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Abstract
Background: Metabolic dysfunction–associated steatohepatitis (MASH) cirrhosis is a leading indication for liver transplanta-
tion (LT). Patients with MASH cirrhosis are complex and often have extensive comorbidities. The current model for end-stage
liver disease (MELD)–based liver allocation system has suboptimal concordance in predicting waitlist mortality for patients
with MASH cirrhosis. Furthermore, it does not capture the competing outcomes of death and LT on the liver transplant
waitlist.
Objective: A competing risk analysis using deep learning was conducted to forecast waitlist trajectories of patients with
MASH cirrhosis using data available at the time of waitlisting.
Methods: A deep learning competing risk model was constructed using data from 17,551 waitlisted patients with MASH
cirrhosis in the Scientific Registry of Transplant Recipients (SRTR) based on the DeepHit model framework with five-fold
cross-validation. Model performance was evaluated and compared to single-risk Cox proportional hazards and random survival
forests (RSF) models in predicting death or transplant using the concordance index and Brier score. Additionally, a novel
performance metric, the competing event coherence (CEC) score, was developed to evaluate model performance in the setting
of competing risks. Features associated with death and transplant in the DeepHit model were identified using permutation
importance. Models were externally validated on data from the University Health Network.
Results: A total of 17,551 patients were included. The mean MELD at listing was 19.4 (SD 8.1). At 120 months of follow-up
on the waitlist, 54.6% (9599/17551) of patients underwent LT, 25.6% (4510/17551) of patients died or were removed due
to deterioration, and 19.8% (3442/17551) of patients were removed for improvement or were censored. In a competing risk
scenario, DeepHit achieved the best CEC scores at 1 (0.813), 3 (0.811), 6 (0.794), and 12 months (0.772) on the waitlist.
The cause-specific RSF model had the highest concordance indices for death or transplant at all time points (death: 0.874
at 1 month, 0.840 at 6 months, and 0.814 at 12 months) except for death at 3 months, where DeepHit (0.883) outperformed
RSF. RSF also had lower Brier scores overall, except for transplant at 12 months, where DeepHit outperformed RSF (0.206
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vs 0.228). These results were similar on external validation. On feature importance assessment, MELD at listing and its
components, as well as functional status, age, and blood type, were associated with death and transplant on the waitlist.
Conclusions: A deep learning competing risk analysis can forecast the risks of both death and transplant in patients with
MASH on the waitlist, helping to inform clinical decisions by identifying the most impactful covariates for each outcome.
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Introduction
Metabolic dysfunction-associated steatohepatitis (MASH)
cirrhosis is a leading cause of liver transplantation (LT)
globally and the fastest growing indication for LT in the
United States, with the prevalence of waitlisted candidates
increasing from 2.5% to 20.4% between 2004 and 2019. The
prevalence of MASH cirrhosis is projected to continue to rise
significantly in the coming years [1,2]. Candidates waitlisted
for LT are prioritized based on their model for end-stage liver
disease (MELD) score, which has been periodically reviewed
and updated, most recently to the MELD 3.0 score [3].
The MELD-based scoring system predicts waitlist mortality
and does not account for type of liver disease, as previous
studies have demonstrated minimal effects on the predictive
performance [4]. Despite changes to MELD-based scoring
systems in recent years and the increasing prevalence of
MASH, MELD-based scoring systems have lower concord-
ance in candidates with MASH cirrhosis compared to those
listed with other liver diseases, highlighting the need to
develop waitlist prediction models that capture the complex-
ity of MASH cirrhosis [3-6]. There are several possible
explanations for the lower concordance of MELD models in
this population. Patients with MASH, particularly those in the
low- to mid-MELD score range, tend to have faster disease
progression than is captured by their MELD score progres-
sion, higher pre-LT mortality risk, and lower likelihood
of recovery than other patients on the waitlist. Addition-
ally, patients with MASH cirrhosis tend to develop clini-
cally significant portal hypertension at lower MELD-sodium
(MELD-Na) scores, contributing to higher waitlist mortal-
ity [5-8]. Despite having more severe comorbidities, such
as portal hypertension, advanced age, higher BMI, diabe-
tes, hypertension, and hyperlipidemia, patients with MASH
cirrhosis are less likely to receive a transplant on the waitlist
and more likely to face higher waitlist mortality and removal
due to becoming too ill to undergo transplant compared to
patients listed with other liver diseases [8-12]. Improving
waitlist prediction in patients with MASH through developing
MASH-specific models can aid clinicians in optimizing their
waitlist outcomes and pretransplant status, thus potentially
improving overall waitlist outcomes.

