents as a benchmark of technological
innovation by comparing the cumulative quantity of patentsfor
a gpecific innovation with that of related peer-reviewed
publications. This method has the advantage of drawing on a
comprehensive repository of inventions that have been
independently evaluated for novelty and utility; these are
generally sufficiently mature and practical to have attracted the
funding resources required for patent filing. However, patent
analysis relies heavily on the precise interpretation and
determination of relevant patents, a task complicated by the
broad and often ambiguous language of patent documents,
making it labor-intensive and time-consuming. The difficulty
of this task is particularly magnified in the context of
stroke-related patents given that theterm “ stroke” could denote
a disease as well as multiple engineering concepts and
mechanical action of engines, clocks, and other mechanisms.
Conventional search engines such as Google are liable to
confound stroke terms as they lack the specialized filtering and
context awareness needed for precise medical searches.

In this regard, recent advancements in artificial intelligence
(Al), specifically large language models (LLMs), hold
tremendous potential. They have exhibited remarkable
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proficiency in textual tasks, making them invaluable in this
context [11]. Essentially, LLMs are statistical models trained
on vast datasets enabling them to learn intricate relationships
between words and phrases. Whiletraining LLMsfrom scratch
might pose considerable difficulties and financial burden, the
recent availability of open-source trained LLMs to the public
has mitigated these challenges [12].

Therefore, the aims of this study were 3-fold: first, to evaluate
systematically the relationship between stroke-related patents
and publications over the last 3 decades; second, to demonstrate
the feasibility of using LLMs to assist in this process; and,
finaly, to identify the most rapidly advancing innovations in
stroke care.

Methods

Although this was not a clinical study, the STROBE
(Strengthening the Reporting of Observational Studies in
Epidemiology) guidelines [13] were adhered to where
appropriate. The methodology was based on the work by
Hughes-Hallett etal [4], with adaptions for stroke-related
innovation.

Data Collection

The Open Patent Services web service, provided by the
European Patent Office [14], was used to obtain patent
application data from more than 80 different countries. The
period from 1993 to 2023 was chosen to capture the modern
era of stroke care, beginning shortly before the pivotal 1995
National Institute of Neurological Disorders and Stroke trial
that established thrombolysis as astandard treatment [ 1]. Patents
filed between 1993 and 2023 were downloaded if either their
title or abstract matched the following Boolean search: “stroke
OR cerebrovascular” A PubMed (Nationd Library of Medicine)
search was also conducted using the same strategy to extract
publication data for the same period.

Data Filtering

The collected patents were randomly sampled, and a subset of
5000 was manually annotated by a single author (AM), who is
amedical professional, as either related or unrelated to stroke.
A second, random unfiltered sample of 500 patents and 500
publications matching the search terms “stroke” or
“cerebrovascular” was also manually labeled by the same
annotator (AM). Annotations from the 5000-patent subset were
used to provide ground truth for model fine-tuning, whereasthe
second sample was used to verify the accuracy of the search
strategy, especially for PubMed results. Patentswere considered
stroke related if their primary content was directly relevant to
stroke management or pathophysiology. Publications were
considered strokerelated if they contributed to the understanding
of stroke, including basic science suitable for stroke journals
and clinical studieswith stroke as an end point.
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A 13 billion—parameter Llama model (Meta Al) [12], a
state-of -the-art open-source LLM trained on web data, wasthen
fine-tuned using low-rank adaptation (LoRA) [15] to classify
stroke-related patents. Fine-tuning was performed using Py Torch
(version 1.13; Meta Al) on amachine equipped with a2.80-GHz
AMD EPYC 7543P central processing unit and an NVIDIA
RTX A4500 20-GB graphics processing unit. The
hyperparameters, which are listed in Table 1 and were based
on standard values from the original LORA paper [15], were
chosen to ensure stable training while preventing overfitting.

Marcus et al

In particular, the LORA rank was set to 8 to keep model
adaptation minimal and efficient. The prompt template is
provided in Figure 1. To assess prompt sensitivity, alternative
phrasings were tridled on a development subset during
fine-tuning. The model’s performance was evaluated using
5-fold cross-validated binary classification metrics and
compared to that of the base model before the final model was
used to analyze the unlabeled patents and filter out those
unrelated to stroke. The model was not used for classifying
publications.

Table 1. The hyperparameters used for fine-tuning the Llama model using low-rank adaptation (LORA).

Parameter Value

Batch size 128

Number of epochs 10

Learning rate 0.0003

Optimizer Adam

Maximum gradient norm 1

LoRA rank 8

LoRA apha 16

LoRA dropout 0.05

LoRA target modules Query and value projection

Figure 1. The prompt template used to fine-tune the LIama model to classify whether a patent was related to stroke.

Below is a patent application title, paired with an abstract. Write a
yes/no response whether the patent is related to stroke disease.

### Title:
[TITLE]

### Abstract:
[ABSTRACT]

### Response:
<COMPLETE>

Data Nor malization

Across al fields, the number of patents and publications has
risen exponentially. To adjust for thisincrease, both countswere
normalized using the formula outlined by Hughes-Hallett et al

[4]:

h,original

II[_:'\orma]ucd _ i

G

toax = Max(tises: t1saqr s t2022)

In thisformula, 11; denotes the innovation index, defined asthe
number of patents or publications within a particular field; C
is the innovation constant; and t; is the total number of patents
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granted or publications indexed on PubMed for a given year i.
For example, if afield had 50 patentsin a year when 100,000
patents were granted and the maximum number of patentsin
any year during the study period was 200,000, then C; =
100,000/200,000 = 0.5, and the normalized innovation index
would be 50/0.5 = 100.

