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Abstract

Background: The integration of the Internet of Things (IoT) into health care is transforming the industry by enhancing disease
care and management, as well as supporting self-health management. The COVID-19 pandemic has accelerated the adoption of
IoT devices, particularly wearable medical devices, which enable real-time health monitoring and advanced remote health
management. Globally, the increased adoption of IoT in health care has improved efficiency, enhanced patient care, and generated
substantial economic value.

Objective: This review aims to conduct a comprehensive meta- and weight analysis of quantitative studies to identify the most
influential predictors and theoretical frameworks explaining the adoption of IoT in health care.

Methods: We searched databases, including Web of Science and PubMed, for quantitative studies on IoT health care adoption,
with the last search conducted in early July 2025. Inclusion criteria comprised peer-reviewed articles written in English that
employed a quantitative approach to IoT health care technology adoption. Studies were excluded if they did not report the
significance of relationships, involved technologies without IoT features or were outside the scope, or examined target variables
irrelevant to the analysis. The weight analysis identified the pathways with the most significant effects. A meta-analysis using a
random-effects model was conducted to estimate combined effect sizes and their statistical significance. The results from both
methods were then integrated to visualize the most frequently used theoretical frameworks. Risk of bias and heterogeneity were
assessed using a funnel plot, Egger regression test, the I2 statistic, and subgroup analysis, which indicated no strong evidence of
publication bias but revealed a high level of heterogeneity.

Results: Analysis of 115 datasets from 109 papers identified the Technology Acceptance Model and the Unified Theory of
Acceptance and Use of Technology (UTAUT) as the primary frameworks for explaining IoT adoption in health care. Incorporating
context-specific variables—such as health consciousness, innovativeness, and trust—into these traditional technology acceptance
frameworks enhances the understanding of IoT adoption. Although high heterogeneity suggests a need to refine theoretical models
to account for regional contexts, universal adoption drivers such as performance expectancy and effort expectancy remain
consistent.

Conclusions: Behavioral intention is the most frequently studied variable in IoT health care adoption, whereas attitude,
performance expectancy, effort expectancy, and task-technology fit remain underexplored. While adoption theories from the
information systems field, such as the TAM, are predominantly used, integrating context-specific constructs and theories—such
as trust and innovativeness—can provide deeper insights into IoT adoption in health care. The strongest and most consistent
predictors of behavioral intention were attitude, performance expectancy, habit, self-efficacy, functional congruence, and benefits.
Additionally, social influence, facilitating conditions, trust, and aesthetic appeal demonstrated promising or strong effects. By
contrast, variables such as privacy and security, barriers, vulnerability, severity, compatibility, financial cost, health, and technology
anxiety were generally inconsistent or not statistically significant.
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Introduction

The integration of the Internet of Things (IoT) into health care
has revolutionized the industry by introducing a new paradigm
of connectivity and data exchange, driven by rapid
advancements in IoT, artificial intelligence, and machine
learning [1-3]. This era, known as Healthcare 4.0, can be
leveraged to enhance acute disease care, manage chronic
diseases, and support self-health management [4]. The
COVID-19 pandemic accelerated the adoption of user-friendly
IoT devices [5-7], with wearable medical devices emerging as
key allies by offering real-time health monitoring, continuous
data transmission, and advanced remote health management
[8-10].

Globally, the integration of IoT in health care has enhanced
efficiency, improved patient care, and generated significant
economic value [11,12]. By 2029, the global IoT health care
market volume is projected to reach US $134.40 billion [13].
This indicates strong, sustained growth driven by the increasing
adoption of IoT technologies in health care around the globe
[13,14]. For instance, China has made significant progress in
integrating health information technologies into the health care
system, driven by initiatives such as “Internet Plus Health Care”
and the “Healthy China 2030” plan [15-17]. The United States
leads in IoT and intelligent health care system development,
supported by substantial investments and a robust ecosystem
of startups and tech companies driving advancements in artificial
intelligence and IoT [18-20]. Europe also shows considerable
progress, emphasizing regulatory frameworks, standardization,
and interoperability to foster innovation and data protection
[21,22].

While IoT holds considerable promise to transform health care
by reducing costs and improving access, understanding the
factors influencing its adoption requires more focused research
[23]. Although literature reviews with a quantitative approach
have examined technology adoption in health care, existing
meta-analyses that include technologies with IoT features remain
fragmented, as they have largely focused on broader or adjacent
technological domains and have typically emphasized a specific
adoption model. For instance, meta-analyses on mobile health
have focused on the Unified Theory of Acceptance and Use of
Technology (UTAUT) [24] and the Technology Acceptance
Model (TAM) [25]. Meta-analyses on eHealth have
predominantly focused on the TAM [26] and continuance
intention [27]. Meta-analyses specific to smart wearable health
care devices have examined attitude and intention using UTAUT
and TAM [28], as well as the effects of perceived usefulness
and perceived ease of use on intention, with a focus on
Hofstede’s cultural dimensions as moderators [29]. Taken
together, these studies often treat health care technology

adoption in general terms and do not account for the unique
characteristics of IoT.

Our study addresses this gap by providing a comprehensive
meta-analysis and a weight analysis specifically focused on IoT
adoption in health care. We synthesize findings from primarily
quantitative articles on the adoption of IoT in health care,
particularly on interconnected devices that monitor and transmit
real-time health care data, enabling smarter solutions [5], such
as smart sensors, remote monitoring devices, and health-focused
IoT platforms. Our meta-analytic approach integrates findings
from different theoretical perspectives, including technology
adoption models such as the TAM and UTAUT and
health-specific models such as the Health Belief Model (HBM),
allowing for a more holistic understanding of adoption dynamics
in health care contexts. Moreover, our dual-method approach,
combining meta-analysis with weight analysis, identifies the
strongest and most reliable predictors of adoption and maps the
theoretical foundations most frequently and effectively used in
this field. This analysis goes beyond prior reviews, offering
new evidence-based insights to guide health care technology
developers, practitioners, and researchers. The objectives of
this study are, first, to identify key predictors of IoT health care
adoption through a comprehensive meta-analysis and weight
analysis, and second, to determine the most influential and
empirically supported theories used to explain IoT adoption in
health care settings.

Methods

Overview
We performed a meta-analysis to examine the factors
influencing the adoption of IoT technologies in health care,
synthesizing findings from a range of quantitative studies. By
focusing on primary quantitative research articles, we aimed to
identify the most significant predictors and the theoretical
models most commonly used to explain IoT adoption in health
care settings.

Information Sources and Search Strategy
This meta-analysis followed PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) 2020
guidelines [30]. The literature search was conducted using a
keyword-based search across the Web of Science and PubMed
databases to identify studies examining IoT adoption in health
care. The search strategy incorporated title, abstract, and
keyword searches, using Boolean operators (AND and OR) and
database-specific filters. The keywords used in our search were
related to IoT technology, relevant variables, quantitative
methods, and exclusion criteria (Table 1). We included records
published up to the end of 2024. The complete search strategy,
including search terms and Boolean logic, is provided in
Multimedia Appendix 1.
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Table 1. Map for the keyword search in online databases.

