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Abstract
The integration of medical open databases with artificial intelligence (AI) technologies marks a transformative era in biomed-
ical research and health care innovation. Over the past 25 years, initiatives like PhysioNet have revolutionized data access,
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fostering unprecedented levels of collaboration and accelerating medical discoveries. This rise of medical open databases
presents challenges, particularly in harmonizing research enablement with patient confidentiality. In response, privacy laws
such as the Health Insurance Portability and Accountability Act have been established, and privacy-enhancing technologies
have been adopted to maintain this delicate balance. Privacy-enhancing technologies, including differential privacy, secure
multiparty computation, and notably, federated learning (FL), have become instrumental in safeguarding personal health
information. FL, in particular, represents a significant advancement by enabling the development and training of AI models
on decentralized data. In Taiwan, significant strides have been made in aligning with these global data-sharing and privacy
standards. We have actively promoted the sharing of medical data through the development of dynamic consent systems. These
systems enable individuals to control and adjust their data-sharing preferences, ensuring transparency and continuity of consent
in the ever-evolving landscape of digital health. Despite the challenges associated with privacy protections, the benefits,
including improved diagnostics and treatment, are substantial. The availability of open databases has notably accelerated AI
research, leading to significant advancements in medical diagnostics and treatments. As the landscape of health care research
continues to evolve with open science and FL, the role of medical open databases remains crucial in shaping the future of
medicine, promising enhanced patient outcomes and fostering a global research community committed to ethical integrity and
privacy.
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Introduction
The emergence of medical open databases, coupled with
advances in artificial intelligence (AI), heralds a significant
change in biomedical research and health care innovation,
facilitating an era of enhanced accessibility and data sharing
[1-3]. This movement toward open data science, augmen-
ted by AI technologies, enables researchers worldwide to
access a wealth of data, including physiological signals [4,
5], genomic [6], and health care information [7], and, most
prominently, large-scale medical imaging archives. While this
review covers the broad spectrum of medical data, the impact
of open imaging databases has been particularly transforma-
tive for the application of AI. This movement toward open
data science fosters collaboration and speeds up the pace of
medical discoveries.

AI’s role in analyzing vast datasets has been instrumental
in uncovering patterns and insights that would be impossi-
ble for humans to detect unaided, leading to breakthroughs
in understanding diseases and patient care. Initiatives like
annual challenges and shared toolboxes have spurred the
development of novel algorithms and techniques, leveraging
AI to address complex biomedical challenges and advance
medical diagnostics and treatments. This synergy between
open medical databases and AI is transforming the landscape
of health care, promising a future of more accurate, efficient,
and personalized medicine.

Simultaneously, this rise in open data repositories brings
to the forefront crucial privacy concerns [6,8]. The neces-
sity to balance the imperative of research enablement with
the protection of patient confidentiality has never been
more pronounced. In this context, laws such as the Health
Insurance Portability and Accountability Act (HIPAA) play
a pivotal role in shaping the landscape of data deidentifi-
cation and anonymization processes, ensuring that shared
data comply with strict privacy standards [9]. Moreover, the
introduction of privacy-enhancing technologies (PETs), such

as differential privacy [10], synthetic data [11], homomor-
phic encryption [12], secure multiparty computation [13],
and federated learning [14], represents a proactive approach
to safeguarding personal health information. These technolo-
gies provide the means to conduct meaningful research while
upholding the principles of data privacy and security.

In a country like Taiwan, strides in medical data sharing
suggest the global shift toward interconnected health systems,
highlighting both advancements and ongoing challenges in
securing patient data. The implementation of dynamic consent
frameworks reflects a growing recognition of the need for
more flexible approaches to data privacy, particularly in an
era of personalized medicine and digital health records [15].
As the landscape of medical research evolves with these
developments, the interplay of data sharing, privacy, and
technology continues to reshape the boundaries of what is
possible in health care innovation, marking a critical junction
in the journey toward more open, collaborative, and ethically
responsible research environments.

This review aims to provide a 25-year perspective on the
evolution of medical open databases, tracing their impact
on biomedical research and health care innovation, and to
examine how emerging PETs and data-governance frame-
works, including dynamic consent systems, shape the ethical,
technical, and collaborative landscape of digital medicine
worldwide.