Identifying Innovation Clusters

The process of identifying innovation clustersinvolved a 2-stage
method to ensure comprehensive coverage. Initially, the top
100 most frequent International Patent Classification (IPC) [16]
codes from the filtered, stroke-related patent dataset were
extracted. These codes, assigned by patent examiners, offer a
standardized way of categorizing the technological domains of
inventions. Focusing on the top 100 codes provided a
quantitative starting point, representing the most concentrated
areas of patent activity while avoiding the sparsity and noise of
the long tail of less frequent codes.
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These top 100 codes were then manually grouped into
preliminary innovation clusters by 2 authors (AM and GL-T).
This grouping was based on the descriptive content of the IPC
codes and their relevance to distinct areas of stroke care.
Interrater reliability was assessed using the Cohen k, and any
disagreements regarding this grouping were resolved by athird
author (PB).

To capture relevant patents and publications that may not have
faleninto these top 100 codes, asecond stage wasimplemented.
Expanded, cluster-specific Boolean search strategies were
developed aslisted in Table 2 and performed on both the patent
database and PubMed. The keywords for these searches were

Table 2. PubMed and European Patent Office database search strategies.
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also determined by 2 authors (AM and GL-T), with a third
author (PB) resolving any disagreements. For clusters such as
alternative medicine, broader search terms such as “food” and
“herbal” wereintentionally used. Thiswas necessary to capture
innovations described in nonclinical or lay terms, which is
common in patent applications for complementary therapies
that may lack standardized medical terminology. The fina
dataset for each cluster comprised all documents identified
through either the initial 1PC code grouping or the subsequent
expanded Boolean search. Findly, this entire 2-step
methodology was repeated for patents and publications from
the last decade (2013-2023) to allow for the determination of
more recent innovations.

Innovation cluster Search strategy

Al? methods

(Al OR “artificial intelligence” OR “deep learning” OR “machinelearning” OR “neural network™)

AND (stroke OR cerebrovascular)

Alternative medicine

(food OR tea OR coffee OR beverage OR herbal OR acupuncture OR aromatherapy OR reflexology

OR “holistic therapy”) AND (stroke OR cerebrovascular)

Diagnostic testing

(“diagnostic testing” OR “diagnostic tools’ OR “clinical tests” OR “screening tests” OR “blood

tests” OR “laboratory tests’” OR “genetic testing”) AND (stroke OR cerebrovascular)

Medical imaging

(imaging OR angiography OR angiogram OR ultrasound OR CT OR MRI OR PET OR “computed

tomography” OR “magnetic resonance” OR “positron emission tomography”) AND (stroke OR

cerebrovascular)

Pharmacological treatment

Rehabilitation devices

Surgical devices

(thrombolysis OR aspirin OR clopidogrel OR warfarin OR DOACs OR alteplase OR tPA OR “tissue
plasminogen activator” OR “thrombolytic therapy” OR “pharmacological treatment” OR “pharma-
ceutical composition” OR “drug therapy” OR “ secondary prevention” OR “direct ora anticoagulants’)
AND (stroke OR cerebrovascular)

(rehabilitation OR neurorehabilitation OR exoskeleton OR “training device” OR “brain-computer
interface”) AND (stroke OR cerebrovascular)

(thrombectomy OR embolectomy OR “clot removal” OR “clot retrieval” OR “catheter device” OR

“surgical device” OR “endovascular treatment” OR “endovascular therapy”) AND (stroke OR

cerebrovascular)

8Al: artificial intelligence.

Statistical Analysis

All statistical analyses were performed using Python (version
3.11.3; Python Software Foundation) and the statsmodels [17]
package. Permutation testing with Bonferroni correction was
used to calculate P values adjusted for multiple tests. The
relationship between patent and publication datawas visualized
using scatterplotsto assess the nature of the association. On the
basis of this visua inspection, an appropriate correlation
coefficient was selected: Pearson (r) for linear relationshipsand
Spearman rank (rg), anonparametric method, for monotonic but
nonlinear relationships. To model the technology diffusion life
cycle, innovation life cycle progression was derived by fitting
sigmoid curves to the patent and publication data, a method
consistent with the diffusion of innovations theory by Rogers
[18]. To quantify the uncertainty in these estimates, 95% Cls
were calculated using nonparametric bootstrapping, which
involved repeatedly resampling the dataand refitting the curve.

https://www.jmir.org/2026/1/€70754

Results

Data and Filtering Performance

The initial search retrieved 237,035 patents and 486,664
publications. In arandom, unfiltered sample of 500 patents and
500 publications matching the search terms “stroke” or
“cerebrovascular,” 11.2% (56/500) of patents and 74.2%
(371/500) of publications were stroke related. The remaining
patents typically referred to “stroke” in nonclinical contexts,
including mechanical travel (eg, strokelength in pistons), engine
cycles (eg, 2-stroke engines), lightning discharges, and line
rendering in handwriting or graphics. These examples formed
the negative class for model fine-tuning. An LLM was then
fine-tuned to classify whether a patent was stroke related,
achieving across-validated accuracy of 99.2% with asensitivity
of 96.5% and specificity of 99.6% and significantly
outperforming the base model acrossall metricslisted in Table
3 (al P<.001). The receiver operating characteristic curve is
shown in Figure 2 [19]. Prompt sensitivity was also evaluated
during model fine-tuning using alternative phrasings; this had
a negligible impact on classification outcomes. After filtering
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using the model, of the 237,035 patents, 28,225 (11.9%)
stroke-related patents remained. Figure 3 illustrates the annual
increase in these patents filed by geographic region, with the
largest proportion originating from China. The original and

Marcus et al

normalized counts of patents and publications related to stroke
areshownin Figure4. Normalized patent counts reached a peak
in 2010, whereas normalized publication activity continues to
grow.

Table 3. Five-fold cross-validated performance of the fine-tuned LIama model compared to the base model for classifying whether a patent was stroke

related. P values are from 2-tailed paired t tests across the 5 folds.