Exclusion of irrelevant topicsMethodologiesRelevant variables and theoriesRelevant terms

SystematicStructural equationIntention to adoptInternet of Things

Literature reviewStructural equation modelingBehavioral intentionIoT

PostadoptionPartial least squares structural
equation modeling

AcceptanceSmart

MeditationPartial leastAdoptIntelligent

Contact tracing appPath analysisAdoptionHealth care wearable device

Fitness appRegressionUsingMedical wearable technology

Electronic health recordN/AaUseHealth management

TelemedicineN/AUsageHealth measurement

Mindfulness appN/AIntention to useN/A

N/AN/AUnified Theory of Acceptance and
Use of Technology 2

N/A

N/AN/AUnified Theory of Acceptance and
Use of Technology

N/A

N/AN/ATechnology Acceptance ModelN/A

aN/A: not applicable.

Selection Criteria
Initial screening was conducted using database filters. In the
second screening, 2 (IV and MNZ) independent reviewers
assessed the titles and abstracts for relevance, resolving
disagreements through discussion or arbitration by a third
reviewer. The full-text screening followed the same procedure.
The reports assessed for eligibility were exported to an Excel
(Microsoft Corporation) file, and all included papers were
imported into Zotero (Corporation for Digital Scholarship),
which is a reference management software. When a paper was
unavailable, the authors were contacted.

Inclusion criteria comprised peer-reviewed articles with a
quantitative approach to health care technology adoption written
in English. Reasons for exclusion included not reporting the
significance of the relationships between variables; the
technology lacking IoT features or being unrelated to health
care; the target variables being unrelated to adoption or focusing
solely on postadoption behaviors; and studies lacking empirical
data or reporting qualitative results only. The workflow and
search conditions are depicted in more detail in the “Results”
section.

Data Extraction
A standardized data extraction form was developed before data
extraction. Data extraction was performed in Excel, and for
each article, we detailed the study characteristics, methodology,
type of technology, and the effects measured across multiple
paths. The extracted aspects and their descriptions are provided
in Table S1 in Multimedia Appendix 1. We assessed paper
quality by examining the publishing journal metrics, the methods
employed, sample size, and the scales used to measure each
construct. The standardized β coefficients were extracted as the
primary effect measure. As some authors used different names
to represent the same variable, several variables had to be

merged to conduct our analysis. This process was carried out
by reading each variable definition and identifying the items
used to measure them. Examples of variable mergers are
provided in Table S2 in Multimedia Appendix 1, and the
individual studies included in the analysis are detailed in Table
S3 in Multimedia Appendix 1.

Descriptive Analysis
We extracted metadata from each study to perform a descriptive
analysis of publication trends, journal quality, and research
domains. Data on publication year were used to assess the
chronological distribution of studies. To evaluate journal quality,
we matched each journal with its SCImago Journal & Country
Rank classification and categorized them into quartiles (Q1-Q4).
The disciplinary scope of the journals was identified based on
their SCImago subject area classifications. We also recorded
the journal title and publication frequency to identify the journals
that published the most research. Country-level data were
extracted based on the origin of the study sample or study
location. We computed the number of studies and total sample
sizes per country to identify regions with the highest research
activity. To understand the theoretical foundations employed
across studies, we reviewed each article’s methodology and
coded the theories used to model technology adoption behavior.
We also recorded whether these models were used independently
or in combination (eg, UTAUT extended with Protection
Motivation Theory [PMT] constructs).

Weight Analysis
The weight analysis was conducted to uncover the predictive
power of independent variables [31]. This weight provides a
measure of the relative importance or consistency of statistical
significance for each variable across multiple analyses. For the
weight-analytic approach, we focused on the influence of each
independent variable on several dependent variables and limited
our analysis to relationships investigated 3 or more times
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[32,33]. The weight (Wi) of an independent variable i is
calculated as the ratio of the number of times it was found to
be statistically significant (Si) to the total number of times it
was examined (Ei), as expressed in the following equation:

Wi = Si/Ei

Meta-Analysis
Meta-analyses allow us to quantitatively compare effect sizes
across relationships between constructs using suitable metrics
to capture these effect sizes, including standardized regression
coefficients [34,35]. This analysis followed best practices
outlined previously [36-38]. In our study, the necessary inputs
for performing the meta-analysis were the standardized
regression coefficients (β) and the sample sizes for each
relationship examined 3 or more times across studies. Following
the approach of Peterson and Brown [37], β values were
transformed into approximate correlation coefficients as
r=β+0.05, where λ=1 [37]. All correlation coefficients were
Fisher z-transformed to stabilize variance, and SEs were
computed.

A random-effects model was used to account for both within-
and between-study variance, justified by the heterogeneity in
study populations, methods, and contexts. Random-effects
weights were calculated using the DerSimonian and Laird
model, and weighted mean effect sizes were computed using

inverse-variance weights, which use tau-squared (τ2) [39,40].

Heterogeneity was assessed using the Q statistic and the I2 index
[41]. We also calculated the lower and upper bounds of the 95%
CIs, z scores, and 2-tailed P values to assess statistical
significance and interpret the magnitude of the observed effects.
Final pooled effect sizes and CIs were then back-transformed
from Fisher z to the correlation coefficient metric (r). All
calculations were performed manually in Excel.

Publication Bias Analysis
The Egger test was used to statistically examine the presence
of publication bias by regressing the standard normal deviate
on precision [42]. The analysis was performed using Excel’s
data analysis regression tool, which applies standard ordinary
least squares regression, and a significant intercept (P<.10) was
interpreted as evidence of asymmetry and possible publication
bias. A funnel plot was constructed to visually assess publication
bias using the tool Meta-Essentials [43]. The trim-and-fill
method was used to estimate the number and influence of
missing studies. Heterogeneity for the included studies was

assessed using the I2 statistic, where a value over 75% is
interpreted as substantial heterogeneity, using the following
formula, where k is the number of studies and Q the Cochran
Q statistic:

I2 = max(0; {Q – [k – 1]}/Q) × 100%

To evaluate regional bias, we conducted a subgroup analysis
with 2 groups: one comprising studies conducted in China and

the other comprising studies conducted in the remaining
countries. For each group, we calculated the combined effect

sizes, SEs, CI lower and upper limits, and the I2 statistic.

Combining Weight and Meta-Analysis Results: The
Most Used Adoption Models
To synthesize the relative strength of relationships across studies
and adoption models, we combined the results from the weight
analysis and meta-analysis. The weight analysis assessed the
consistency and prominence of specific predictors by calculating
the proportion of studies that reported statistically significant
relationships for each path, referred to as the weight. In parallel,
the meta-analysis provided pooled average effect sizes and
significance levels across studies using a random-effects model.
This dual approach offers a more comprehensive understanding
of which constructs consistently predict behavioral intention or
usage in the context of IoT adoption in health care and enables
an evidence-based comparison of theoretical frameworks based
on empirical support.