The Rise of Medical Open Database
The rise of medical open databases represents a transforma-
tive shift in the landscape of biomedical research and health
care innovation. Among the pioneers in this movement is
PhysioNet. Established in 1999, PhysioNet is a pioneering
open database that provides free access to a wide range
of physiologic signals and related open-source software for
research in medicine, physiology, and biomedical engineering
[4,16]. It was initiated by a collaborative project involving
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researchers from Boston’s Beth Israel Deaconess Medical
Center/Harvard Medical School, Boston University, McGill
University, and Massachusetts Institute of Technology [4,
17]. The database contains a diverse collection of physiolog-
ical datasets, including those related to cardiovascular and
other complex biomedical signals [4,18]. PhysioNet has had
a significant impact on the development of medical open
databases, serving as a model for the establishment of similar
resources. It has also played a key role in promoting the
dissemination and exchange of medical resources.

A significant contribution of PhysioNet to the scien-
tific community is its annual PhysioNet Challenge, which
has markedly influenced the field by promoting innova-
tion and collaboration among researchers and clinicians.
These challenges stimulate the creation of novel algo-
rithms and methods aimed at solving complex biomedi-
cal problems, thus expanding the limits of what can be
achieved in medical data analysis and application. For
instance, the challenges have catalyzed the development
of innovative algorithms capable of detecting obstruc-
tive sleep apnea from electrocardiograms [19], illustrating
the practical impact of these competitions on advancing
medical diagnostics and treatment strategies [20].

Since the success of PhysioNet, numerous other medical
open databases have emerged globally, fostering a more
cooperative and transparent research atmosphere (Figure

1). The impact of these large-scale databases on biomed-
ical discovery is profound. One notable example is the
UK Biobank [21], launched in 2006, which provides a
vast repository of genetic and health information from
half a million UK participants. This database has become
an essential tool for unraveling the complex interplay
between genetics, lifestyle, and disease, thereby enhancing
our understanding of the factors influencing human health
[22-25]. By leveraging large neuroimaging cohorts such
as Alzheimer Disease Neuroimaging Initiative and the UK
Biobank, researchers have developed AI-based models that
generate an Alzheimer disease risk score from structural
magnetic resonance imaging (MRI), enabling the identifica-
tion of prediagnostic populations suitable for early interven-
tion and preventive trials [26]. In cardiovascular research,
analysis of the UK Biobank’s genetic and imaging data
has enabled the development of NeuralCVD, a neural
network–based risk model that integrates polygenic and
clinical predictors to estimate the 10-year risk of major
adverse cardiac events, improving risk discrimination and
reclassification beyond established clinical scores and Cox
models, and highlighting the added predictive value of
genetic predisposition in early prevention [27]. Similarly, the
Cancer Imaging Archive, inaugurated in 2011 in the United
States, offers a dedicated platform for the cancer research
community, enabling access to a comprehensive array of
imaging datasets [28].

Figure 1. Historical development of major medical open databases and data-sharing platforms over the past 25 years.

Beyond these examples, the ecosystem of medical open
databases has diversified into numerous specialized domains.
For instance, OpenNeuro provides a vast repository
for neuroimaging data, particularly functional magnetic
resonance imaging, electroencephalogram, and magnetoence-
phalography, supporting reproducible brain research [29]. The
Neuroimaging Informatics Tools and Resources Clearing-
house offers a rich collection of imaging and data-process-
ing tools [30]. Similarly, the National Database for Autism
Research [31] and the Federal Interagency Traumatic Brain
Injury Research informatics system [32] provide deeply
phenotyped datasets crucial for research in their respective
fields. These platforms underscore the field’s shift toward
creating specialized, high-quality resources to tackle specific

biomedical questions. They display how shared resources can
drive forward innovation and improve patient care worldwide,
illustrating the critical role of collaborative environments in
the advancement of health care research and application.

Additionally, Kaggle, an online platform for data science
and machine learning (ML) competitions, has emerged as
a pivotal player in the field of ML analysis and data shar-
ing [33]. Launched in 2010, Kaggle facilitates collaboration
and competition among data scientists and researchers by
hosting challenges in various domains, including health care.
These competitions often involve complex medical datasets,
encouraging participants to develop innovative solutions and
algorithms for disease prediction, medical imaging analy-
sis [34], and other health-related issues. Kaggle has not
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only democratized access to large medical datasets but has
also fostered a global community where knowledge and
techniques are openly shared. This environment has led
to significant breakthroughs and advancements in medical
research and analytics, further suggesting the importance of
open data and collaborative problem-solving in improving
health care outcomes and accelerating medical innovation.

