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Abstract

Background: Thrombolysis and mechanical thrombectomy represent the most successful stroke innovations over the last 30
years. Quantifying innovation in stroke is essential for identifying productive research lines and prioritizing funding, but health
care lacks validated methods for measuring innovation.

Objective: This study aimed to systematically evaluate the relationship between stroke-related patents and publications,
demonstrate the feasibility of using large language models (LLMs) in this process, and identify the most rapidly advancing
innovations in stroke care by mapping them to a theoretical innovation life cycle.

Methods: The Open Patent Services (European Patent Office) and PubMed databases were searched between 1993 and 2023
for “stroke OR cerebrovascular.” In this bibliometric patent-publication analysis, a 13 billion–parameter Llama LLM was trained
to identify patents related to stroke disease, as opposed to other references to the word “stroke,” on a manually labeled subset of
5000 patents and assessed using 5-fold cross-validation. The LLM filtered irrelevant results, and the resulting patent codes were
grouped into innovation clusters. For each cluster, annual patent and publication counts were normalized to adjust for global
trends. Cluster-specific growth curves were plotted to analyze the rates and characteristics of growth. The innovation life cycle
stage for each innovation cluster was estimated by fitting a sigmoid curve to the patent and publication data consistent with the
diffusion of innovations theory by Rogers.

Results: The cross-validated accuracy of the LLM was 99.2%, with a sensitivity of 96.5% and a specificity of 99.6%. An initial
bibliometric search retrieved 237,035 patents and 486,664 research publications. A manual review of a random sample of patents
before filtering revealed that only 11.2% (56/500) were relevant to stroke. After LLM filtering, of the 237,035 patents, 28,225
(11.9%) stroke-related patents remained. These were grouped into 7 innovation clusters: pharmacological treatment, alternative
medicine, rehabilitation devices, medical imaging, diagnostic testing, surgical devices, and artificial intelligence (AI) methods.
Patent and publication counts were strongly correlated across clusters (Spearman rs=0.65-0.92; P<.006) except for pharmacological
treatment (rs=0.09) and alternative medicine (rs=0.55). Pharmacological treatments were the top-performing cluster over the last
30 years, accounting for 49.3% (36,005/73,094) of all patents, but patent activity in this area has plateaued since the late 2000s.
AI methods, rehabilitation devices, and medical imaging exhibited exponential rates of patent growth, with annual normalized
increases of 39.2%, 15.9%, and 5.8% compared to 16.9%, 5.3%, and 2.2% for publications, respectively.

Conclusions: Applying an LLM to publicly available patent and publication data provides a scalable way to quantify innovation
in stroke. Pharmacological treatment appears to have entered a saturation phase, whereas AI methods, rehabilitation devices, and
medical imaging remain in rapid growth, highlighting areas of greatest traction for future research and investment.
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Introduction

Turning points in stroke treatment occurred in 1995 and 2015
with the introduction of thrombolysis and mechanical
thrombectomy, respectively [1,2]. Such shifts are rare and, in
a more formal context, can be considered innovations: a term
defined as a process that ushers in new technologies or
techniques that induce a substantial change in practice [3,4].
Quantifying innovation in stroke care is vital as it helps discern
which lines of research are productive, such as revascularization
therapies, perfusion imaging, and decompressive surgery, as
opposed to those that have been less successful, such as
neuroprotective and neurorestorative therapies. Measures of
innovation output aid in research strategy planning, prioritizing,
and assessing the effectiveness of research funding. However,
while the study of innovation is well established in other fields
[5], health care has relatively few validated methods for
quantifying innovation outputs, which can limit progress [6].

Prior evaluations of innovation in stroke have been limited,
consisting largely of qualitative reviews [7-9] or conventional
bibliometric analyses that track academic trends [10]. While
valuable for tracking academic discourse and research activity,
such bibliometric approaches have inherent limitations for
measuring tangible innovation. Metrics based on citations and
publications tend to reflect academic impact over practical
implementation, and they do not readily distinguish incremental
advances from transformative breakthroughs. Consequently,
these methods primarily measure research inputs and academic
outputs, not the development of novel, practical solutions.