We then visually mapped the structure of each adoption model,
such as the TAM and the HBM, using conceptual diagrams. In
these figures, each arrow represents a theoretical path, and its
thickness reflects the weight. Thicker lines indicate a weight
above 0.700, representing paths supported by a high proportion
of studies. The numerical values attached to each path represent
the average effect size based on the random-effects
meta-analysis, along with the corresponding P value. This dual
representation enables a clearer comparison between the
predictive strength (effect size) and consistency (weight) of
each construct within and across models.

Results

Descriptive Analysis
Papers on IoT health care adoption show an increasing trend,
with 89 of the 109 (81.7%) studies in our analysis published
between 2020 and 2025, and the earliest published in 2011.
According to the SCImago Journal & Country Rank, most
papers appeared in Q1 journals (n=63, 57.8%), followed by Q2
(n=36, 33%) and Q3 (n=10, 9.2%), with no papers published
in Q4. These studies span major research areas related to health
and medicine, information systems, and computer science. In
total, 75 unique journals were represented, with PLoS One (n=6),
Frontiers in Public Health (n=5), Technological Forecasting
and Social Change (n=5), and International Journal of
Environmental Research and Public Health (n=4) being the
most frequently appearing journals (see Table S3 in Multimedia
Appendix 1).

In our analysis of 109 studies (see Figure 1), we identified 115
unique datasets totaling 46,508 individuals (see Table S1 in the
Multimedia Appendix 1). Studies conducted in China, South
Korea, and the United States accounted for a large portion of
the total sample and represented the greatest number of
publications (see Table 2).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.
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Table 2. Number of papers and total sample size per country.

Sample size (N=46,508)Dataset count (N=115)Country

17,06839China

640612South Korea

54459The United States

29248India

18968Taiwan

17985The Kingdom of Saudi Arabia

12132Bangladesh

11943Pakistan

10404Turkey

9652Ghana

13124Multiple countries

7721Indonesia

6282Malaysia

5153France

4651Iraq

4422Oman

4401Romania

4312The United Arab Emirates

3232Switzerland

3061Singapore

2801Nepal

2331Japan

2121Italy

2001Jordan

Considering the theories addressed in each paper, the TAM and
the UTAUT have been extensively examined compared with
other theories (see Figure 2). These models serve as the
theoretical foundation for 92 of the 109 (84.4%) papers included
in our study. Other theories, such as the HBM, PMT,

Task-Technology Fit (TTF) Theory, Privacy Calculus Theory,
Diffusion of Innovation Theory, and Theory of Planned
Behavior, have also been addressed—sometimes as the primary
theoretical foundation and other times to extend the TAM or
UTAUT.
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Figure 2. Theoretical foundation of the papers included in our analysis. DOI: Diffusion of Innovation; HBM: Health Belief Model; PCT: Privacy
Calculus Theory; PMT: Protection Motivation Theory; TAM: Technology Acceptance Model; TPB: Theory of Planned Behavior; TTF: Task-Technology
Fit; UTAUT: Unified Theory of Acceptance and Use of Technology.

Weight Analysis
A weight analysis examines the strength of the relationship
between an independent and a dependent variable. The weights
of the identified relationships are analyzed and presented in
Table 3. The significance of a relationship’s weight is calculated

by dividing the number of instances in which the relationship
is statistically significant by the total number of studies that
investigated it. A weight of 1 indicates that the relationship is
significant in all examined studies, whereas a weight of 0
indicates that it is not significant in any of the studies.

J Med Internet Res 2026 | vol. 28 | e64091 | p. 7https://www.jmir.org/2026/1/e64091
(page number not for citation purposes)

Veiga et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Identified paths with the nonsignificant paths, the significant relationships, the total paths, and the respective weights.

Weight=significant/totalTotalNonsignificantSignificantDependent and independent variables

Attitude

0.82623419Effort expectancy

0.667624Barriers

1303Benefits

1404Facilitating conditions

0.90922220Performance expectancy

0.667312Privacy and security

0.857716Social influence

Behavioral intention

1404Aesthetic appeal

0.96428127Attitude

0.5381367Barriers

1606Benefits

0.571734Compatibility

0.61592336Effort expectancy

0.667312Ethics

0.71428820Facilitating conditions

0.57121912Financial cost

0.8514Functional congruence

1707Habit

0.75413Health

0.6361147Health consciousness

0.66715510Hedonic motivation

0.667624Image

0.625835Innovativeness

0.4532Perceived severity

0.375853Perceived vulnerability

0.872781068Performance expectancy

0.5261313Privacy and security

1505Reliability

0.90911110Self-efficacy

0.756411031Social influence

0.333642Technology anxiety

0.751239Trust

Actual behavior
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Weight=significant/totalTotalNonsignificantSignificantDependent and independent variables

0.94117116Behavioral intention

0.667312Effort expectancy

1303Facilitating conditions

0.5422Health consciousness

0.667312Innovativeness

0.667312Perceived vulnerability

0.75413Performance expectancy

1303Social influence

Performance expectancy

0.4532Barriers

0.75826Compatibility

1303Convenience

0.87131427Effort expectancy

0.5422Facilitating conditions

0.75826Health consciousness

0.429743Image

1404Innovativeness

0.667624Privacy and security

0.7271138Reliability

1707Self-efficacy

0.7271138Social influence

0.667312Trialability

0.6523Trust

1505Task-technology fit

Effort expectancy

1707Compatibility

1606Facilitating conditions

0.5422Image

1707Innovativeness

0.5422Privacy and security

1404Reliability

1707Self-efficacy

0.75413Social influence

0.667312Trialability

1303Task-technology fit

Task-technology fit

0.75413Task characteristics

1404Technology characteristics

In the context of technology adoption at the individual level,
independent variables are considered “well-utilized” if they
have been tested at least 5 times. Variables tested fewer than 5
times but with a weight of 1 are regarded as “promising”
predictors [31]. To be classified as a “best” predictor, an

independent variable must have a weight of 0.800 or higher and
must have been examined at least 5 times [31].

In our research, we analyzed the impact of several independent
variables on the dependent variables attitude, behavioral
intention, actual use, performance expectancy, effort expectancy,
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and TTF. For the weight analysis, we included relationships
that were examined 3 or more times, resulting in 67 relationships
and 31 unique predictors that met this criterion. The most studied
target variable was behavioral intention, with 25 predictors.

In our research, the relationships considered the “best” predictors
for attitude are effort expectancy, performance expectancy, and
social influence, as each has more than 5 identified relationships
and a weight greater than 0.800. For behavioral intention, the
best predictors are attitude, performance expectancy, habit,
self-efficacy, functional congruence, reliability, and benefits.
Aesthetic appeal, with a perfect weight of 1, is considered a
promising predictor of intention due to the limited number of
studies. Social influence, facilitating conditions, and trust,
although not classified as the best predictors, remain important
because their weights exceed 0.700 and are supported by a
substantial number of studies. It is also noteworthy that privacy
and security, barriers, vulnerability, severity, compatibility, and
financial cost yielded more inconsistent results, with many
studies reporting statistically nonsignificant findings.