Balancing Privacy and the Need for
Medical Open Databases
The success of open medical databases such as Physio-
Net poses the challenge of balancing patient confidential-
ity with research enablement on open platforms [35,36].
Research datasets in health care often contain protected
health information (PHI), and the process of removing
this information, a process known as deidentification or

anonymization, can be challenging and prone to errors [37].
Despite the use of these datasets, the need for deidentification
introduces a significant barrier to data sharing due to the
effort and cost involved.

The HIPAA, established in the United States in 1996,
plays a vital role in safeguarding patients’ medical informa-
tion. In response to the HIPAA mandate, U.S. Department
of Health and Human Services published a final regulation
in the form of the privacy rule in December 2000, which
became effective on April 14, 2001. Central to this rule
is the designation of 18 specific categories of PHI that, if
disclosed, could be used to identify an individual (Textbox
1). These categories encompass a broad spectrum of personal
data, including, but not limited to, names, geographic details
smaller than a state, various identifiers like social security
numbers, medical record numbers, and contact information,
as well as certain biometric and photographic images [38].

Textbox 1. Eighteen categories of protected health information.
• Names
• All geographic subdivisions smaller than a State
• All elements of dates (except year) for dates directly related to an individual
• Telephone numbers
• Fax numbers
• Electronic mail addresses
• Social security numbers
• Medical record numbers
• Health plan beneficiary numbers
• Account numbers
• Certificate/license numbers
• Vehicle identifiers and serial numbers
• Device identifiers and serial numbers
• Web URLs
• IP address numbers
• Biometric identifiers, including finger and voice prints
• Full face photographic images and any comparable images
• Any other unique identifying number, characteristic, or code

Additionally, HIPAA mandates that covered entities must
ensure they do not possess knowledge that the remaining
information could be used, whether alone or in conjunction
with other data, to identify the subject. By strictly adhering
to these guidelines, entities can share deidentified health
information for broader uses, such as public health and
research, without infringing on individual privacy rights,
thus striking a balance between privacy protection and the
beneficial use of health data [39]. Despite these efforts, the
tension between the promise of big data and patient privacy in
health care research remains a challenge [40].

PhysioNet is a pioneer in medical public databases,
ensuring that the datasets it provides do not compromise
individual privacy. This involves ensuring that any data
shared does not contain PHI or has been sufficiently
anonymized to prevent the identification of individuals.
The challenges posed by the HIPAA privacy rule are not
insignificant; they include the need for informed consent
from data subjects and potential limitations on access to

health information that can hinder clinical research [41,42].
Furthermore, the rule’s interaction with other regulations, like
the common rule, adds complexity to privacy concerns in
research, leading to inconsistencies and additional burdens for
researchers.

Despite these challenges, the privacy rule does allow for
certain disclosures without patient authorization, particularly
for public health purposes. This is intended to facilitate the
use of medical data in important public health endeavors
without undermining individual privacy protections [43]. The
balance sought by the HIPAA privacy rule between protect-
ing privacy and facilitating research is a critical aspect of
its implementation, particularly in the context of medical
open databases. By navigating these regulations successfully,
repositories can contribute to the advancement of medical
research while ensuring compliance with privacy standards
[44].

The emergence of medical databases, such as the
PhysioNet, UK Biobank, and the Cancer Imaging Archive,
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has significantly advanced collaborative research in health
care [45,46]. These databases have the potential to transform
cancer research and improve patient outcomes [45]. How-
ever, the collection, linking, and use of data in biomedical
research raise ethical concerns, particularly regarding privacy
and security [36,47,48]. Despite these concerns, the bene-
fits of open data in health care, including improved diagnos-
tics and treatment, are substantial [48]. The push for data
sharing in cancer trials by pharmaceutical companies further
underscores the importance of open medical databases in
driving innovation and improving patient care [49].

Privacy Enhancing Technology
Overview
A range of studies have been conducted to explore
the increasing frequency and impact of health care data
breaches, highlighting the rising number of incidents and
their detrimental effects on patient privacy and health care
providers [50-53]. These breaches are often caused by a

combination of technical, organizational, and human factors
[50-52]. Human vulnerabilities, such as lack of awareness
and training, play a significant role in these breaches [51].
The use of the Swiss Cheese Model can help assess vul-
nerabilities and risks [50]. Cloud computing breaches are a
particular concern, highlighting the need for digital forensic
readiness [54]. Hacking and unauthorized internal disclosures
are the most prevalent forms of attack [53]. Further studies
may examine specific cases and the implications for digital
forensic readiness, emphasizing the importance of adhering to
regulations.