An alternative approach, originally applied to surgery [4],
leverages original patents as a benchmark of technological
innovation by comparing the cumulative quantity of patents for
a specific innovation with that of related peer-reviewed
publications. This method has the advantage of drawing on a
comprehensive repository of inventions that have been
independently evaluated for novelty and utility; these are
generally sufficiently mature and practical to have attracted the
funding resources required for patent filing. However, patent
analysis relies heavily on the precise interpretation and
determination of relevant patents, a task complicated by the
broad and often ambiguous language of patent documents,
making it labor-intensive and time-consuming. The difficulty
of this task is particularly magnified in the context of
stroke-related patents given that the term “stroke” could denote
a disease as well as multiple engineering concepts and
mechanical action of engines, clocks, and other mechanisms.
Conventional search engines such as Google are liable to
confound stroke terms as they lack the specialized filtering and
context awareness needed for precise medical searches.

In this regard, recent advancements in artificial intelligence
(AI), specifically large language models (LLMs), hold
tremendous potential. They have exhibited remarkable

proficiency in textual tasks, making them invaluable in this
context [11]. Essentially, LLMs are statistical models trained
on vast datasets enabling them to learn intricate relationships
between words and phrases. While training LLMs from scratch
might pose considerable difficulties and financial burden, the
recent availability of open-source trained LLMs to the public
has mitigated these challenges [12].

Therefore, the aims of this study were 3-fold: first, to evaluate
systematically the relationship between stroke-related patents
and publications over the last 3 decades; second, to demonstrate
the feasibility of using LLMs to assist in this process; and,
finally, to identify the most rapidly advancing innovations in
stroke care.

Methods

Although this was not a clinical study, the STROBE
(Strengthening the Reporting of Observational Studies in
Epidemiology) guidelines [13] were adhered to where
appropriate. The methodology was based on the work by
Hughes-Hallett et al [4], with adaptions for stroke-related
innovation.

Data Collection
The Open Patent Services web service, provided by the
European Patent Office [14], was used to obtain patent
application data from more than 80 different countries. The
period from 1993 to 2023 was chosen to capture the modern
era of stroke care, beginning shortly before the pivotal 1995
National Institute of Neurological Disorders and Stroke trial
that established thrombolysis as a standard treatment [1]. Patents
filed between 1993 and 2023 were downloaded if either their
title or abstract matched the following Boolean search: “stroke
OR cerebrovascular.” A PubMed (National Library of Medicine)
search was also conducted using the same strategy to extract
publication data for the same period.

Data Filtering
The collected patents were randomly sampled, and a subset of
5000 was manually annotated by a single author (AM), who is
a medical professional, as either related or unrelated to stroke.
A second, random unfiltered sample of 500 patents and 500
publications matching the search terms “stroke” or
“cerebrovascular” was also manually labeled by the same
annotator (AM). Annotations from the 5000-patent subset were
used to provide ground truth for model fine-tuning, whereas the
second sample was used to verify the accuracy of the search
strategy, especially for PubMed results. Patents were considered
stroke related if their primary content was directly relevant to
stroke management or pathophysiology. Publications were
considered stroke related if they contributed to the understanding
of stroke, including basic science suitable for stroke journals
and clinical studies with stroke as an end point.
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A 13 billion–parameter Llama model (Meta AI) [12], a
state-of-the-art open-source LLM trained on web data, was then
fine-tuned using low-rank adaptation (LoRA) [15] to classify
stroke-related patents. Fine-tuning was performed using PyTorch
(version 1.13; Meta AI) on a machine equipped with a 2.80-GHz
AMD EPYC 7543P central processing unit and an NVIDIA
RTX A4500 20-GB graphics processing unit. The
hyperparameters, which are listed in Table 1 and were based
on standard values from the original LoRA paper [15], were
chosen to ensure stable training while preventing overfitting.

In particular, the LoRA rank was set to 8 to keep model
adaptation minimal and efficient. The prompt template is
provided in Figure 1. To assess prompt sensitivity, alternative
phrasings were trialed on a development subset during
fine-tuning. The model’s performance was evaluated using
5-fold cross-validated binary classification metrics and
compared to that of the base model before the final model was
used to analyze the unlabeled patents and filter out those
unrelated to stroke. The model was not used for classifying
publications.