For actual behavior, behavioral intention is the best predictor,
while facilitating conditions and social influence are considered
promising predictors due to the limited number of studies and
their perfect weight of 1. For the target variable performance
expectancy, effort expectancy, TTF, and self-efficacy are the
best predictors, and convenience and innovativeness are

promising predictors. Health consciousness, social influence,
reliability, and compatibility, although not classified as the best
predictors, remain important because their weights exceed 0.700
and they are supported by multiple studies. For effort
expectancy, facilitating conditions, innovativeness, self-efficacy,
and compatibility are the best predictors, while reliability and
TTF are promising predictors. For the target variable TTF,
technology characteristics is identified as a promising predictor.

Meta-Analysis
The results of the meta-analysis are presented in Table 4 and
include all studies that reported standardized path coefficients
or β values. All the best predictors identified in our study are
statistically significant (P<.001), except for reliability (P=.49)
as a predictor of intention, as well as some of the important and
promising predictors. Notably, barriers (P=.46) is not a
significant predictor of attitude. Health, technology anxiety
(P=.78), financial cost (P=.16), and barriers (P=.84) are not
significant predictors of behavioral intention. For actual
behavior, social influence (P=.15), innovativeness (P=.28),
health consciousness (P=.61), vulnerability (P=.31), and effort
expectancy (P=.09) are not significant predictors. Privacy and
security (P=.05) and barriers (P=.21) are not significant
predictors of performance expectancy, while privacy and
security (P=.29) and image (P=.06) are not significant predictors
of effort expectancy. Finally, task characteristics (P=.12) is not
a significant predictor of TTF.
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Table 4. Meta-analysis results calculated using a random-effects model and presented back-transformed.

I2 statistic (%)P valuez scoreQ statistic95% CIr/ESaDependent and independent variables

Attitude

95.353.460.743107.606–0.113 to 0.2510.069Barriers

99.11<.0013.789224.8140.239 to 0.6450.466Benefits

86.987<.0019.549153.690.23 to 0.3420.286Effort expectancy

99.657<.0015.067874.4780.344 to 0.6710.527Facilitating conditions

98.077<.0017.596987.8380.414 to 0.6330.532Performance expectancy

99.435.008–2.653354.157–0.618 to –0.093–0.355Privacy and security

98.033<.0014.069305.0840.182 to 0.4830.342Social influence

Behavioral intention

83.738.221.23318.448–0.049 to 0.210.082Health

0<.00111.0271.3140.266 to 0.3710.319Aesthetic appeal

98.653<.0017.8531855.7920.454 to 0.6720.573Attitude

97.446.84–0.2469.927–0.171 to 0.139–0.016Barriers

99.273.0062.757688.1090.092 to 0.4970.309Benefits

96.342<.0015.729109.3390.081 to 0.1650.123Compatibility

93.58<.0017.043887.8040.134 to 0.2350.185Effort expectancy

98.606.261.117143.458–0.232 to 0.6980.303Ethics

90.17<.0016.318274.6580.138 to 0.2570.198Facilitating conditions

96.675.16–1.414541.286–0.191 to 0.031–0.08Financial cost

89.889<.0018.50939.560.165 to 0.2590.212Functional congruence

98.789<.0019.72495.5210.307 to 0.4440.377Habit

99.798<.0017.3324455.1650.222 to 0.3710.298Health consciousness

89.675<.00113.785135.590.174 to 0.230.202Hedonic motivation

93.589.340.94762.391–0.215 to 0.5560.201Image

96.112<.0015.642154.3340.147 to 0.2970.223Innovativeness

93.732<.00114.2811212.5940.295 to 0.3810.339Performance expectancy

93.912.02–2.348361.354–0.202 to –0.018–0.11Privacy and security

98.997.490.694398.688–0.266 to 0.5160.148Reliability

98.9<.0019.644818.2810.257 to 0.3770.318Self-efficacy

55.518.042.048.9920.005 to 0.2310.12Severity

94.305<.0017.381684.8550.189 to 0.3170.254Social influence

74.102.78–0.27919.306–0.1 to 0.075–0.013Technology anxiety

98.35<.0014.769666.8390.177 to 0.4030.294Trust

64.389.032.15319.6570.009 to 0.1910.101Vulnerability

Actual behavior
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I2 statistic (%)P valuez scoreQ statistic95% CIr/ESaDependent and independent variables

98.508<.0016.9121139.2690.427 to 0.6740.563Behavioral intention

97.994.091.68399.717–0.061 to 0.6630.353Effort expectancy

99.981<.0015.98710353.0560.706 to 0.9390.863Facilitating conditions

99.812.610.5111594.656–0.267 to 0.4360.096Health consciousness

99.525.281.086420.955–0.188 to 0.5810.232Innovativeness

98.459.051.963129.8250.001 to 0.6960.406Performance expectancy

94.418.151.44735.827–0.113 to 0.6380.31Social influence

99.675.311.008615.529–0.204 to 0.5690.216Vulnerability

Performance expectancy

95.064<.0018.873587.4880.302 to 0.4540.38Effort expectancy

98.992.21–1.252396.849–0.353 to 0.078–0.137Barriers

92.955.022.40385.1620.041 to 0.3880.222Compatibility

98.748.0052.784239.5970.1 to 0.5230.328Facilitating conditions

95.026.032.206140.7420.021 to 0.3450.188Health consciousness

94.797.0491.96996.0960.001 to 0.3730.194Image

97.407.022.364115.6840.049 to 0.4810.279Innovativeness

99.456.05–1.945919.956–0.387 to 0.001–0.193Privacy and security

87.934<.0014.25882.880.171 to 0.4350.309Reliability

99.059<.0016.52531.6130.431 to 0.6950.578Self-efficacy

91.774<.0014.349121.5630.177 to 0.440.315Social influence

95.68.022.38292.5950.046 to 0.4410.254Trust

98.563<.0017.539278.4060.544 to 0.7780.678Task-technology fit

Effort expectancy

85.865<.0015.44135.3740.208 to 0.420.318Compatibility

79.36<.0018.32124.2250.343 to 0.5210.436Facilitating conditions

97.347.061.89375.386–0.005 to 0.2940.147Image

95.511<.0017.786133.6540.287 to 0.4580.376Innovativeness

99.09.29–1.06329.763–0.21 to 0.063–0.074Privacy and security

93.436<.0016.74745.7020.339 to 0.5660.46Reliability

99.635<.00112.341371.4190.529 to 0.670.604Self-efficacy

88.549<.0013.3126.1990.097 to 0.3640.235Social influence

99.78<.00117.155910.7140.843 to 0.9140.883Task-technology fit

Task-technology fit

99.348.121.537460.432–0.07 to 0.5220.249Task characteristics

97.562<.0014.729123.0330.429 to 0.8030.654Technology characteristics

ar/ES: combined effect size (back-transformed from Fisher z).