Below, we reviewed several PETs and their applications in
enhancing data privacy and security in health care settings
(Table 1). PETs, such as encryption, anonymization tech-
niques, and secure multiparty computation, offer powerful
mechanisms to protect sensitive health data. Implementing
these technologies, alongside robust privacy policies and
employee training, can significantly reduce the likelihood of
data breaches and bolster the trust between patients and health
care providers.

Table 1. Summary of privacy-enhancing technologies.
Technologies Core principle Advantages Challenges and trade-offs
Differential privacy Adds calibrated statistical noise to query

results to make it impossible to determine if
an individual’s data were included.

Provides strong and mathematically
provable privacy guarantees.

Inherent trade-off between privacy and data
use; high privacy can reduce analytical
accuracy.

Synthetic data Creates an artificial dataset that mimics the
statistical properties of the original data
without containing real patient information.

High use for model training; no real
patient data are shared, eliminating
reidentification risk.

Can be difficult to generate high-fidelity
data that captures all complex correlations;
potential for model bias.

Homomorphic
encryption

Allows computations to be performed
directly on encrypted data without decrypting
it first.

Offers extremely strong security, as the
raw data are never exposed.

High computational overhead; currently too
slow for many complex MLa tasks.

Secure multiparty
computation

Enables multiple parties to jointly compute a
function over their inputs while keeping
those inputs private.

Allows for collaborative analysis
without a central data repository; no
single party sees another’s data.

High communication overhead between
parties; can be complex to set up and scale.

Federated learning Trains a central AIb model across decentral-
ized devices or servers holding local data
samples, without exchanging the data itself.

Keeps raw data local, enhancing
privacy and data sovereignty.

Vulnerable to model poisoning/inversion
attacks; performance can degrade with
heterogeneous data.

aML: machine learning.
bAI: artificial intelligence.

Differential Privacy
Differential privacy, a method for protecting individual
privacy in data analysis, has been increasingly applied in
the health care sector. It involves adding noise to the data
to prevent reidentification of individuals. This approach
has been used in various areas of health research, includ-
ing genomics, neuroimaging, and health surveillance [55].
However, there are challenges in its practical application,
such as the theoretical nature of the privacy parameter
epsilon [56]. To address these challenges, researchers have
proposed differentially private data release strategies and
noise mechanisms, such as the Laplace and exponential
mechanisms [57]. However, a key challenge is the inherent
trade-off between privacy and data use; increasing the amount
of statistical noise to protect privacy can reduce the accuracy
of analytical outcomes.