Table 1. The hyperparameters used for fine-tuning the Llama model using low-rank adaptation (LoRA).

ValueParameter

128Batch size

10Number of epochs

0.0003Learning rate

AdamOptimizer

1Maximum gradient norm

8LoRA rank

16LoRA alpha

0.05LoRA dropout

Query and value projectionLoRA target modules

Figure 1. The prompt template used to fine-tune the Llama model to classify whether a patent was related to stroke.

Data Normalization
Across all fields, the number of patents and publications has
risen exponentially. To adjust for this increase, both counts were
normalized using the formula outlined by Hughes-Hallett et al
[4]:

In this formula, IIi denotes the innovation index, defined as the
number of patents or publications within a particular field; Ci

is the innovation constant; and ti is the total number of patents

granted or publications indexed on PubMed for a given year i.
For example, if a field had 50 patents in a year when 100,000
patents were granted and the maximum number of patents in
any year during the study period was 200,000, then Ci =
100,000/200,000 = 0.5, and the normalized innovation index
would be 50/0.5 = 100.

Identifying Innovation Clusters
The process of identifying innovation clusters involved a 2-stage
method to ensure comprehensive coverage. Initially, the top
100 most frequent International Patent Classification (IPC) [16]
codes from the filtered, stroke-related patent dataset were
extracted. These codes, assigned by patent examiners, offer a
standardized way of categorizing the technological domains of
inventions. Focusing on the top 100 codes provided a
quantitative starting point, representing the most concentrated
areas of patent activity while avoiding the sparsity and noise of
the long tail of less frequent codes.
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These top 100 codes were then manually grouped into
preliminary innovation clusters by 2 authors (AM and GL-T).
This grouping was based on the descriptive content of the IPC
codes and their relevance to distinct areas of stroke care.
Interrater reliability was assessed using the Cohen κ, and any
disagreements regarding this grouping were resolved by a third
author (PB).

To capture relevant patents and publications that may not have
fallen into these top 100 codes, a second stage was implemented.
Expanded, cluster-specific Boolean search strategies were
developed as listed in Table 2 and performed on both the patent
database and PubMed. The keywords for these searches were

also determined by 2 authors (AM and GL-T), with a third
author (PB) resolving any disagreements. For clusters such as
alternative medicine, broader search terms such as “food” and
“herbal” were intentionally used. This was necessary to capture
innovations described in nonclinical or lay terms, which is
common in patent applications for complementary therapies
that may lack standardized medical terminology. The final
dataset for each cluster comprised all documents identified
through either the initial IPC code grouping or the subsequent
expanded Boolean search. Finally, this entire 2-step
methodology was repeated for patents and publications from
the last decade (2013-2023) to allow for the determination of
more recent innovations.

Table 2. PubMed and European Patent Office database search strategies.

Search strategyInnovation cluster

(AI OR “artificial intelligence” OR “deep learning” OR “machine learning” OR “neural network”)
AND (stroke OR cerebrovascular)

AIa methods

(food OR tea OR coffee OR beverage OR herbal OR acupuncture OR aromatherapy OR reflexology
OR “holistic therapy”) AND (stroke OR cerebrovascular)

Alternative medicine

(“diagnostic testing” OR “diagnostic tools” OR “clinical tests” OR “screening tests” OR “blood
tests” OR “laboratory tests” OR “genetic testing”) AND (stroke OR cerebrovascular)

Diagnostic testing

(imaging OR angiography OR angiogram OR ultrasound OR CT OR MRI OR PET OR “computed
tomography” OR “magnetic resonance” OR “positron emission tomography”) AND (stroke OR
cerebrovascular)

Medical imaging

(thrombolysis OR aspirin OR clopidogrel OR warfarin OR DOACs OR alteplase OR tPA OR “tissue
plasminogen activator” OR “thrombolytic therapy” OR “pharmacological treatment” OR “pharma-
ceutical composition” OR “drug therapy” OR “secondary prevention” OR “direct oral anticoagulants”)
AND (stroke OR cerebrovascular)

Pharmacological treatment

(rehabilitation OR neurorehabilitation OR exoskeleton OR “training device” OR “brain-computer
interface”) AND (stroke OR cerebrovascular)

Rehabilitation devices

(thrombectomy OR embolectomy OR “clot removal” OR “clot retrieval” OR “catheter device” OR
“surgical device” OR “endovascular treatment” OR “endovascular therapy”) AND (stroke OR
cerebrovascular)

Surgical devices

aAI: artificial intelligence.