Another limitation of MELD-based models is that they
provide information on the risk of death on the waitlist
without accounting for the risk of transplantation, censoring
patients who do not experience the event of interest and
leading to biased estimation of risk [7]. These single-risk Cox
proportional hazards (CoxPH)–based models cannot predict

risk while accounting for the possibility that a patient can
experience multiple events at a given time point on the
waitlist, while a censored patient can experience a compet-
ing event that would make the primary event of interest
clinically impossible (ie, a patient who undergoes LT cannot
also die on the waitlist). The risks of each event cannot
be compared between multiple cause–specific models. In
contrast, competing risk models account for multiple mutually
exclusive events [13]. Compared to traditional regression
methods, machine learning (ML) can handle large, heteroge-
neous datasets and avoid several fundamental assumptions
of linearity and proportionality that CoxPH models make
[14-16]. For example, DeepHit is a deep learning competing
risk neural network model that captures intricate, nonlinear
interactions between several factors and outcomes (such as
mortality and transplant) in one model [9,11,17,18]. By
using a DeepHit-based model to predict waitlist outcomes,
clinicians will better understand the trajectory of patients with
MASH cirrhosis with numerous comorbidities who are at
high risk of both mortality and transplantation. Patients with
MASH at lower risk of death and transplant may be better
candidates for living donor liver transplantation (LDLT) and
can be redirected accordingly [19]. Due to the fundamental
differences between competing risk and single-risk settings,
current model evaluation metrics, such as the concordance
index (C-index) and Brier score, may be inadequate for use
in competing risk settings [12,20]. We design and propose the
competing event coherence (CEC) score, a novel performance
metric to assess models in a competing events scenario at
the patient level. It is an interevent metric that evaluates the
match between the event predicted by the model and the
actual event that occurred at a given time point for each
patient and takes into account multiple competing events.

In this study, we aimed to develop a MASH cirrhosis–spe-
cific deep learning model based on DeepHit using data at the
time of waitlisting that accounts for the competing risks of
death and transplant on the LT waitlist to forecast waitlist
trajectory and inform clinical decision-making. We compared
the performance of the DeepHit model to MASH-specific
single-risk CoxPH and random survival forest (RSF) models.
We externally validated the DeepHit model on single-center
data. Finally, we developed a DeepHit dashboard to enter and
visualize patient trajectory on the waitlist [21].
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Methods
Study Design and Participants
We conducted our retrospective study using two study
populations. Of 227,647 patients waitlisted in the Scientific
Registry of Transplant Recipients (SRTR) from March 1,
2002, to March 2, 2021, we used data from 17,551 patients
with MASH cirrhosis for model development (Figure S1).
For external validation, we used data from 167 patients
with MASH cirrhosis who were waitlisted at University
Health Network (UHN), Toronto, Ontario, between 2012 and
2018. Inclusion and exclusion criteria were identical for both
cohorts, ensuring consistency in the selection process. We
included all adults aged 18 years or older with a primary
diagnosis of MASH or cryptogenic cirrhosis (CC) and a
BMI of 30 kg/m2 or more based on previous studies that
demonstrate the histological overlap between MASH cirrhosis
and CC [22-24]. We excluded patients with a secondary
diagnosis other than MASH cirrhosis or CC with a BMI of
30 kg/m2 or more [22,25]. We excluded LT recipients who
were never waitlisted, retransplants, multiorgan transplants,
acute liver failure (including status 1 and status 1a candi-
dates), concomitant liver etiologies (viral hepatitis B and C
and alcoholic liver disease), hepatocellular carcinoma–rela-
ted primary or secondary diagnosis or listed with excep-
tion points, and those with pre-existing liver malignancies;
supplementary information 1). Patients were followed for up
to 120 months, or until death or deterioration, removal, or
transplant, whichever occurred first. Events in both cohorts
were classified as (1) death (died on the waitlist or removed
due to deterioration), (2) received LT, or (3) censored,
and event times were determined accordingly. Candidates
removed due to deterioration were included in the death
group, while those removed from the waitlist for other
reasons were classified as censored (Figure S2). Waitlist
outcome categorization is consistent with previous literature
[26].
Models
We developed all models using SRTR data based on shared
features between the SRTR and UHN datasets. The DeepHit