Measure Fine-tuned estimate (95% CI) Base estimate (95% Cl) P value
AUROC? 0.990 (0.988-0.992) 0.654 (0.605-0.703) <.001
Accuracy (%) 99.2 (99.0-99.5) 66.8 (66.3-67.3) <.001
Sensitivity (%) 96.5 (94.8-98.2) 54.5 (48.3-60.7) <.001
Specificity (%) 99.6 (99.4-99.7) 68.2 (67.6-68.7) <.001
PpVP (%) 96.1 (94.8-97.4) 16.5(13.9-19.1) <.001
NPVC (%) 99.6 (99.4-99.8) 92.9(92.2-93.7) <.001
F1-score (%) 96.3 (95.1-97.5) 25.2 (21.6-28.9) <.001

8AUROC: area under the receiver operating characteristic curve.
bppy: positive predictive value.
°NPV: negative predictive value.

Figure 2. Receiver operating characteristic curve illustrating the cross-validated performance of the fine-tuned Llama model compared to the base
Llamamodel in classifying stroke-rel ated patents. The shaded area represents the 95% confidence region determined viathe fixed-width band technique

[19]. AUC: area under the curve.
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Figure 3. Stroke-related patents filed between 1993 and 2023 categorized by geographic coverage as defined by patent filing jurisdiction and route
(China: ChinaNational Intellectual Property Administration; United States: US Patent and Trademark Office; Japan: Japan Patent Office; South Korea:
Korean Intellectual Property Office; Canada: Canadian Intellectual Property Office; Europe: European Patent Office; worldwide: Patent Cooperation
Treaty or World Intellectual Property Organization; other regions: other national or regional offices).
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Figure 4. Overview of the (A) counts of patents and publications related to

Marcus et al

stroke over time and (B) year-on-year normalized patent and publication

counts for each innovation cluster. Normalized counts were calculated by dividing the annual number of stroke-related patents or publications by the
total number of patents or publications in that year, scaled to the maximum annual total across the study period. In both cases, the dashed lines depict

exponential fits with the associated coefficients of determination (RZ) given per plot. Al: artificial intelligence.
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Leading Innovation Clusters

sensitivity analysis of 100 randomly sampled patents was

There were 7 top stroke-related innovation clusters identified
over thelast 30 years; interrater reliability between the 2 authors
was high (Cohen k=0.871). To address potential overcapture
in the alternative medicine cluster due to broad search terms, a

https://www.jmir.org/2026/1/€70754
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performed, verifying that 97% were stroke related. The
performance of these clusters, as measured using patents, is
summarized in Table 4, with the allocation of patent codes
provided in Multimedia Appendix 1. Pharmacol ogical trestment
was the largest cluster, accounting for 49.3% (36,005/73,094)
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of the patentsfiled over the study period. To ensure the stability
of these findings, a sendtivity analysis was performed
confirming that cluster rankings held without normalization
(data not shown). Within the last decade, only Al methods
increased in rank, with the relative ordering of the other

Marcus et al

top-performing clusters remaining constant. Although not
reflected in a change in order, the proportion accounted for by
pharmacological treatments fell to 33.7% (9391/27,870),
whereas all the other clusters increased their shares.

Table 4. Comparing the top-performing stroke-related innovation clusters by cumulative normalized patent counts over the past 30 years and the last
decade. Artificia intelligence (Al) methods were the only cluster to increase in rank.

Rank Innovation cluster

Normalized patent count, n (%)

1993-2023 (n=73,094)

Pharmacological treatment
Alternative medicine
Rehabilitation devices
Medical imaging
Diagnostic testing

Surgical devices

~N o oA~ W N P

Al methods

2013-2023 (n=27,870)

Pharmacological treatment
Alternative medicine
Rehabilitation devices
Medical imaging

Al methods

Diagnostic testing

Surgical devices

~N o oA~ W N P

36,005 (49.3)
20,291 (27.8)
7777 (10.6)
5331 (7.3)
1448 (2.0)
1397 (1.9)
845 (1.2)

9391 (33.7)
8005 (28.7)
5569 (20.0)
2668 (9.6)
791 (2.8)
834 (3.0)
612 (2.2)

Statistical Analysis

Figure 4 and Table 5 show the rel ationship between normalized
patent and publication counts over time for the top-performing
innovation clusters. There were strong associations (r>0.6;
P<.006) between patent and publication rates for al clusters
except pharmacological treatment (rg=0.094; P=.99) and
alternative medicine (r =0.546; P=.01). These 2 clusters showed
normalized patents peaking in the late 2000s, with a continued
shallow risein publications. Thistrend is further illustrated by
the normalized patent-to-publication ratio over time for each
innovation cluster, asdetailed in Multimedia Appendix 2. Plots
of the data on Al methods show arapid rise similar to that of
other emerging clusters. To quantify this concurrent growth,
thetemporal correlation between the Al cluster and other leading
clusterswas assessed. Al patent activity was strongly correlated
with patent activity in rehabilitation devices (rs=0.767; P=.004)
and medica imaging (r&=0.662; P=.004). Similarly, Al
publication rates correlated strongly with publication rates in
rehabilitation devices (rs=0.963; P=.004) and medical imaging

https://www.jmir.org/2026/1/€70754

(rs=0.962; P=.004). These clusters al exhibited a strong
exponential fit for both patent and publication data supported

by coefficient of determination (R?) values exceeding 0.7, as
shown in Table 5. The rates of exponential growth for Al
methods were the highest (39.2% per year for patents; 16.9%
per year for publications), followed by rehabilitation devices
(15.9% per year for patents; 5.3% per year for publications) and
medical imaging (5.8% per year for patents; 2.2% per year for
publications). The diffusion dynamics for each innovation
cluster, approximated by fitting sigmoid curves to the patent
and publication data, are shown in Figure 5 [18] and
contextualized within the phases of the diffusion of innovations
theory by Rogers [18], highlighting their positions in the
innovation life cycle. The estimated progression through the
innovation life cycle based on patent data was highest for
pharmacological treatment (97.5%), followed by surgical
devices (82.9%), nutritional and complementary therapies
(71.4%), diagnostic testing (52.2%), Al methods (41.6%),
medical imaging (30.5%), and rehabilitation devices (16.5%).
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Table 5. Comparing the association between the normalized patent and publication counts for each innovation cluster along with the equations of the
associated lines of the best exponential fit.