Statistical Analysis
All statistical analyses were performed using Python (version
3.11.3; Python Software Foundation) and the statsmodels [17]
package. Permutation testing with Bonferroni correction was
used to calculate P values adjusted for multiple tests. The
relationship between patent and publication data was visualized
using scatterplots to assess the nature of the association. On the
basis of this visual inspection, an appropriate correlation
coefficient was selected: Pearson (r) for linear relationships and
Spearman rank (rs), a nonparametric method, for monotonic but
nonlinear relationships. To model the technology diffusion life
cycle, innovation life cycle progression was derived by fitting
sigmoid curves to the patent and publication data, a method
consistent with the diffusion of innovations theory by Rogers
[18]. To quantify the uncertainty in these estimates, 95% CIs
were calculated using nonparametric bootstrapping, which
involved repeatedly resampling the data and refitting the curve.

Results

Data and Filtering Performance
The initial search retrieved 237,035 patents and 486,664
publications. In a random, unfiltered sample of 500 patents and
500 publications matching the search terms “stroke” or
“cerebrovascular,” 11.2% (56/500) of patents and 74.2%
(371/500) of publications were stroke related. The remaining
patents typically referred to “stroke” in nonclinical contexts,
including mechanical travel (eg, stroke length in pistons), engine
cycles (eg, 2-stroke engines), lightning discharges, and line
rendering in handwriting or graphics. These examples formed
the negative class for model fine-tuning. An LLM was then
fine-tuned to classify whether a patent was stroke related,
achieving a cross-validated accuracy of 99.2% with a sensitivity
of 96.5% and specificity of 99.6% and significantly
outperforming the base model across all metrics listed in Table
3 (all P<.001). The receiver operating characteristic curve is
shown in Figure 2 [19]. Prompt sensitivity was also evaluated
during model fine-tuning using alternative phrasings; this had
a negligible impact on classification outcomes. After filtering
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using the model, of the 237,035 patents, 28,225 (11.9%)
stroke-related patents remained. Figure 3 illustrates the annual
increase in these patents filed by geographic region, with the
largest proportion originating from China. The original and

normalized counts of patents and publications related to stroke
are shown in Figure 4. Normalized patent counts reached a peak
in 2010, whereas normalized publication activity continues to
grow.

Table 3. Five-fold cross-validated performance of the fine-tuned Llama model compared to the base model for classifying whether a patent was stroke
related. P values are from 2-tailed paired t tests across the 5 folds.

P valueBase estimate (95% CI)Fine-tuned estimate (95% CI)Measure

<.0010.654 (0.605-0.703)0.990 (0.988-0.992)AUROCa

<.00166.8 (66.3-67.3)99.2 (99.0-99.5)Accuracy (%)

<.00154.5 (48.3-60.7)96.5 (94.8-98.2)Sensitivity (%)

<.00168.2 (67.6-68.7)99.6 (99.4-99.7)Specificity (%)

<.00116.5 (13.9-19.1)96.1 (94.8-97.4)PPVb (%)

<.00192.9 (92.2-93.7)99.6 (99.4-99.8)NPVc (%)

<.00125.2 (21.6-28.9)96.3 (95.1-97.5)F1-score (%)

aAUROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.