model includes a shared network with fully connected layers
to capture intrinsic patterns of the input features, which are
then connected to two cause-specific subnetworks that learn
the relationship between the input features, event type, and
time of the event [11,27]. DeepHit outputs discrete monthly
risk predictions of the competing events. The sum of the
monthly prediction over the entire time horizon T for all the
competing events is 1/K , where K is the total number of
competing events. In our case, the maximum event time is
120 months. The cumulative risk for 1 event over this time
period is 0.5, as there are two competing events. The DeepHit
model includes a shared network with fully connected layers
and 2 cause-specific subnetworks that correspond to death
and transplant. The joint distribution of the event and first
hitting time is learned and outputted through a final layer to
output ri (k, t|xi) defined as

ri k, t xi = f xi
which is the predicted probability of the k event happening at
a specific prediction time t, satisfying∑k = 1,  t = 1K,  T ri k, t |xi = 1

where f represents the DeepHit structure [11].
We compared DeepHit to single-risk CoxPH and RSF

models predicting death or transplant. CoxPH is a linear
model that predicts the hazard function with an assumption
of proportionality where the individual hazard is proportional
to the population baseline hazard that changes over time
[14]. (Figure 1) For each cause-specific CoxPH or RSF
model predicting death or transplant, the competing event
(death or transplant) was censored. Model hyperparameters
are available in Table S1 in Multimedia Appendix 1. For
comparison, MELD-Na and MELD 3.0 scores were calcula-
ted to predict mortality (supplementary information 1)
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Figure 1. DeepHit model. (A) The model training process, event prediction, and evaluation process are displayed. (B) The DeepHit model
architecture is described. (C) The competing event coherence score evaluates model performance based on the prediction of an event compared to
the actual event that occurred at the patient level. (D) DeepHit can be used to predict death and transplant and inform clinical decisions. C-index:
concordance index; CEC: competing event coherence; CoxPH: Cox proportional hazards; INR: international normalized ratio; MASH: metabolic
dysfunction–associated steatohepatitis; MELD: Model for End-Stage Liver Disease; RSF: random survival forest; SRTR: Scientific Registry of
Transplant Recipients; and UHN: University Health Network.

Model Evaluation
Models were evaluated using the C-index and Brier scores.
Furthermore, we propose a new metric to evaluate the
percentage of prediction that is coherent to the actual event
type and time at which it occurred in competing risk
scenarios, known as the CEC score (or the µ-score). This
overcomes the limitations of the C-index and the Brier
score, which examine model performance under a single-risk
scenario but cannot be used to compare all the predicted
risks for the competing events at the same time. Ideally, at

the time of the actual event that occurred, the predicted risk
for that event should be higher than the predicted risk of
other competing events. For the patients who had an event
(death or transplant) within the time frame of interest, the
percentage of coherence within the population was calculated.
The CEC score measures the alignment between the model
risk predictions and the actual patient event that occurred. For
the M patients who had the event within the time frame t, the
percentage of coherence within the population was calcula-
ted. The CEC score measures the alignment between the risk
predictions and the actual patient event. Let’s µm indicate the
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coherence status of the mtℎ patient being evaluated. Further,
let l* and k*m denote the actual event time and event type
of the mtℎ patient, respectively; then the proposed µ-score is
defined as

μ − score = 1MΣm = 1M μm
where coherence for the m patient μm is defined as

μm = 1, if arg maxk ∈ K rm(k, ℓ∗ |xm) = km∗0, otherwise,
and rm (k, l*|xm) denotes the predicted risks of the 2 events
at the event time. Because CoxPH and RSF are single-risk
models, we say that the prediction is in coherence (or
alignment) if the probability of experiencing an event Prevent
is higher for the event corresponding to the actual event (at
time l* as compared to the competing one.