Innovation cluster Patents Publications Association
Equationfor thelinewith g2 Equationfor thelinewith R?2 Is P value
the best exponential fit the best exponential fit

Al? methods 3.7E-34369-392X 0932 5 7E.1460169% 0909 0776  .001

Alternative medicine 7 3E-20e0025% 0.256 2 DE-49g0 059X 0.974 0.546 .02

Diagnostic testing 9.1E-47"054X 0.337 1.9E-220-027X 0.784 0.645 .006

Medical imaging 5 8E-50e” 058X 0.705 2 6E-16e°022X 0.964 0.767 .001

Pharmacological treatment 8.5E-1e0-003X 0.004 3.8E-21e0-028X 0.884 0.094 >.99

Rehabilitation devices 9.1E-138¢"159% 0.864 1.6E-43e0-053X 0.981 0.916 .001

Surgical devices 5 0F-46e0053X 0.263 3.8E-120e0-140% 0.982 0.649 .001

Al artificial intelligence.

Figure5. (A) The approximateinnovation life cycle progression of each innovation cluster, calculated by fitting asigmoid curveto patent and publication
data, with 95% Cl's estimated via nonparametric bootstrapping by repeatedly resampling the data and refitting the curve, which indicates their phasein
the diffusion of innovation curve, and (B) the theoretical diffusion of innovation curve displaying both the cumulative diffusion (S-shaped curve) and
rate of diffusion (bell-shaped curve) over time divided into the incubation (innovators and early adopters), growth (early majority and late majority),

and saturation (laggards) phases. Al: artificial intelligence.
A
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Surgical devices
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Al methods

Medical imaging 1
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Discussion

Principal Findings

To the best of the authors' knowledge, this study provides the
first rigorous quantification of innovation in stroke management.
By using a scientifically validated framework, along with a
novel application of an LLM, publicly available patent and
publication data were analyzed. Among the top stroke-related
innovation clusters identified, pharmacological treatment was
found to be the most dominant over the past 30 years, accounting
for nearly half (36,005/73,094, 49.3%) of all patents filed. Al
methods, followed by rehabilitation devices and medical
imaging, exhibited the highest rates of patent and publication
growth, suggesting that these emerging innovation clusters are
taking on increasingly important roles.

The diffusion of innovations theory by Rogers [18] describes
the adoption curve of technology as a sigmoid function. This
arises from the natural variation in the attitudes of individuals,
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ranging from early adopters to laggards, toward a new
innovation. Previous studies have shown that this curve can
also be applied to specific clustersthemselves [4,20], indicating
different phases of innovation: the incubation phase, where
seminal work occurs and which is reflected by the initial rise
in patenting and publication activity; the growth phase, where
industry and clinicians drive innovation and which is associated
with an exponential rise in patent and publication counts; and,
finally, the saturation phase, which occurs when manufacturers
refine the technology to maintain their competitive edge while
continuing to pursue patents, leading to aplateau in both patent
and publication activity. While these curves provide a model
for technology diffusion, we acknowledge that this is a
simplification. Real-world adoption in health care is complex
and is further influenced by external factors such as regulatory
approvals, reimbursement policies, and the development of
clinical guidelines, which were not modeled in this study.

Applying thistheory to this study, there was an exponential rise
in the number of patents and publicationsfor Al methods. This

JMed Internet Res 2026 | vol. 28 | 70754 | p. 9
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

study’s novel quantification of this trend demonstrates that the
patent growth ratefor Al methodsis approximately 2 to 7 times
greater than that for the other key growth clusters of
rehabilitation devices and medical imaging. This suggests that
these clusters are all in the growth phase but that Al is
accelerating at asubstantially faster rate. There was a significant
inflection point for Al methods observed in 2018, coinciding
with the regulatory approval of the first Al software developed
by Viz.ai [21]. Subsequently, the market has experienced a
proliferation of commercially available software platforms
designed to interpret and triageradiological data[22]. Therefore,
the concurrent risein medical imaging is to be expected given
that these Al platforms, and indeed the main applications of Al
instroke [23-25], relate to analysis and interpretation of medical
images. Similarly, while rehabilitation systems for stroke have
yet toreceive the samelevel of attention, there has been growing
interest in full automation, with Al methods actively being
researched [26].

The pattern for surgical devices presents aless clear trajectory:
patent counts are leveling off, whereas publications continue
to increase. This divergence could suggest that surgical device
innovation remains at a nascent, exploratory stage: scholarly
output continues to rise, whereas commercia patenting
momentum has yet to follow. Alternatively, this pattern may
relate to a limitation of the innovation discovery method used
in this study in that patents for generic technologies that do not
explicitly state stroke management may beincorrectly excluded.
Thus, many patents for mechanical thrombectomy, being
applicable to multiple diseases, may not be seen to parallel the
rise in stroke thrombectomy publications.