Figure 2. Receiver operating characteristic curve illustrating the cross-validated performance of the fine-tuned Llama model compared to the base
Llama model in classifying stroke-related patents. The shaded area represents the 95% confidence region determined via the fixed-width band technique
[19]. AUC: area under the curve.
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Figure 3. Stroke-related patents filed between 1993 and 2023 categorized by geographic coverage as defined by patent filing jurisdiction and route
(China: China National Intellectual Property Administration; United States: US Patent and Trademark Office; Japan: Japan Patent Office; South Korea:
Korean Intellectual Property Office; Canada: Canadian Intellectual Property Office; Europe: European Patent Office; worldwide: Patent Cooperation
Treaty or World Intellectual Property Organization; other regions: other national or regional offices).
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Figure 4. Overview of the (A) counts of patents and publications related to stroke over time and (B) year-on-year normalized patent and publication
counts for each innovation cluster. Normalized counts were calculated by dividing the annual number of stroke-related patents or publications by the
total number of patents or publications in that year, scaled to the maximum annual total across the study period. In both cases, the dashed lines depict

exponential fits with the associated coefficients of determination (R2) given per plot. AI: artificial intelligence.

Leading Innovation Clusters
There were 7 top stroke-related innovation clusters identified
over the last 30 years; interrater reliability between the 2 authors
was high (Cohen κ=0.871). To address potential overcapture
in the alternative medicine cluster due to broad search terms, a

sensitivity analysis of 100 randomly sampled patents was
performed, verifying that 97% were stroke related. The
performance of these clusters, as measured using patents, is
summarized in Table 4, with the allocation of patent codes
provided in Multimedia Appendix 1. Pharmacological treatment
was the largest cluster, accounting for 49.3% (36,005/73,094)
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of the patents filed over the study period. To ensure the stability
of these findings, a sensitivity analysis was performed
confirming that cluster rankings held without normalization
(data not shown). Within the last decade, only AI methods
increased in rank, with the relative ordering of the other

top-performing clusters remaining constant. Although not
reflected in a change in order, the proportion accounted for by
pharmacological treatments fell to 33.7% (9391/27,870),
whereas all the other clusters increased their shares.

Table 4. Comparing the top-performing stroke-related innovation clusters by cumulative normalized patent counts over the past 30 years and the last
decade. Artificial intelligence (AI) methods were the only cluster to increase in rank.

Normalized patent count, n (%)Innovation clusterRank

1993-2023 (n=73,094)

36,005 (49.3)Pharmacological treatment1

20,291 (27.8)Alternative medicine2

7777 (10.6)Rehabilitation devices3

5331 (7.3)Medical imaging4

1448 (2.0)Diagnostic testing5

1397 (1.9)Surgical devices6

845 (1.2)AI methods7

2013-2023 (n=27,870)

9391 (33.7)Pharmacological treatment1

8005 (28.7)Alternative medicine2

5569 (20.0)Rehabilitation devices3

2668 (9.6)Medical imaging4

791 (2.8)AI methods5

834 (3.0)Diagnostic testing6

612 (2.2)Surgical devices7

Statistical Analysis
Figure 4 and Table 5 show the relationship between normalized
patent and publication counts over time for the top-performing
innovation clusters. There were strong associations (rs>0.6;
P<.006) between patent and publication rates for all clusters
except pharmacological treatment (rs=0.094; P=.99) and
alternative medicine (rs=0.546; P=.01). These 2 clusters showed
normalized patents peaking in the late 2000s, with a continued
shallow rise in publications. This trend is further illustrated by
the normalized patent-to-publication ratio over time for each
innovation cluster, as detailed in Multimedia Appendix 2. Plots
of the data on AI methods show a rapid rise similar to that of
other emerging clusters. To quantify this concurrent growth,
the temporal correlation between the AI cluster and other leading
clusters was assessed. AI patent activity was strongly correlated
with patent activity in rehabilitation devices (rs=0.767; P=.004)
and medical imaging (rs=0.662; P=.004). Similarly, AI
publication rates correlated strongly with publication rates in
rehabilitation devices (rs=0.963; P=.004) and medical imaging