C-index, Brier scores, and CEC scores were computed for
all models at four time points after waitlisting: 1, 3, 6, and
12 months. One month corresponds to the 25th percentile
of event time in the population [17]. Mortality predictions
were also generated using MELD-Na and MELD-3.0 scores
for performance comparison. Transplant predictions were not
developed for the MELD models since they are only intended
to predict death on the waitlist. Since DeepHit is a competing
risk model, when the performance was evaluated using single
event metrics (C-index and Brier score), the competing event
was treated as censored [11].
Statistical Analysis
To ensure the robustness of our model, we used rigor-
ous cross-validation, including k-fold cross-validation and
hyperparameter tuning to optimize model performance and
ensure generalizability (supplementary information 2). SRTR
data were split using stratified random split to preserve the
event rate of the population in the training and test sets, which
represented 90% and 10% of the entire population, respec-
tively. Within the 90% training set, outer five-fold cross-vali-
dation was used to obtain an average performance across all
validation folds.

Hyperparameter tuning was used to optimize the C-index.
To evaluate the performance of our trained models, we
first used single-risk metrics, including the time-dependent
C-index and the time-dependent Brier score. The model with
the highest performance on the outer validation set was used
to test performance on the 10% test set as well as the UHN
external validation set. Test performance was evaluated at 1,
3, 6, and 12 months using bootstrapping to obtain consis-
tent results where each bootstrapped sample contains patients
that were randomly sampled from the cohort with replace-
ment. The Wilson Cox test was subsequently used to test
statistical significance in the performance of DeepHit and
the other models (CoxPH and RSF) based on the bootstrap-
ped C-indices, Brier scores, and CEC score proposed as the
following (Table S1).

Model Interpretability
Permutation importance was used to determine which
covariates in the DeepHit model have the largest influence
on the prediction of death and transplant by evaluating the
contribution of each covariate to the C-index of the model via
random permutation of each variable, which is then compared
to the original data [28]. The permutation was done 20 times
for each variable to obtain the average and SD of increase in
C-index.

All analyses were done using Python version 3.8.8 (Python
Software Foundation). CoxPH models were developed using
the scikit-learn 1.1.1 library and the scikit-survival 0.16.0
library. The MASH-specific DeepHit model was developed
using the TensorFlow 0.0.8 library. The data template can be
downloaded as a .csv file. The codebase has been published
on GitHub [29].

Ethical Considerations
Due to the use of publicly available deidentified United
Network for Organ Sharing (UNOS) data, this study was
exempt from Research Ethics Board (REB) review. For
external validation, REB approval was obtained (REB
number 21‐5783).

Results
Characteristics of SRTR and UHN
Cohorts
There were 17,551 patients with MASH in the SRTR cohort,
of which 50.2% (8802/17551) were female. Mean MELD
at listing was 19.4 (SD 8.1). By 120-month waitlist follow-
up, 54.6% (9599/17551) of patients underwent LT, 25.6%
(4510/17551) of patients died or were removed from the
waitlist due to deterioration, and 19.8% (3442/17551) of
patients were removed for improvement or were censored.
Around 93.8% (9004/9599) of recipients underwent deceased
donor liver transplantation (DDLT). There were 167 patients
with MASH cirrhosis in the UHN dataset, and 46.1%
(77/167) were female. The mean MELD at listing was 22.1
(SD 6.6). Overall, 62.9% (105/167) of patients underwent
LT, of which 72.4% (76/105) of patients underwent DDLT,
23.4% (39/167) died, and 13.7% (23/167) were removed or
censored (see supplementary information 1 and Table S2 in
Multimedia Appendix 1). Additional features in the SRTR
and UHN datasets are available in Table S3 in Multimedia
Appendix 1.
Model Performance
In the competing risk scenario, DeepHit consistently achieved
statistically significant higher CEC scores at each time point
evaluated on the SRTR and UHN datasets (Figures 2 and 3).
Numerical results are displayed in supplementary information
6. When comparing model performance using SRTR data
(Figure 2), CoxPH, RFS, and DeepHit had higher C-indices
than MELD-Na and MELD 3.0 for death events at 1, 3, 6,
and 12 months, outperforming MELD-Na and MELD 3.0 at
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all time points. RSF achieved statistically significantly higher
C-indices (P<.01) except in the RSF-DeepHit comparison at 3
months for death event and 1 month for transplant. RSF had

statistically significantly lower Brier scores at each time point
evaluated for death and transplant, except for at 12 months for
the transplant event (DeepHit: 0.206 vs RSF: 0.228).