Pharmacol ogical treatments, alternative medicine, and diagnostic
testing all experienced peaksin patent activity during the 2000s
and have since plateaued, indicating that these sectors are now
in the saturation phase. This finding for pharmacological
treatmentsis particul arly notable and perhaps unexpected given
recent high-profile trials of novel drug classes. The rise in
pharmacological treatments can be traced back to 1995
following the groundbreaking National Institute of Neurological
Disorders and Stroke tissue-type plasminogen activator trial
[1]. However, despite extensive efforts, the devel opment of new
therapeutics has become more challenging [27], and thus, a
relative decrease in the number of patents and publications is
perhaps unsurprising. Notably, this decline coincided with a
decoupling between research output and patent activity (rs=0.09;
P=.99), suggesting that ongoing research in pharmacology
increasingly focuses on avenues less amenable to patenting.
Similarly, aternative medicine, despite seeing increased
enthusiasm, particularly in addressing poststroke depression
[28], is a well-established field whose roots predate orthodox
medicine [29]. Diagnostic testing is also mature, with many of
the key technologies, such as electrocardiogram and blood
pressure monitors, able to be traced back to the 19th century
[30,31]. As such, the observed trends appear in line with
expectations.

The varying patent coefficient of determination (R?) values
acrosstheinnovation clusters provideinsightsinto the reliability
of their respective innovation trajectories. For Al methods
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(R?=0.932), rehabilitation devices (R?=0.864), and medical
imaging (RP=0.705), the high values signify a consistent and
predictable exponential growth, reinforcing the conclusion that
these are emerging technologies in a strong growth phase. In
contrast, the lower values for patent trends in pharmacol ogical

treatments (R?=0.004) and alternative medicine (R?=0.256)
suggest that an exponential model islessdescriptive. Thislower
reliability is not alimitation of the data but rather an indicator
that thesefields have likely reached a saturation phasein which
innovation, as measured via patent filings, is no longer
accelerating at a consistent exponential rate.

The observed risein Al-driven platforms, many of which operate
on medical imaging data, has been linked to faster treatment
times in acute stroke care. For example, a single-center study
reported that theintroduction of the Viz.ai software, which uses
automated image interpretation to triage stroke cases, was
associ ated with a 30-minute reduction in median door-to-needle
time, aongside improvements in door-to-imaging and
door-to-puncture intervals [32]. Similarly, innovations in
rehabilitation devices, including robotic-assisted gait and
upper-limb training, have demonstrated clinically meaningful
improvements in motor function and activities of daily living
in randomized controlled trials[33]. Thisdemonstrated clinical
value arguably provides a powerful mechanism that drives the
investment, research, and patenting activity observed in this
study. Taken together, these exampl es suggest that the observed
growth in patents and publications within emerging innovation
clusters reflects not only conceptual progress but also
improvements in patient care and clinical workflows.

Comparison With Other Studies

There has been limited prior work evaluating innovation in
stroke, with those studies focusing only on specific areas and
generaly being qualitative [7-9]. Martinez-Gutierrez et a [7]
conducted a narrative review of developing technologiesin the
prehospital space in which they identified emergency medical
service detection and triage of stroke as important areas for
future advancements. The study also supported the potential of
Al agorithms in these domains, aligning with the findings of
our study. Recently, Ji eta [10] conducted a bibliometric
analysis using Web of Science specifically for perioperative
stroke over the past 20 years and found rapid growth in research
publications addressing antiplatel et and antithrombotic therapy,
cardiovascular surgery, and thrombectomy, among others. One
notabl e difference between this study’s results and those of our
study is that the former identified pharmacological treatments
and surgical devices as leading research areas. However, this
discrepancy may be due to their use of absolute rather than
normalized publication counts and their restriction to a narrow
type of stroke as opposed to all causes, asin this study.

Within the field of health care more generally, Tran et a [34]
performed a survey of health Al publications using Web of
Science between 1977 and 2018 and found stroke to be aleading
application area. The approach used in the af orementioned study
has also been applied to neurosurgery [16] and surgery [4] asa
whole. In both instances, and in keeping with thework presented
in this paper, trendsin patents and publications were consistent
with the diffusion of innovations theory.
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Strengths and Limitations

A key strength of this study liesin its use of a data-driven and
guantitative framework to evaluate innovation in stroke
management. This approach moves beyond traditional
qualitative analyses by incorporatingan LLM. Thiswascritical
for enabling the study’s scale, asthe manual filtering of 237,035
patents, of which a sample review found only 11.2% (56/500)
to be relevant, would have been prohibitively labor-intensive.
By enabling a detailed and extensive search across the breadth
of stroke research fields, this study comprehensively quantified
the current popularity and productiveness of innovation clusters
and, by plotting changesin these metrics over time, can estimate
where aong the trgjectory of innovation diffusion each cluster
currently lies. Our results identify emerging technologies and
may be useful metrics to inform policy and grant funding
strategies. Our results also build on previous work [4,16] that
underscores the value of using patent and publication datain
the assessment of innovation. Despite their value, patent data
have remained largely underused and underinvestigated [4].

Although this study used a novel approach to quantitatively
evaluate innovation in stroke management, it is not without
limitations. First, the methodology relied on patents as an
indicator of technological innovation, potentially overlooking
the output from individuals or organizations who lack the
resources to apply for patents or choose not to for ethical or
other reasons. Second, emerging or small-scale innovation
clusterswere unlikely to beidentified through the method used,
as they may be concealed within larger, more mature clusters.
Third, patentsfor generic technological innovationsthat did not
explicitly state their application to stroke were excluded from
theanalysis, even though they could still be applicableto stroke
management. Fourth, it is possible that some inventors may
deliberately delay academic publication until a patent has been
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granted, leading to an underestimation of recent innovations.
Fifth, bias could be introduced due to the imperfect filtering of
patents by the LLM, which was trained on a single-annotated
dataset. Such limited annotation may have introduced
misclassification errors, potentialy overrepresenting clusters
that use terminology closely aligned with the training labels
while underrepresenting those that rely on novel or nuanced
language. This may have affected both the sensitivity and
specificity of cluster assignment. Future work building on this
methodology should prioritize creating a ground-truth dataset
with multiple, independent annotators to validate labels and
further improve model generalizability. Sixth, the normalization
method based on the work by Hughes-Hallett et al [4] is
sensitive to the maximum value within the time series, which
may introduce instability in the normalized metrics if future
volumes differ substantially. Finally, the findings of this study
were not validated against external clinical data. Such a
validation would be avaluable next step to confirm whether the
identified trends in patenting activity correlate with tangible
improvements in stroke care and patient outcomes.