(rs=0.962; P=.004). These clusters all exhibited a strong
exponential fit for both patent and publication data supported

by coefficient of determination (R2) values exceeding 0.7, as
shown in Table 5. The rates of exponential growth for AI
methods were the highest (39.2% per year for patents; 16.9%
per year for publications), followed by rehabilitation devices
(15.9% per year for patents; 5.3% per year for publications) and
medical imaging (5.8% per year for patents; 2.2% per year for
publications). The diffusion dynamics for each innovation
cluster, approximated by fitting sigmoid curves to the patent
and publication data, are shown in Figure 5 [18] and
contextualized within the phases of the diffusion of innovations
theory by Rogers [18], highlighting their positions in the
innovation life cycle. The estimated progression through the
innovation life cycle based on patent data was highest for
pharmacological treatment (97.5%), followed by surgical
devices (82.9%), nutritional and complementary therapies
(71.4%), diagnostic testing (52.2%), AI methods (41.6%),
medical imaging (30.5%), and rehabilitation devices (16.5%).
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Table 5. Comparing the association between the normalized patent and publication counts for each innovation cluster along with the equations of the
associated lines of the best exponential fit.

AssociationPublicationsPatentsInnovation cluster

P valuersR 2Equation for the line with
the best exponential fit

R 2Equation for the line with
the best exponential fit

.0010.7760.9092.7E-146e0.169x0.9323.7E-343e0.392xAIa methods

.020.5460.9742.2E-49e0.059x0.2567.3E-20e0.025xAlternative medicine

.0060.6450.7841.9E-22e0.027x0.3379.1E-47e0.054xDiagnostic testing

.0010.7670.9642.6E-16e0.022x0.7055.8E-50e0.058xMedical imaging

>.990.0940.8843.8E-21e0.028x0.0048.5E-1e0.003xPharmacological treatment

.0010.9160.9811.6E-43e0.053x0.8649.1E-138e0.159xRehabilitation devices

.0010.6490.9823.8E-120e0.140x0.2635.2E-46e0.053xSurgical devices

aAI: artificial intelligence.

Figure 5. (A) The approximate innovation life cycle progression of each innovation cluster, calculated by fitting a sigmoid curve to patent and publication
data, with 95% CIs estimated via nonparametric bootstrapping by repeatedly resampling the data and refitting the curve, which indicates their phase in
the diffusion of innovation curve, and (B) the theoretical diffusion of innovation curve displaying both the cumulative diffusion (S-shaped curve) and
rate of diffusion (bell-shaped curve) over time divided into the incubation (innovators and early adopters), growth (early majority and late majority),
and saturation (laggards) phases. AI: artificial intelligence.

Discussion

Principal Findings
To the best of the authors’ knowledge, this study provides the
first rigorous quantification of innovation in stroke management.
By using a scientifically validated framework, along with a
novel application of an LLM, publicly available patent and
publication data were analyzed. Among the top stroke-related
innovation clusters identified, pharmacological treatment was
found to be the most dominant over the past 30 years, accounting
for nearly half (36,005/73,094, 49.3%) of all patents filed. AI
methods, followed by rehabilitation devices and medical
imaging, exhibited the highest rates of patent and publication
growth, suggesting that these emerging innovation clusters are
taking on increasingly important roles.

The diffusion of innovations theory by Rogers [18] describes
the adoption curve of technology as a sigmoid function. This
arises from the natural variation in the attitudes of individuals,

ranging from early adopters to laggards, toward a new
innovation. Previous studies have shown that this curve can
also be applied to specific clusters themselves [4,20], indicating
different phases of innovation: the incubation phase, where
seminal work occurs and which is reflected by the initial rise
in patenting and publication activity; the growth phase, where
industry and clinicians drive innovation and which is associated
with an exponential rise in patent and publication counts; and,
finally, the saturation phase, which occurs when manufacturers
refine the technology to maintain their competitive edge while
continuing to pursue patents, leading to a plateau in both patent
and publication activity. While these curves provide a model
for technology diffusion, we acknowledge that this is a
simplification. Real-world adoption in health care is complex
and is further influenced by external factors such as regulatory
approvals, reimbursement policies, and the development of
clinical guidelines, which were not modeled in this study.