Figure 2. Model performance comparison with the Scientific Registry of Transplant Recipients data. Performance of models evaluated using
C-index, Brier score, and CEC score on SRTR data. CEC: competing event coherence; C-index: concordance index; CoxPH: Cox proportional
hazards; MELD: Model for end-stage liver disease; SRTR: Scientific Registry of Transplant Recipients.
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Figure 3. Model performance comparison and external validation of the model using University Health Network data. Performance of models
evaluated using C-index, Brier score, and CEC score on UHN data. CEC: competing event coherence; C-index: concordance index; CoxPH: Cox
proportional hazards; MELD: Model for end-stage liver disease; SRTR: Scientific Registry of Transplant Recipients.

In external validation, DeepHit demonstrated a statistically
significantly higher C-index at 1 month for death (0.975);
however, RSF had the best performance at all other time
points for the death and transplant events. DeepHit also
exhibited lower Brier scores at 3, 6, and 12 months compared
to RSF for death. For the transplant event, RSF had lower
Brier scores at 1 and 3 months than DeepHit, while CoxPH
and RSF performed better at 6 and 12 months (Figure 3). Full
numerical results can be found in Table S4 in Multimedia
Appendix 1.
Forecasting Waitlist Trajectory With
DeepHit
Four patients from the SRTR were randomly selected,
and their waitlist trajectories of death and transplant were

predicted using RSF and DeepHit over a 120-month period
based on data available at the time of waitlisting. Figure
4 displays two patients who died on the waitlist at month
33 and month 1, while Figure 5 displays two patients who
were transplanted at month 1 and 12. The time at which the
event (death or transplant) occurred and the corresponding
prediction at that time is magnified. Patient characteristics
for the sample patients used here are detailed in Table S5
in Multimedia Appendix 1. Cumulative risk predictions with
RSF were generated using two separate models with death
or transplant as the outcome of interest and displayed on one
graph. Using DeepHit, we generated granular risk predictions
from one competing risk model, allowing for visualization of
the risk associated with each event over time compared.
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Figure 4. Forecasting death on the waitlist using Random Survival Forest and DeepHit with patient examples using data at the time of waitlisting.
The vertical line on each plot indicates the event (green=transplant; red=death) and the time at which it occurred. On the DeepHit plots, zoomed-in
segments correspond to the time at which the actual event occurred. For a patient that experienced an event during month 1, they were categorized as
experiencing the event at time 0. For a patient that experienced an event during months 1 and 2, they were categorized as experiencing the event at
month 1 and so on.
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Figure 5. Forecasting transplant on the waitlist using random survival forest and DeepHit. Similar to Figure 4, transplant on the waitlist is predicted
using RSF and DeepHit with each plot corresponding to a different patient.

Permutation Importance Using DeepHit
In predicting the death event, MELD at listing emerged as
the greatest contributor to the C-index, followed by biliru-
bin, INR, serum creatinine, and serum sodium. Additional
non-MELD features identified were albumin, blood type A,

functional status, and age at listing. For transplant events,
MELD at listing took precedence, followed by INR and
bilirubin. The non-MELD features that influenced transplan-
tation comprised blood types O, A, and AB, as well as
functional status, albumin, and gender (Figure 6).
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Figure 6. Permutation importance of DeepHit model. Features with the greatest contribution to the prediction of death or transplant were determined
using permutation importance. INR: international normalized ratio; MELD: Model for end-stage liver disease

Discussion
Principal Findings
This study aimed to forecast the LT waitlist trajectories of
patients with MASH cirrhosis using a deep learning approach
that leverages the changing relationships between covariates
and risks over time while handling competing risks [11].
We compared a competing risk MASH cirrhosis–specific
DeepHit model to single-risk CoxPH and RSF models in
forecasting outcomes of death and transplant on the wait-
list. We demonstrated that while RSF performed better at
most evaluation time points using traditional model perform-
ance metrics, DeepHit outperforms RSF when evaluated in a
competing risk scenario. Furthermore, we demonstrated that
DeepHit can generate and visualize time-varying, discrete
predictions of death and transplant. This allows for the
identification of patients with a low probability of undergoing
transplantation and those at an elevated risk of death while
awaiting DDLT, enabling timely consideration of LDLT
when available.