Combining Weight and Meta-Analysis Results: The
Most Adopted Models in Research
Figure 3 presents the weight and meta-analysis for the TAM,
which explains how users adopt and use technology,
emphasizing the influence of external variables on perceived
usefulness (performance expectancy) and perceived ease of use
(effort expectancy), which in turn affect attitudes, behavioral

intentions, and actual technology usage [44,45]. Performance
expectancy is the best and statistically significant predictor of
both attitude (β=.532, P<.001) and behavioral intention (β=.339,
P<.001). Attitude is the best predictor and has a significant
impact on behavioral intention (β=.573, P<.001), while
behavioral intention is the best and significant predictor of actual
behavior (β=.563, P<.001). Effort expectancy is the best
predictor and strongly influences performance expectancy
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(β=.380, P<.001) and attitude (β=.286, P<.001). Health
consciousness (β=.188, P=.03), self-efficacy (β=.578, P<.001),
innovativeness (β=.279, P=.02), and compatibility (β=.222,
P=.02) are significant predictors of performance expectancy,

each with a weight above 0.700. Innovativeness (β=.376,
P<.001) and facilitating conditions (β=.436, P<.001) are
significant predictors of effort expectancy, also with weights
above 0.700.

Figure 3. Weight and meta-analysis for the Technology Acceptance Model. Thicker paths indicate relationships with greater weight—that is, the
strongest predictors (weight≥0.700). Higher weights are therefore represented by thicker lines. The numbers on the paths denote the mean β coefficients
along with their significance levels.

Figure 4 presents the weight and meta-analysis for the Unified
Theory of Acceptance and Use of Technology (UTAUT), which
explains how users adopt and use technology by assessing the
impact of key predictors on behavioral intention and actual
behavior [46,47]. Facilitating conditions (β=.863, P<.001) and
behavioral intention (β=.563, P<.001) are significant predictors
of actual behavior, while social influence is not. Behavioral

intention is significantly influenced by performance expectancy
(β=.339, P<.001), social influence (β=.254, P<.001), facilitating
conditions (β=.198, P<.001), and habit (β=.377, P<.001), all
with weights above 0.700. Effort expectancy (β=.185, P<.001)
and hedonic motivation (β=.202, P<.001) are also statistically
significant predictors of intention; however, financial cost is
not.
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Figure 4. Weight and meta-analysis for the Unified Theory of Acceptance and Use of Technology. Thicker paths indicate relationships with greater
weight—that is, the strongest predictors (weight≥0.700). Accordingly, higher weights are represented by thicker lines. The numbers on the paths denote
the mean β coefficients along with their significance levels.

Figure 5 presents the weight and meta-analysis combining the
HBM and PMT, which explain individuals’ engagement in
health-related behaviors. Both models emphasize the role of
perceived threat, such as vulnerability and severity, and the
evaluation of coping strategies, such as benefits, barriers,
response efficacy, and self-efficacy, in shaping motivation to
take protective or preventive actions [48-50]. The results indicate
that, compared with other technology adoption models, the
predictive power of health-related constructs is weaker and less
consistent. Severity (β=.120, P=.04) and vulnerability (β=.101,
P=.03) have weak weights on behavioral intention and exert a
small but significant impact. Performance expectancy (β=.339,
P<.001) and self-efficacy (β=.318, P<.001), which are also used

in other technology-related adoption models, are the best
predictors and have a significant impact on behavioral intention.
Barriers do not have a significant impact (P=.84), whereas
benefits exhibit a strong, statistically significant effect (β=.309,
P=.006). It is also relevant to mention 2 additional predictors
directly related to the health context but not part of the key
components of these theories. First, health condition, which
refers to the perception of having good health, has a weak and
nonsignificant impact (P=.22) on intention. Second, health
consciousness has a statistically significant impact on intention
(β=.298, P<.001) but does not significantly influence behavior
(P=.61).
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Figure 5. Weight and meta-analysis for the Health Belief Model and Protection Motivation Theory. Thicker paths indicate relationships with greater
weight—that is, the strongest predictors (weight≥0.700). Accordingly, higher weights are represented by thicker lines. The numbers on the paths denote
the mean β coefficients along with their significance levels.

Figure 6 illustrates the TTF model, which examines how well
technology aligns with users’ tasks to enhance perceived
usefulness and adoption [51]. Only part of the theory is
presented, as it remains understudied in the context of IoT in
health care. The results show that TTF is a significant predictor
of performance expectancy (β=.883, P<.001) while being

classified as a promising predictor. The studies suggest that task
characteristics do not have a significant impact on the fit
between the task and the technology. However, technology
characteristics are a promising and significant predictor (β=.554,
P<.001).
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Figure 6. Weight and meta-analysis for the Task–Technology Fit model. Thicker paths indicate relationships with greater weight—that is, the strongest
predictors (weight≥0.700). Accordingly, higher weights are represented by thicker lines. The numbers on the paths denote the mean β coefficients along
with their significance levels. ns: not significant.

Figure 7 presents the weight and meta-analysis of the Privacy
Calculus Theory, which explores the trade-off between benefits
and privacy [52]. The results indicate that trust (β=.294, P<.001)
has a significant positive influence on behavioral intention and

is classified as the best predictor. Privacy and security (β=–.110,
P=.02) exhibits a significant negative effect on behavioral
intention; however, the weight is small, suggesting that privacy
and security concerns may not be a strong inhibitor of adoption.
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Figure 7. Weight and meta-analysis for Privacy Calculus Theory. Thicker paths indicate relationships with greater weight—that is, the strongest
predictors (weight≥0.700). Accordingly, higher weights are represented by thicker lines. The numbers on the paths denote the mean β coefficients along
with their significance levels.

Figure 8 presents the weight and meta-analysis of the Theory
of Planned Behavior, which posits that attitude, subjective
norms, and behavioral control influence behavioral intention

and, subsequently, behavior [53]. Both attitude (β=.573, P<.001)
and self-efficacy (β=.318, P<.001) are the best and strongest
predictors of behavioral intention.
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Figure 8. Weight and meta-analysis for the Theory of Planned Behavior. Thicker paths indicate relationships with greater weight—that is, the strongest
predictors (weight≥0.700). Accordingly, higher weights are represented by thicker lines. The numbers on the paths denote the mean β coefficients along
with their significance levels.

Figure 9 presents the weight and meta-analysis of the Innovation
Diffusion Theory, which explains the diffusion of new
technologies through 5 dimensions [54]. Relative advantage
(performance expectancy; β=.339, P<.001), complexity (effort

expectancy; β=.185, P<.001), and compatibility (β=.123,
P<.001) were found to be significant predictors. Image was not
a significant predictor, and trialability and observability have
not been sufficiently studied in the literature.
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Figure 9. Weight and meta-analysis for the Diffusion of Innovation theory. Thicker paths indicate relationships with greater weight—that is, the
strongest predictors (weight≥0.700). Accordingly, higher weights are represented by thicker lines. The numbers on the paths denote the mean β coefficients
along with their significance levels.