Applying this theory to this study, there was an exponential rise
in the number of patents and publications for AI methods. This
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study’s novel quantification of this trend demonstrates that the
patent growth rate for AI methods is approximately 2 to 7 times
greater than that for the other key growth clusters of
rehabilitation devices and medical imaging. This suggests that
these clusters are all in the growth phase but that AI is
accelerating at a substantially faster rate. There was a significant
inflection point for AI methods observed in 2018, coinciding
with the regulatory approval of the first AI software developed
by Viz.ai [21]. Subsequently, the market has experienced a
proliferation of commercially available software platforms
designed to interpret and triage radiological data [22]. Therefore,
the concurrent rise in medical imaging is to be expected given
that these AI platforms, and indeed the main applications of AI
in stroke [23-25], relate to analysis and interpretation of medical
images. Similarly, while rehabilitation systems for stroke have
yet to receive the same level of attention, there has been growing
interest in full automation, with AI methods actively being
researched [26].

The pattern for surgical devices presents a less clear trajectory:
patent counts are leveling off, whereas publications continue
to increase. This divergence could suggest that surgical device
innovation remains at a nascent, exploratory stage: scholarly
output continues to rise, whereas commercial patenting
momentum has yet to follow. Alternatively, this pattern may
relate to a limitation of the innovation discovery method used
in this study in that patents for generic technologies that do not
explicitly state stroke management may be incorrectly excluded.
Thus, many patents for mechanical thrombectomy, being
applicable to multiple diseases, may not be seen to parallel the
rise in stroke thrombectomy publications.

Pharmacological treatments, alternative medicine, and diagnostic
testing all experienced peaks in patent activity during the 2000s
and have since plateaued, indicating that these sectors are now
in the saturation phase. This finding for pharmacological
treatments is particularly notable and perhaps unexpected given
recent high-profile trials of novel drug classes. The rise in
pharmacological treatments can be traced back to 1995
following the groundbreaking National Institute of Neurological
Disorders and Stroke tissue-type plasminogen activator trial
[1]. However, despite extensive efforts, the development of new
therapeutics has become more challenging [27], and thus, a
relative decrease in the number of patents and publications is
perhaps unsurprising. Notably, this decline coincided with a
decoupling between research output and patent activity (rs=0.09;
P=.99), suggesting that ongoing research in pharmacology
increasingly focuses on avenues less amenable to patenting.
Similarly, alternative medicine, despite seeing increased
enthusiasm, particularly in addressing poststroke depression
[28], is a well-established field whose roots predate orthodox
medicine [29]. Diagnostic testing is also mature, with many of
the key technologies, such as electrocardiogram and blood
pressure monitors, able to be traced back to the 19th century
[30,31]. As such, the observed trends appear in line with
expectations.

The varying patent coefficient of determination (R2) values
across the innovation clusters provide insights into the reliability
of their respective innovation trajectories. For AI methods

(R2=0.932), rehabilitation devices (R2=0.864), and medical

imaging (R2=0.705), the high values signify a consistent and
predictable exponential growth, reinforcing the conclusion that
these are emerging technologies in a strong growth phase. In
contrast, the lower values for patent trends in pharmacological

treatments (R2=0.004) and alternative medicine (R2=0.256)
suggest that an exponential model is less descriptive. This lower
reliability is not a limitation of the data but rather an indicator
that these fields have likely reached a saturation phase in which
innovation, as measured via patent filings, is no longer
accelerating at a consistent exponential rate.

The observed rise in AI-driven platforms, many of which operate
on medical imaging data, has been linked to faster treatment
times in acute stroke care. For example, a single-center study
reported that the introduction of the Viz.ai software, which uses
automated image interpretation to triage stroke cases, was
associated with a 30-minute reduction in median door-to-needle
time, alongside improvements in door-to-imaging and
door-to-puncture intervals [32]. Similarly, innovations in
rehabilitation devices, including robotic-assisted gait and
upper-limb training, have demonstrated clinically meaningful
improvements in motor function and activities of daily living
in randomized controlled trials [33]. This demonstrated clinical
value arguably provides a powerful mechanism that drives the
investment, research, and patenting activity observed in this
study. Taken together, these examples suggest that the observed
growth in patents and publications within emerging innovation
clusters reflects not only conceptual progress but also
improvements in patient care and clinical workflows.