MELD-based models poorly predict death in patients with
MASH compared to candidates listed for other etiologies and
may underestimate the risk of death on the waitlist [5,6].
Additionally, MELD-based models do not provide informa-
tion on the risk of transplantation. Patients with MASH have
a lower 90-day and 1-year probability of transplant and a
greater risk of waitlist mortality. Therefore, early identifi-
cation of patients at low risk of transplant may expedite
direction to LDLT and prevent MASH-related mortality on

the waitlist [30]. Previous studies have indicated that LDLT
results in comparable or improved postoperative outcomes for
patients with and without MASH when compared to DDLT.
Timely identification of patients enables them to undergo
transplantation while in a less decompensated state, leading
to more efficient resource usage [31-33]. While MASH-spe-
cific models, such as the DeepHit-based model, may not fully
replace MELD-based models for waitlist prioritization and
liver allocation of all candidates, they can be used to improve
the management of waitlisted patients with MASH, particu-
larly those with indolent disease who may spend months on
the waitlist and deteriorate before receiving an LT offer. As
the prevalence of MASH cirrhosis grows, careful manage-
ment of waitlisted patients is critical for reducing overall
waitlist morbidity and mortality [30]. The DeepHit MASH-
specific model also highlights the potential to incorporate
personalized prediction of waitlist outcomes at the patient
level. This prediction can be updated as clinical status
changes over time when modifiable factors associated with
a higher risk of waitlist mortality are addressed, providing a
more granular prediction of both death and transplant over
time on the waitlist as opposed to risk of 90-day mortality
alone.

We presented the CEC score as an alternative metric
to evaluate competing risk models, emphasizing its role as
an interevent measure that assesses a model’s performance
in predicting 2 competing events [34]. Unlike the C-index,
which evaluates performance at the population level, the
CEC score assesses performance at the patient level [12,
20]. A major problem with the C-index in the setting of
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competing risks is that the discrimination of a model is
reduced when covariates may be associated with both the
primary and competing event [20]. Our analysis demonstrates
that DeepHit more accurately predicts the actual event (death
or transplant) that occurred at specific time points when
evaluated using the CEC score compared to RSF, although
RSF performs better based on the C-index and Brier scores.
Although the C-index and Brier scores are limited in the
scenario of competing risks, DeepHit still exhibited robust
performance when evaluated using these metrics, although it
was statistically weaker than RSF.

While RSF performed well in a single-risk scenario
when evaluated with the C-index and Brier scores, using
a noncompeting risk model to predict risk in a clinical
setting where patients are at risk of multiple competing
events may lead to greater misclassification of risk for
single events. We demonstrated this through the improved
performance of DeepHit compared to RSF when evaluated
with the CEC score. Competing risk analysis may improve
predictions of outcomes at the patient level [35-40]. Fur-
thermore, censoring of competing risks can lead to event
overestimation in populations at highest risk of experienc-
ing either of the competing events [41]. Competing risk
models to evaluate the risks of death and transplant on
the waitlist are limited in the field of LT but have been
more extensively described and applied to kidney transplanta-
tion. Smits et al [42] found that Kaplan-Meier overestimates
the chance of transplantation compared to competing risk
analysis by over 30% [43]. This not only highlights the
importance of competing risk models but also using metrics,
such as the CEC score, in the analysis of models to accu-
rately assess performance. We highlight the advantages of
DeepHit, whose neural network architecture is particularly
well-suited to capturing complex, nonlinear, and interdepend-
ent relationships among variables in medium-sized datasets.
In contrast to traditional survival models, DeepHit does not
rely on restrictive assumptions, such as proportional hazards,
enabling greater flexibility in modeling intricate data patterns.
Crucially, DeepHit is inherently designed to handle compet-
ing risks, estimating the joint probability distribution over
multiple, mutually exclusive event types. This multitask
learning framework allows the model to share information
across outcomes while retaining event-specific distinctions,
resulting in more accurate and clinically meaningful survival
estimates. By applying a competing risk-specific metric—
the CEC score—we demonstrated that DeepHit consistently
outperforms traditional ML approaches in predicting time-
to-event outcomes with competing risks. These capabili-
ties make DeepHit especially valuable in clinical settings
characterized by multiple potential outcomes, such as the
organ transplant waitlist.