Conclusions

This is the first study to systematically use patent and
publication datato quantitatively evaluate innovation in stroke
care. Seven influential innovation clusters were identified over
the 30-year study period, and their respective growth
characteristics were found to be explainable by the diffusion of
innovations theory. Looking ahead, the results suggest that Al
methods, rehabilitation devices, and medical imaging are
undergoing exponential growth and are forecasted to have a
greater impact on stroke management. Furthermore, the
methodology used in thiswork, particularly the novel use of an
LLM, could be applied to assess more specific clusters and
assist in decision-making for future research and funding.

Acknowledgments

Theresearch team gratefully acknowledges the support and resources provided by the BioMedI A |aboratory and Imperial College
London. Generative artificial intelligence was not used in the creation of the manuscript text, figures, or tables. Thelargelanguage
model (Ll1ama) discussed in this paper was an object of study and atool for datafiltering as described in the Methods section; it
was not used to generate any part of this research paper.

Funding

This work was supported by the following grants and programs:. the UK Research and Innovation Centre for Doctoral Training
in Al for Healthcare [35] under grant EP/S023283/1, The Graham-Dixon Charitable Trust, the UK National Institute for Health
and Care Research Invention for Innovation Programme under grant 11-LA-0814-20007, he Imperial College Biomedical Research
Centre, and the Economic and Social Research Council London Interdisciplinary Social Science Doctoral Training Partnership
Collaborative Awards in Science and Engineering studentship.

Data Availability

The datasets generated or analyzed during this study are not publicly available due to the terms and conditions of the Open Patent
Services web service but are available from the corresponding author on reasonable request.

Authors Contributions

AM and PB were responsiblefor the conceptualization of the study. AM, GL-T, and PB devel oped the methodology. AM conducted
theformal analysisand data curation. AM wrotethe original draft of the manuscript. All authors contributed to the writing, review,
and editing of the final manuscript. PB and DR provided supervision.

https://www.jmir.org/2026/1/€70754 JMed Internet Res 2026 | vol. 28 | €70754 | p. 11

(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Marcus et al

Conflictsof Interest

PB isacofounder of GripAbleLtd, aspin-out company from Imperial College London. All other authors declare no other conflicts
of interest.

Multimedia Appendix 1

The 100 top-performing patent codes retrieved by the search “stroke OR cerebrovascular” between 1993 and 2023 alocated to
innovation clusters.
[DOCX File, 32 KB-Multimedia Appendix 1]

Multimedia Appendix 2

Year-on-year normalized patent-to-publication ratio for each innovation cluster.
[DOCX File, 92 KB-Multimedia Appendix 2]

References

1.  Nationa Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute
ischemic stroke. N Engl JMed. Dec 14, 1995;333(24):1581-1587. [doi: 10.1056/NEJM 199512143332401] [Medline:
7477192

2. Goya M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. HERMES collaborators. Endovascul ar
thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individua patient data from five randomised trials.
Lancet. Apr 23, 2016;387(10029):1723-1731. [doi: 10.1016/S0140-6736(16)00163-X] [Medline: 26898852]

3. West MA. The socia psychology of innovation in groups. In: West MA, Farr JL, editors. Innovation and Creativity at
Work: Psychological and Organizational Strategies. Hoboken, NJ. John Wiley & Sons; 1990:309-333.

4.  Hughes-Hallett A, Mayer EK, Marcus HJ, Cundy TP, Pratt PJ, Parston G, et a. Quantifying innovation in surgery. Ann
Surg. Aug 2014;260(2):205-211. [FREE Full text] [doi: 10.1097/SL A.0000000000000662] [Medline: 25350647]

5. DamTU, Rueda G, Martin H, Gerdsri P. Forecasting emerging technologies: use of bibliometrics and patent anaysis.
Technol Forecast Soc Change. Oct 2006;73(8):981-1012. [doi: 10.1016/j.techfore.2006.04.004]

6. Campbell B. How to judge the value of innovation. BMJ. Mar 07, 2012;344(mar07 1):e1457. [doi: 10.1136/bmj.e1457]
[Medline: 22399703]

7.  Martinez-Gutierrez JC, Chandra RV, Hirsch JA, Leslie-Mazwi T. Technological innovation for prehospital stroke triage:
ripefor disruption. JNeurointerv Surg. Nov 14, 2019;11(11):1085-1090. [doi: 10.1136/neurintsurg-2019-014902] [Medline:
31201289]

8.  VermaA, Towfighi A, Brown A, Abhat A, Casillas A. Moving towards eguity with digital health innovations for stroke
care. Stroke. Mar 2022;53(3):689-697. [FREE Full text] [doi: 10.1161/STROKEAHA.121.035307] [Medline: 35124973]

9.  Filler A. Thehistory, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI,
and DTI. Nat Preced. Jun 30, 2009;1:1-76. [doi: 10.1038/npre.2009.3267]

10. Ji S, shiY,Fan X, JiangT, Yang X, Tao T, et a. Global trends in perioperative stroke research from 2003 to 2022: aweb
of science-based bibliometric and visual analysis. Front Neurol. 2023;14:1185326. [FREE Full text] [doi:
10.3389/fneur.2023.1185326] [Medline: 37325224]

11. Chowdhery A, Narang S, Devlin J, BosmaM, MishraG, Roberts A, et al. PaLM: scaling language modeling with pathways.
arXiv. Preprint posted online April 5, 2022. [FREE Full text] [doi: 10.5555/3648699.3648939]