Comparison With Other Studies
There has been limited prior work evaluating innovation in
stroke, with those studies focusing only on specific areas and
generally being qualitative [7-9]. Martinez-Gutierrez et al [7]
conducted a narrative review of developing technologies in the
prehospital space in which they identified emergency medical
service detection and triage of stroke as important areas for
future advancements. The study also supported the potential of
AI algorithms in these domains, aligning with the findings of
our study. Recently, Ji et al [10] conducted a bibliometric
analysis using Web of Science specifically for perioperative
stroke over the past 20 years and found rapid growth in research
publications addressing antiplatelet and antithrombotic therapy,
cardiovascular surgery, and thrombectomy, among others. One
notable difference between this study’s results and those of our
study is that the former identified pharmacological treatments
and surgical devices as leading research areas. However, this
discrepancy may be due to their use of absolute rather than
normalized publication counts and their restriction to a narrow
type of stroke as opposed to all causes, as in this study.

Within the field of health care more generally, Tran et al [34]
performed a survey of health AI publications using Web of
Science between 1977 and 2018 and found stroke to be a leading
application area. The approach used in the aforementioned study
has also been applied to neurosurgery [16] and surgery [4] as a
whole. In both instances, and in keeping with the work presented
in this paper, trends in patents and publications were consistent
with the diffusion of innovations theory.
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Strengths and Limitations
A key strength of this study lies in its use of a data-driven and
quantitative framework to evaluate innovation in stroke
management. This approach moves beyond traditional
qualitative analyses by incorporating an LLM. This was critical
for enabling the study’s scale, as the manual filtering of 237,035
patents, of which a sample review found only 11.2% (56/500)
to be relevant, would have been prohibitively labor-intensive.
By enabling a detailed and extensive search across the breadth
of stroke research fields, this study comprehensively quantified
the current popularity and productiveness of innovation clusters
and, by plotting changes in these metrics over time, can estimate
where along the trajectory of innovation diffusion each cluster
currently lies. Our results identify emerging technologies and
may be useful metrics to inform policy and grant funding
strategies. Our results also build on previous work [4,16] that
underscores the value of using patent and publication data in
the assessment of innovation. Despite their value, patent data
have remained largely underused and underinvestigated [4].

Although this study used a novel approach to quantitatively
evaluate innovation in stroke management, it is not without
limitations. First, the methodology relied on patents as an
indicator of technological innovation, potentially overlooking
the output from individuals or organizations who lack the
resources to apply for patents or choose not to for ethical or
other reasons. Second, emerging or small-scale innovation
clusters were unlikely to be identified through the method used,
as they may be concealed within larger, more mature clusters.
Third, patents for generic technological innovations that did not
explicitly state their application to stroke were excluded from
the analysis, even though they could still be applicable to stroke
management. Fourth, it is possible that some inventors may
deliberately delay academic publication until a patent has been

granted, leading to an underestimation of recent innovations.
Fifth, bias could be introduced due to the imperfect filtering of
patents by the LLM, which was trained on a single-annotated
dataset. Such limited annotation may have introduced
misclassification errors, potentially overrepresenting clusters
that use terminology closely aligned with the training labels
while underrepresenting those that rely on novel or nuanced
language. This may have affected both the sensitivity and
specificity of cluster assignment. Future work building on this
methodology should prioritize creating a ground-truth dataset
with multiple, independent annotators to validate labels and
further improve model generalizability. Sixth, the normalization
method based on the work by Hughes-Hallett et al [4] is
sensitive to the maximum value within the time series, which
may introduce instability in the normalized metrics if future
volumes differ substantially. Finally, the findings of this study
were not validated against external clinical data. Such a
validation would be a valuable next step to confirm whether the
identified trends in patenting activity correlate with tangible
improvements in stroke care and patient outcomes.

Conclusions
This is the first study to systematically use patent and
publication data to quantitatively evaluate innovation in stroke
care. Seven influential innovation clusters were identified over
the 30-year study period, and their respective growth
characteristics were found to be explainable by the diffusion of
innovations theory. Looking ahead, the results suggest that AI
methods, rehabilitation devices, and medical imaging are
undergoing exponential growth and are forecasted to have a
greater impact on stroke management. Furthermore, the
methodology used in this work, particularly the novel use of an
LLM, could be applied to assess more specific clusters and
assist in decision-making for future research and funding.
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