Evaluation of Publication Bias
This section evaluates the presence of publication bias and
assesses the normality of the datasets used in the meta-analysis
to ensure the reliability of the synthesized findings. Publication
bias refers to the tendency for studies with significant or positive
results to be more likely to be published, potentially skewing
meta-analytic outcomes [55]. To ensure the robustness of our

findings, we evaluated publication bias following the approach
of Harrison et al [55], which suggests that a single criterion can
provide a more sensitive and appropriate test. We focused our
analysis on one of the most widely examined relationships in
our dataset: the relationship between performance expectancy
and behavioral intention, which was reported in 77 studies
(Table 5).
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Table 5. Studies (n=77) showing the effect size (z), SE (z), sample size, z score, Q component, significance of the paths between performance expectancy
and behavioral intention, and the country.

CountrySignificanceQ componentz scoreSample sizeSE (Z)Subgroup and effect size (Z)

Group 1

ChinaSignificant2.3505.9653870.0510.268

ChinaSignificant26.16113.4553970.0500.604

ChinaSignificant0.2587.9331580.0800.387

ChinaSignificant15.2643.7184690.0460.165

ChinaSignificant23.9791.9083570.0530.086

ChinaSignificant5.1995.1133860.0510.230

ChinaSignificant34.68415.6162430.0650.727

ChinaSignificant11.5555.1227690.0360.224

ChinaSignificant7.7404.0743040.0580.186

ChinaNonsignificant3.0392.702810.1130.149

ChinaSignificant0.0377.0182010.0710.333

ChinaSignificant6.37310.5304060.0500.472

ChinaSignificant6.4624.5043250.0560.205

ChinaSignificant7.5884.3623450.0540.198

ChinaSignificant2.2674.3721390.0860.217

ChinaSignificant52.16919.2571460.0840.950

ChinaSignificant0.8278.7042370.0650.406

ChinaSignificant3.0149.9141970.0720.471

ChinaSignificant7.03211.1392390.0650.519

ChinaSignificant12.7344.0394620.0470.180

ChinaNonsignificant11.5092.2232010.0710.105

ChinaSignificant2.0686.5676240.0400.289

ChinaSignificant0.9076.1452470.0640.286

ChinaSignificant0.6158.5916680.0390.377

ChinaSignificant3.8309.9273860.0510.446

ChinaNonsignificant19.6513.5605520.0430.157

ChinaSignificant3.5355.7744500.0470.258

ChinaSignificant0.3247.7721110.0960.401

ChinaSignificant80.86921.5311710.0771.040

ChinaSignificant73.94013.58312920.0280.586

ChinaSignificant7.1205.0284750.0460.224

ChinaSignificant8.7645.4017250.0370.236

Group 2
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CountrySignificanceQ componentz scoreSample sizeSE (Z)Subgroup and effect size (Z)

BangladeshSignificant5.2539.7209130.0330.422

FranceSignificant10.21012.2121810.0750.586

FranceNonsignificant12.1722.8552670.0620.132

FranceNonsignificant1.3423.478670.1250.202

Germany, the United
States, the United King-
dom, and Canada

Significant16.64613.3822060.0700.633

GhanaNonsignificant18.8922.2493200.0560.102

GhanaSignificant0.4697.2736450.0390.319

IndiaSignificant1.1908.9394000.0500.401

IndiaSignificant0.7618.4731390.0860.421

IndiaSignificant2.1166.4045340.0430.283

IndiaSignificant14.2283.3303720.0520.150

IndiaNonsignificant7.7932.4181530.0820.119

IndiaSignificant0.3816.5692380.0650.306

IndonesiaSignificant3.6479.5127720.0360.415

IraqSignificant13.90512.1203410.0540.549

ItalySignificant2.1625.1912120.0690.245

JapanSignificant1.0178.8412330.0660.413

JordanSignificant1.3075.5872000.0710.265

KoreaSignificant7.7464.5563890.0510.205

KoreaSignificant0.1056.5721590.0800.321

KoreaNonsignificant79.4541.94811580.0290.084

NepalSignificant3.1725.2092800.0600.239

OmanSignificant6.2474.1122590.0630.190

PakistanSignificant0.3317.2204950.0450.321

The Kingdom of Saudi
Arabia

Significant1.8606.4014860.0460.284

The Kingdom of Saudi
Arabia

Significant6.4965.1454730.0460.229

The Kingdom of Saudi
Arabia

Significant6.2564.0852560.0630.189

South KoreaSignificant20.27812.4414770.0460.553

South KoreaSignificant24.96712.9104870.0450.574

South KoreaSignificant27.22912.0208770.0340.523

SwitzerlandSignificant3.14110.0141100.0970.518

TaiwanSignificant6.34310.6823350.0550.485

TaiwanSignificant0.5758.5192680.0610.393

TaiwanSignificant17.7273.3464580.0470.149

TaiwanSignificant0.0826.3401250.0910.321

TaiwanSignificant0.8074.436810.1130.245

TurkeySignificant28.07014.7962430.0650.688

TurkeyNonsignificant39.4670.9174260.0490.041

The United Arab EmiratesSignificant1.3984.4161060.0990.230
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CountrySignificanceQ componentz scoreSample sizeSE (Z)Subgroup and effect size (Z)

0.141 The United StatesNonsignificant17.0703.1434070.050

The United StatesSignificant244.93025.6813760.0521.157

The United StatesSignificant8.8733.6192770.0600.167

The United StatesSignificant0.7565.2271200.0920.266

The United StatesSignificant112.41119.0124500.0470.848

WorldwideSignificant0.2157.0453220.0560.321

To assess the presence of small-study effects and potential
publication bias, a funnel plot was generated, and an Egger
regression test was conducted. The funnel plot was constructed
to visually evaluate publication bias [42], with the SE plotted
on the y-axis instead of sample size, as this enhances the
detection of asymmetry [36]. In an ideal funnel plot, symmetry
is expected, with smaller studies exhibiting larger SE scattered
evenly on both sides of the pooled effect size. In Figure 10, the
studies display a somewhat asymmetrical distribution. Larger
studies cluster near the combined effect size at the top of the

funnel, while smaller studies show greater dispersion, potentially
indicating publication bias or underlying heterogeneity. The
trim-and-fill method estimates the number of potentially missing
studies—often those with nonsignificant or negative
results—and imputes them to generate an adjusted combined
effect size. In this case, the imputed effect size is slightly smaller
than the original estimate, suggesting that the observed
meta-analytic effect may be modestly inflated due to the absence
of smaller, less favorable studies.

Figure 10. Funnel plot of studies examining the relationship between performance expectancy and behavioral intention.