12.  TouvronH, Lavril T, Izacard G, Martinet X, Lachaux MA, Lacroix T, et al. LLaMA: open and efficient foundation language
models. arXiv. Preprint posted online February 27, 2023. [FREE Full text] [doi: 10.48550/arXiv.2302.13971]

13. vonEImE, Altman DG, Egger M, Pocock SJ, Ggtzsche PC, Vandenbroucke JP, et al. STROBE I nitiative. The Strengthening
the Reporting of Observational Studiesin Epidemiology (STROBE) statement: guidelines for reporting observational
studies. J Clin Epidemiol. Apr 2008;61(4):344-349. [doi: 10.1016/j.jclinepi.2007.11.008] [Medline; 18313558]

14. Coverage, codes and statistics. European Patent Office. URL: https.//www.epo.org/en/searching-for-patents/data/coverage
[accessed 2025-05-29]

15. HuEJ, ShenY, WallisB, Allen-Zhu Z, Li Y, Wang S, et a. LORA: low-rank adaptation of large language models. arXiv.
Preprint posted online June 17, 2021. [FREE Full text] [doi: 10.48550/arXiv.2106.09685]

16. International Patent Classification (IPC). World Intellectual Property Organization. URL: https.//www.wipo.int/en/web/
classification-ipc [accessed 2025-05-29]

17. Seabold S, Perktold J. Statsmodels: econometric and statistical modeling with Python. In: Proceedings of the 9th Python
in Science Conference. 2010. Presented at: SciPy '10; June 28-July 3, 2010; Austin, TX. URL: https.//proceedings.scipy.org/
articles’Majora-92bf1922-011 [doi: 10.25080/majora-92bf1922-011]

18. Rogers EM. Diffusion of Innovations. 4th edition. New York, NY. Simon and Schuster; 2010.

19. Campbell G. Advancesin statistical methodology for the evaluation of diagnostic and laboratory tests. Stat Med. Oct 15,
1994;13(5-7):499-508. [doi: 10.1002/sim.4780130513] [Medline: 8023031]

https://www.jmir.org/2026/1/€70754 JMed Internet Res 2026 | vol. 28 | €70754 | p. 12
(page number not for citation purposes)

RenderX


https://jmir.org/api/download?alt_name=jmir_v28i1e70754_app1.docx&filename=30b669f1e4f1a9ac6fa2c9509f604000.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e70754_app1.docx&filename=30b669f1e4f1a9ac6fa2c9509f604000.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e70754_app2.docx&filename=b717885e53b89c7b198f61e0dece5c63.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e70754_app2.docx&filename=b717885e53b89c7b198f61e0dece5c63.docx
http://dx.doi.org/10.1056/NEJM199512143332401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7477192&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(16)00163-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26898852&dopt=Abstract
http://hdl.handle.net/10044/1/22131
http://dx.doi.org/10.1097/SLA.0000000000000662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25350647&dopt=Abstract
http://dx.doi.org/10.1016/j.techfore.2006.04.004
http://dx.doi.org/10.1136/bmj.e1457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22399703&dopt=Abstract
http://dx.doi.org/10.1136/neurintsurg-2019-014902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31201289&dopt=Abstract
https://europepmc.org/abstract/MED/35124973
http://dx.doi.org/10.1161/STROKEAHA.121.035307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35124973&dopt=Abstract
http://dx.doi.org/10.1038/npre.2009.3267
https://europepmc.org/abstract/MED/37325224
http://dx.doi.org/10.3389/fneur.2023.1185326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37325224&dopt=Abstract
https://arxiv.org/abs/2204.02311
http://dx.doi.org/10.5555/3648699.3648939
https://arxiv.org/abs/2302.13971
http://dx.doi.org/10.48550/arXiv.2302.13971
http://dx.doi.org/10.1016/j.jclinepi.2007.11.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18313558&dopt=Abstract
https://www.epo.org/en/searching-for-patents/data/coverage
https://arxiv.org/abs/2106.09685
http://dx.doi.org/10.48550/arXiv.2106.09685
https://www.wipo.int/en/web/classification-ipc
https://www.wipo.int/en/web/classification-ipc
https://proceedings.scipy.org/articles/Majora-92bf1922-011
https://proceedings.scipy.org/articles/Majora-92bf1922-011
http://dx.doi.org/10.25080/majora-92bf1922-011
http://dx.doi.org/10.1002/sim.4780130513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8023031&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Marcus et al

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

Marcus HJ, Hughes-Hallett A, Kwasnicki RM, Darzi A, Yang GZ, Nandi D. Technological innovation in neurosurgery: a
guantitative study. J Neurosurg. Jul 2015;123(1):174-181. [FREE Full text] [doi: 10.3171/2014.12.INS141422] [Medline:
25699414]

Petrone JJ. FDA approves stroke-detecting Al software. Nat Biotechnol. Apr 05, 2018;36(4):290. [doi: 10.1038/nbt0418-290]
[Medline: 29621226]

Soun J, Chow DS, Nagamine M, Takhtawala RS, Filippi CG, Yu W, et a. Artificia intelligence and acute stroke imaging.
AINR Am JNeuroradiol. Jan 2021;42(1):2-11. [FREE Full text] [doi: 10.3174/ajnr.A6883] [Medline: 33243898]

Jiang F, Jang Y, Zhi H, Dong Y, Li H, Ma§, et a. Artificial intelligence in healthcare: past, present and future. Stroke
Vasc Neurol. Dec 21, 2017;2(4):230-243. [FREE Full text] [doi: 10.1136/svn-2017-000101] [Medline: 29507784]
Mouridsen K, Thurner P, Zaharchuk G. Artificial intelligence applicationsin stroke. Stroke. Aug 2020;51(8):308-331. [doi:
10.1161/strokeaha.119.027479]

Lee EJ, Kim YH, Kim N, Kang DW. Deep into the brain: artificial intelligence in stroke imaging. J Stroke. Sep
2017;19(3):277-285. [FREE Full text] [doi: 10.5853/j0s.2017.02054] [Medline: 29037014]