Previous studies have assessed features associated with
death and transplant in LT candidates waitlisted for all
indications [5,44-46]. Despite patients with MASH cirrho-
sis constituting a large and increasing portion of the LT
waitlist, limited studies have assessed features associated
with death and transplant exclusively in this population
[47]. Studies have shown that factors, such as dialysis,

sex, race, serum albumin and creatinine, low performance
status, and high MELD are associated with increased or
decreased risk of transplant among all candidates [5,44-
46]. We evaluated the contribution of various covariates
in predicting death and transplant events using DeepHit
permutation importance, aiming to improve the C-index. In
our DeepHit model, MELD at listing emerged as the highest-
ranked feature for both death and transplant, followed by
components of the MELD score, such as INR, bilirubin, and
serum sodium, which have been previously demonstrated
[10]. Our permutation analysis reinforced the critical role
of MELD-based models in predicting outcomes, showing
that biochemical features already included in MELD-based
models are implicated in waitlist risk of death and transplant
in patients with MASH cirrhosis, potentially reflecting part of
the comorbidity burden in this population. Given that SRTR
is a historical dataset where allocation is largely determined
by MELD score, these findings are not unexpected. Func-
tional status was a highly ranked feature for both events and
has been associated with an increased likelihood of trans-
plantation as well as increased waitlist mortality [48]. Poor
functional status contributed to the death prediction, possibly
because complications of cirrhosis (such as encephalopathy)
are associated with poor functional status and increase the
risk of death in all LT waitlist candidates [44]. While INR
and bilirubin also ranked high, we did not identify creatinine
or dialysis in the last week as significant features associ-
ated with the prediction of waitlist death or transplant. Age
contributed to the death prediction, which has not been found
previously in studies on all LT waitlist candidates. Patients
with MASH are older, and older patients tend to have poorer
waitlist outcomes; therefore, this finding is expected in a
MASH cirrhosis cohort [45]. For the transplant event, we
found that blood type AB ranked high. These candidates
can accept donor livers from nearly all blood types. In other
studies, dialysis, sex, race, serum albumin and creatinine, low
performance status, and high MELD have been found to be
associated with increased or decreased risk of transplant in all
candidates [5].
Limitations
The SRTR is a retrospective dataset and limitations, such
as high missingness and heterogeneity of data collection
must be noted. Furthermore, there are limited longitudinal
features in the SRTR dataset, which makes the develop-
ment of a dynamic model challenging [49]. The permutation
importance method is limited as it does not provide infor-
mation on the directionality of risk such as provided by
a hazard ratio, which makes it difficult to apply DeepHit
to clinical scenarios where risk factors can be identified
and modified to improve outcomes. Furthermore, none of
the models developed consider individual organ availability,
donor compatibility, and regional variation. Although the
DeepHit model performed well when externally validated on
the UHN dataset, the UHN sample size was relatively small
at 167 patients. Further work should seek to validate this
model on larger datasets. Finally, the use of historical waitlist
candidate data to devise a ranking system may perpetuate
existing inequities and biases in liver allocation; therefore,
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DeepHit should not be used for definitive decision-making on
waitlisting or delisting but can be used in conjunction with
other tools.
Conclusion
The DeepHit model can be used to forecast waitlist trajecto-
ries of both death and transplant in a competing risk scenario
for patients with MASH, using data available at the time
of listing. With DeepHit, discretized and dynamic changes
of the risk of death and transplant can be visualized and
compared across multiple time points and between events.

This information can enhance the current strategies for
managing candidates with LT with MASH cirrhosis and act
as a tool to advocate for LDLT in patients who are at high
risk of waitlist dropout but underserved by MELD-based
mortality predictions. A DeepHit MASH-specific model can
be used as a clinical adjunct to inform and modify clinical
interventions to optimize patient survival on the waitlist.
Future studies should focus on improving the evaluation
and interpretability of DeepHit models to expand their use
in clinical settings, as well as developing larger scale ML
models that consider all patients on the LT waitlist.
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