To statistically assess funnel plot asymmetry, we applied the
Egger regression test [42] to evaluate whether smaller studies
tend to report larger effect sizes, which can indicate potential
publication bias (see Table 6). The test examines the relationship
between effect sizes and their SEs to detect small-study effects.
The results of the regression analysis showed that the intercept
was not statistically significant (α=.381, P=.81), indicating no
evidence of funnel plot asymmetry or publication bias. However,
the slope coefficient was statistically significant (β=.327,
P<.001), suggesting a positive association between study

precision and effect size. While this does not indicate publication
bias, it may reflect genuine heterogeneity among the included
studies.

The I2 statistic, which quantifies the proportion of total variation
across studies attributable to true heterogeneity rather than
sampling error [41], revealed a very high degree of heterogeneity

(I2>93%). This indicates that most of the variability in effect
sizes reflects real differences across studies rather than random
sampling error. These differences may arise from variations in
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study design, measurement tools, participant demographics,
cultural contexts, or theoretical frameworks used across the

included studies. To further explore the sources of heterogeneity,
a subgroup analysis was conducted.

Table 6. Egger‐type test for small‐study bias, using Excel’s Data Analysis Regression Tool, which uses standard ordinary least squares regression.

95% CIP valuet test (df)SECoefficientsRegression

–2.695 to 3.457.810.247 (75)1.5440.381Intercept (α)

0.166 to 0.489<.0014.044 (75)0.0810.327Slope (β)

The subgroup analysis examined whether effect sizes differed
between studies conducted in China and those conducted in
other countries. By comparing studies from China with those
from other regions, we aimed to evaluate potential regional
biases, given that a large proportion of the included studies were
conducted in China. The results, presented in Table 7, indicate
that geographic location has little influence on the overall effect
size, as both subgroups exhibit similar results. The combined
effect size for studies conducted in China is 0.340 (95% CI

0.272-0.404), while for studies in other countries, it is 0.336
(95% CI 0.279-0.390). However, heterogeneity remained very

high in both groups (China: I2=93%; other countries: I2=94%),
indicating substantial variability even within each subgroup.
Therefore, the subgroup analysis addresses concerns about
potential bias from the large proportion of studies conducted in
China, confirming that the results are largely stable across
regions.

Table 7. Subgroup comparison between China and the other countries in our sample.

I2 (%)95% CIP valueEffect sizeSubgroup

92.9840.272-0.404<.0010.340China

94.3550.279-0.390<.0010.336Other countries

Discussion

Principal Findings
The study of IoT adoption in health care reveals a diverse
landscape of constructs and relationships, providing a
comprehensive overview of the factors driving IoT adoption.
This study synthesized findings from 109 papers and 115

datasets across various regions, including China, South Korea,
the United States, and India, with most studies published in
high-ranking journals. The combined weight and meta-analysis
identified the best predictors and examined the adoption models
most frequently used in IoT health care. Figure 11 highlights
the strongest and most consistent predictors, integrating the
results of both the meta-analysis and weight analysis.
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Figure 11. Best predictors identified in the weight analysis, along with their statistically significant mean β coefficients from the meta-analysis. The
strength (weight) of each predictor is represented by the thickness of the line connecting the predictor to the target variable, with thicker lines indicating
stronger predictors. The green box denotes constructs from the Unified Theory of Acceptance and Use of Technology framework, and the orange box
denotes constructs from Technology Acceptance Model.

Technology acceptance models, such as UTAUT and TAM,
have been widely and successfully applied in the context of IoT
in health care [56,57], which is unsurprising given that these
are the most commonly used technology adoption models, highly
cited, and successfully applied across diverse fields and contexts
[58,59]. Compared with models such as UTAUT and TAM,
where predictors such as performance expectancy and
facilitating conditions consistently exhibit strong and reliable
effects, the HBM and PMT models struggle to establish robust
relationships with behavioral intention. This suggests that
relying solely on health-related constructs or health behavior
models may not be sufficient to explain health care technology
adoption. Therefore, other individual factors, such as
innovativeness, external factors, such as social influence, and
technological factors, such as performance expectancy, may
play a more decisive role [60,61]. Integrating context-specific
health variables into robust models such as TAM or UTAUT
can, however, provide additional insights. For example,
individuals with strong health motivation or health
consciousness tend to exhibit higher levels of performance
expectancy from IoT health care technologies [62,63].

The findings highlight several key factors influencing effort
expectancy and performance expectancy, both of which are
central to users’ attitudes toward technology. For effort
expectancy, the most influential factor was self-efficacy,
indicating that individuals who feel more confident in their
ability to use the technology tend to perceive it as easier to

operate [64,65]. Other important contributors include facilitating
conditions, innovativeness, and compatibility, suggesting that
a supportive environment, openness to new technologies, and
alignment with users’ existing values and practices all help
reduce the perceived effort required to use IoT in health care
[66,67]. For performance expectancy, TTF emerged as the
dominant influence, highlighting that when users perceive a
strong alignment between the technology and the tasks they
need to perform, they are more likely to view it as useful [68,69].
Additionally, health consciousness, self-efficacy, reliability,
and compatibility played significant roles, emphasizing the
importance of personal health concerns, confidence in usage,
trust in the system’s dependability, and alignment with users’
existing values and practices [63,70]. Together, these findings
underscore the relevance of both individual and contextual
factors in shaping users’ perceptions of a technology’s
usefulness and ease of use.

Regarding individuals’ IoT health care technology adoption
journey, the findings reveal that a positive attitude is crucial for
successful adoption [71,72]. Efforts to cultivate positive
perceptions can be made by leveraging the influence of
important figures in individuals’ lives and by emphasizing the
ease of use and the potential for improved health care outcomes
[73-75]. When individuals hold a positive perception of IoT
health care, they are more likely to intend to use it, which in
turn positively influences actual usage [76,77]. To further
enhance behavioral intention, the effectiveness of IoT health
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care solutions and the encouragement of health care
professionals, family, and friends should be leveraged [78,79].
Additionally, individuals’ willingness to try new technologies
plays a significant role, as more innovative users are more likely
to adopt IoT solutions [80,81].

Trust plays a decisive role in shaping behavioral intentions,
reinforcing the notion that users are willing to trade some level
of privacy if they perceive a system as secure and reliable [60].
Previous literature has found that individuals are often reluctant
to adopt digital health or IoT technologies when they do not
trust the provider [82,83]. This perspective may help
contextualize the inconsistent results observed for privacy as a
predictor of behavioral intention, as a notable proportion of
studies reported nonsignificant relationships. Similarly,
predictors such as barriers, vulnerability, and financial cost also
exhibited higher frequencies of nonsignificant findings in our
analysis. These inconsistencies may reflect how these constructs
interact with—or are influenced by—the presence of stronger
enabling factors. For instance, high perceived usefulness and
trust may diminish the observed effects of barriers such as
financial cost and privacy, as these factors may become less
salient in users’ perceptions.