Rahman S, Sarker S, Haque AK, UttshaMM, Isam MF, Deb S. Al-driven stroke rehabilitation systems and assessment:
asystematic review. |EEE TransNeural Syst Rehabil Eng. 2023;31:192-207. [doi: 10.1109/TNSRE.2022.3219085] [Medline:
36327176]

Paul S, Candelario-Jalil E. Emerging neuroprotective strategiesfor the treatment of ischemic stroke: an overview of clinical
and preclinical studies. Exp Neurol. Jan 2021;335:113518. [FREE Full text] [doi: 10.1016/j.expneurol.2020.113518]
[Medline: 33144066]

Wijeratne T, Sales C, Wijeratne C. A narrative review on the non-pharmacologic interventions in post-stroke depression.
Psychol Res Behav Manag. Jul 07, 2022;15:1689-1706. [FREE Full text] [doi: 10.2147/PRBM.S310207] [Medline:
35832139

Steyer TE. Complementary and alternative medicine: a primer. Fam Pract Manag. Mar 2001;8(3):37-42. [FREE Full text]
[Medline: 11317848]

Burch GE, DePasquale NP. A History of Electrocardiography. New York, NY. Norman Publishing; 1990.

Booth J. A short history of blood pressure measurement. Proc R Soc Med. Nov 1977;70(11):793-799. [EREE Full text]
[doi: 10.1177/003591577707001112] [Medline: 341169]

Milfred F, Ami Roy A, Delmor C, Bansal A, Gifford K, MaK, et a. Abstract TP89: advancing stroke care efficiency:
impact of Al and communication tools on patient outcomes. Stroke. Feb 2025;56(Suppl_1):ATP89. [doi:
10.1161/str.56.suppl_1.tp89]

Mehrholz J, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database
Syst Rev. May 14, 2025;5(5):CD006185. [doi: 10.1002/14651858.CD006185.pub6] [Medline: 40365867]

Tran BX, Vu GT, HaGH, Vuong QH, Ho MT, Vuong TT, et a. Global evolution of research in artificial intelligencein
health and medicine: abibliometric study. JClin Med. Mar 14, 2019;8(3):360. [ FREE Full text] [doi: 10.3390/jcm8030360]
[Medline: 30875745]

UKRI Centrefor Doctoral Training in Al for Healthcare. Al4Health. URL: https://ai4health.io/ [accessed 2026-01-12]

Abbreviations

Al: artificial intelligence

IPC: International Patent Classification

LLM: largelanguage model

LoRA: low-rank adaptation

STROBE: Strengthening the Reporting of Observational Studiesin Epidemiology

Edited by A Coristine; submitted 01.Jan.2025; peer-reviewed by N Raju, S Svarajkumar, C Wang, R Yang; comments to author
01.Apr.2025; revised version received 23.Dec.2025; accepted 23.Dec.2025; published 20.Jan.2026

Please cite as:

Marcus A, Lockwood-Taylor G, Rueckert D, Bentley P

Quantifying Innovation in Sroke: Large Language Model Bibliometric Analysis
J Med Internet Res 2026;28:€70754

URL: https.//www.jmir.org/2026/1/e70754

doi: 10.2196/70754

PMID:

https://www.jmir.org/2026/1/€70754 JMed Internet Res 2026 | vol. 28 | €70754 | p. 13

RenderX

(page number not for citation purposes)


https://europepmc.org/abstract/MED/25699414
http://dx.doi.org/10.3171/2014.12.JNS141422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25699414&dopt=Abstract
http://dx.doi.org/10.1038/nbt0418-290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29621226&dopt=Abstract
http://www.ajnr.org/cgi/pmidlookup?view=long&pmid=33243898
http://dx.doi.org/10.3174/ajnr.A6883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33243898&dopt=Abstract
https://svn.bmj.com/lookup/pmidlookup?view=long&pmid=29507784
http://dx.doi.org/10.1136/svn-2017-000101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29507784&dopt=Abstract
http://dx.doi.org/10.1161/strokeaha.119.027479
https://europepmc.org/abstract/MED/29037014
http://dx.doi.org/10.5853/jos.2017.02054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29037014&dopt=Abstract
http://dx.doi.org/10.1109/TNSRE.2022.3219085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36327176&dopt=Abstract
https://europepmc.org/abstract/MED/33144066
http://dx.doi.org/10.1016/j.expneurol.2020.113518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33144066&dopt=Abstract
https://www.tandfonline.com/doi/10.2147/PRBM.S310207?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.2147/PRBM.S310207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35832139&dopt=Abstract
https://www.aafp.org/link_out?pmid=11317848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11317848&dopt=Abstract
https://europepmc.org/abstract/MED/341169
http://dx.doi.org/10.1177/003591577707001112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=341169&dopt=Abstract
http://dx.doi.org/10.1161/str.56.suppl_1.tp89
http://dx.doi.org/10.1002/14651858.CD006185.pub6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40365867&dopt=Abstract
https://www.mdpi.com/resolver?pii=jcm8030360
http://dx.doi.org/10.3390/jcm8030360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30875745&dopt=Abstract
https://ai4health.io/
https://www.jmir.org/2026/1/e70754
http://dx.doi.org/10.2196/70754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Marcus et al

©Adam Marcus, Georgina Lockwood-Taylor, Daniel Rueckert, Paul Bentley. Originally published in the Journal of Medical
Internet Research (https://www.jmir.org), 20.Jan.2026. Thisis an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN
1438-8871), isproperly cited. The complete bibliographic information, alink to the original publication on https://www.jmir.org/,
aswell asthis copyright and license information must be included.

https://www.jmir.org/2026/1/€70754 JMed Internet Res 2026 | vol. 28 | €70754 | p. 14
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