Theoretical Implications
This study makes several contributions to the theoretical
understanding of IoT health care adoption by synthesizing
findings from diverse quantitative studies and adoption models.
The results reinforce the importance of established models such
as TAM and UTAUT. They also suggest that integrating
variables from other theories—such as health consciousness,
innovativeness, and trust—into traditional technology
acceptance frameworks can provide deeper insights into how
individuals adopt IoT in health care. Behavioral intention is the
most studied target variable, while attitude and actual behavior
remain underexplored, indicating a gap in existing research on
these critical components of the adoption process.

Researchers should further investigate several promising but
underexplored predictors that showed perfect weight, suggesting
strong yet preliminary evidence of their relevance, to establish
their broader applicability. For instance, regarding behavioral
intention, the aesthetic appeal of health care technologies shows
potential as a strong predictor. For actual behavior, facilitating
conditions and social influence are promising predictors that
warrant further exploration. In the case of the underexplored
TTF theory, technology characteristics appear to be a promising
predictor. For performance expectancy, convenience and
innovativeness are promising predictors, while for effort
expectancy, reliability and TTF show potential as predictors
deserving additional investigation.

By contrast, several predictors demonstrated limited or
inconsistent relevance to the adoption of IoT in health care. For
the outcome attitude, barriers did not have a statistically
significant effect. For behavioral intention, predictors such as
privacy and security, barriers, vulnerability, severity,
compatibility, and financial cost produced inconsistent findings,
with many studies reporting nonsignificant results. Specifically,
health, technology anxiety, financial cost, and barriers were
frequently not significant predictors of behavioral intention.

When predicting actual behavior, variables such as social
influence, innovativeness, health consciousness, vulnerability,
and effort expectancy often failed to reach statistical
significance. Regarding performance expectancy, both privacy
and security and barriers were not consistently significant, and
for effort expectancy, privacy and security and image did not
show meaningful effects.

Our findings indicate that regional differences alone do not fully
explain the heterogeneity of results. Therefore, when applying
the findings of this study, we recommend refining theoretical
models to account for contextual factors and implementing
practical strategies aligned with the strongest predictors
identified, such as performance expectancy and self-efficacy,
which can enhance adoption across different settings. Future
adoption studies would benefit from incorporating
context-specific factors that capture cultural and health care
system differences, enabling a better understanding of how these
contextual variables influence target outcomes, as either control
or moderator variables.

Several regions, particularly in Africa, South America, and
Europe, remain underrepresented, highlighting a gap in the
literature and the need for future research in diverse settings to
improve the generalizability and equity of evidence regarding
IoT adoption in health care. Finally, combining qualitative
methods, such as interviews and focus groups, is recommended
to gain deeper insights. This mixed methods approach can
provide a better understanding of user perceptions and
experiences, bridging the gap between quantitative results and
the complex realities of technology adoption [84,85].

Practical Implications
The findings of this study provide actionable insights for
practitioners, policy makers, and technology developers seeking
to enhance IoT health care adoption. Key drivers—such as
performance expectancy, self-efficacy, social influence,
functional congruence, trust, habit, facilitating conditions,
benefits, and innovativeness—consistently shape behavioral
intention. For example, developers can focus on creating
intuitive designs and user-friendly interfaces while emphasizing
tangible performance benefits. Health care providers and policy
makers can leverage trusted individuals, such as doctors and
family members, to encourage adoption.

The availability of resources and infrastructure that enable and
support technology use—such as access to devices, technical
support, internet connectivity, and integration with health care
systems—plays an important role in adoption, as it reduces
barriers for individuals starting to use IoT in health care [69,78].
Furthermore, adhering to robust data protection frameworks
that ensure transparency from all entities handling health-related
data aligns implementation with national and regional regulatory
standards and fosters user trust [83,86]. Finally, targeting
innovative individuals who are more likely to adopt IoT health
care technologies or who already have the habits and skills to
use them can further promote technology adoption.

Limitations and Future Research
This study has several limitations that warrant consideration.
Our findings reveal a high level of heterogeneity, which is not
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fully explained by regional differences; therefore, the pooled
estimates should be interpreted with caution. Future research
should investigate additional factors that may account for this
heterogeneity, such as study design, population characteristics,
or model specification, and conduct moderator analyses to better
address variability. Additionally, China accounts for a large
proportion of the included studies, while several
regions—particularly in Africa, South America, and
Europe—remain underrepresented. As such, we caution against
overgeneralizing our findings to all global contexts.
Additionally, while this study synthesizes quantitative findings,
it excludes qualitative research, which could provide deeper
insights into contextual variability and user experiences
influencing adoption. This exclusion may contribute to
inconsistencies in the evidence, particularly for understudied
predictors such as privacy concerns, perceived vulnerability,
and financial cost, which often showed nonsignificant results.
Future research should consider integrative literature reviews
that include qualitative studies to better capture the nuanced
interplay of individual, cultural, and technological factors.

Conclusions
Our comprehensive meta- and weight analysis of 115 unique
datasets on IoT health care adoption revealed several significant
predictors for the adoption of IoT health care technologies.
Behavioral intention emerged as the most frequently studied
target variable. By contrast, attitude, actual behavior,
performance expectancy, effort expectancy, and TTF remain
comparatively understudied, with very few paths examined
more than 5 times. While adoption theories from the information
systems field, such as UTAUT and TAM, are predominantly
used, integrating context-specific factors or combining
constructs from different theoretical models can provide deeper
insights into IoT health care adoption and further support the
adoption process.

All the best predictors identified in our study were statistically
significant, with the exception of reliability as a predictor of

behavioral intention. For the target variable attitude, the
strongest predictors were effort expectancy, performance
expectancy, and social influence, while barriers did not have a
statistically significant effect. Regarding behavioral intention,
the most consistent and significant predictors were attitude,
performance expectancy, habit, self-efficacy, functional
congruence, reliability, and benefits. In addition, social
influence, facilitating conditions, and trust demonstrated strong
weights above 0.700, while aesthetic appeal was considered a
promising predictor due to the limited number of studies.
Conversely, variables such as privacy and security, barriers,
vulnerability, severity, compatibility, and financial cost showed
inconsistent results, with a high incidence of statistically
nonsignificant findings. Specifically, health, technology anxiety,
financial cost, and barriers were not statistically significant
predictors of behavioral intention.

For actual behavior, behavioral intention emerged as the best
predictor, while facilitating conditions and social influence were
considered promising. However, social influence,
innovativeness, health consciousness, vulnerability, and effort
expectancy did not reach statistical significance for behavior.
Regarding performance expectancy, effort expectancy, TTF,
and self-efficacy were the best predictors, followed by health
consciousness, social influence, reliability, and compatibility
as strong predictors, while convenience and innovativeness
appeared as promising. Privacy and security and barriers,
however, were not statistically significant predictors of
performance expectancy. For effort expectancy, the most
consistent predictors were facilitating conditions, innovativeness,
self-efficacy, and compatibility, with reliability and TTF
considered promising predictors; privacy and security and image
did not show significant effects. Lastly, for the target variable
TTF, technology characteristics emerged as a promising
predictor, whereas task characteristics were not statistically
significant.
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