The application of differential privacy in medical
questionnaires has also been explored, with the random-
ized response mechanism showing promise in improving
privacy while retaining data use [58]. Furthermore, the use
of differential privacy in geospatial analyses of standardized
health care data has been demonstrated, with the development
of geodatabase functions for privacy-aware analysis [59].
Finally, the combination of differential privacy and decision
tree approach has been proposed for data publishing, and the
differentially private mini-batch gradient descent algorithm
for model publishing of medical data [60].
Synthetic Data
Synthetic data, generated through simulators, is increasingly
used in health care to address the challenges of data availa-
bility and privacy [61]. PETs, such as differential privacy,
are combined with synthetic data generators to create private
synthetic data, preserving statistical properties while ensuring
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privacy [62]. These technologies have been applied in various
use cases, including clinical risk prediction [63] and medical
research [64]. However, the evaluation of synthetic data’s
privacy and use metrics remains a challenge, with a lack
of consensus on standard approaches [65]. Despite these
challenges, the potential of synthetic data in preserving data
use and patient privacy in electronic health care data is being
explored [66].
Homomorphic Encryption
Homomorphic encryption, a powerful tool for preserving
privacy in medical data, allows for computations to be
performed on encrypted data without the need for decryp-
tion. It has been successfully applied in various medical
data scenarios, including ML models for classification and
training, secure genomic algorithms, and predictive analysis
tasks [67-69]. For example, it has been used to securely
manage personal health metrics data, process medical images
[70,71], and enable secure medical computation [72]. The use
of homomorphic encryption in these applications ensures that
sensitive medical data remains private and secure. Despite
its power, the primary limitation of homomorphic encryption
is its significant computational overhead, which can make
it slow and resource-intensive for complex computations on
large datasets.
Secure Multiparty Computation
Secure multiparty computation is a cryptographic technique
that enables data analytics without sharing the underlying
data, making it a valuable tool for preserving privacy in
medical data analysis [73]. It has been applied in various
health care scenarios, including collaborative systems [74],
statistical analysis of health data [75], and electronic medical
record (EMR) data [75]. Secure multiparty computation has
also been used in health care internet of things systems
to handle privacy issues [76], prevent data disclosure in
sensor networks [77], and enable the reuse of distributed
electronic health data [75]. Furthermore, it has been applied
to enable privacy-preserving query processing on EMRs [78].
Notably, secure multiparty computation has enabled research
on highly sensitive data (such as HIV, rare diseases, and
population genomics) that would otherwise be inaccessible
due to privacy concerns.
Federated Learning
Federated learning (FL), a decentralized ML approach, is
increasingly being applied in the medical field due to the
sensitive and fragmented nature of health care data [14,79].
It allows for the collaborative development of ML models
without sharing raw data, thus preserving privacy [80,81].
This approach has been used in various medical domains,
including oncology and radiology, for tasks such as image
analysis and disease prediction [81,82]. However, there are
challenges to be addressed, such as data homogeneity and
transparency [81]. Furthermore, FL can be vulnerable to
security risks, such as model inversion attacks that attempt
to reconstruct training data from the shared model updates,
and require careful design to ensure robustness. Despite these

challenges, FL shows promise in improving the efficiency
and privacy of medical data processing [83-85].

To address the challenge of data heterogeneity in FL,
we have proposed the Dynamically Synthetic Images for
Federated Learning method, significantly improving the
conventional FL framework by integrating local information
from local multiple institutions with heterogeneous data types
[86]. The core principle of its implementation involves a
dynamic process where, at the start of each training round,
a client’s local data are evaluated by the current global
model to identify misclassified images. Using a synthetic
minority oversampling technique, the system generates new,
synthetic images based on these misclassified cases, which
are then added to the local training set to compel the
model to focus on features it previously failed to learn.
In terms of effectiveness, experimental results demonstrated
that Dynamically Synthetic Images for Federated Learning-
based models achieve higher accuracy than conventional FL
approaches and that their performance can be comparable
to that of traditional centralized learning, proving especially
beneficial for institutions with smaller or more heterogeneous
datasets [86].

Taiwan Medical AI and Data Portal
and Dynamic Consents System
Taiwan has made significant strides in medical data shar-
ing, particularly in the areas of privacy protection and
electronic health records exchange. The country’s compre-
hensive embedded integrated circuit-based health insurance
card system, implemented by the Bureau of National
Health Insurance, Taiwan, allows for the secure sharing
of health information [87]. The use of blockchain technol-
ogy has been proposed as a means to further enhance
the security and privacy of medical data sharing [88,89].
The Taiwan Electronic Medical Record Template and the
National Electronic Medical Record Exchange System have
been developed to facilitate the exchange of EMRs [90,91].
However, concerns about unauthorized access and secondary
use of EMRs persist, particularly among highly educated
individuals [92]. The country has also established guidelines
for the security and privacy protection of health information,
drawing on international best practices [93].

In the past 4 years, funded by the National Science and
Technology Council of Taiwan, we have assembled teams
from National Yang Ming Chiao Tung University, Taipei
Veterans General Hospital, Academia Sinica, and National
Taipei University of Nursing and Health Sciences to form a
data repository task force known as the Smart Medical AI and
Repository Taskforce Center. We launched a medical AI and
data-sharing platform aimed at advancing the field of medical
AI research in October 2023 [94]. This platform not only
provides the public and researchers with access to a multitude
of shared datasets but also ensures a meticulous evaluation
process (Figure 2). Researchers can apply for access to the
data by providing an abstract of their research proposal.
Dataset managers assess applications based on their intended
use, specific needs, and detailed research plans.
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Figure 2. Taiwan medical artificial intelligence and data portal. AI: artificial intelligence.

Currently, seventeen datasets have been released on
the platform, covering neuropsychiatric disorders, brain
tumors, ophthalmic diseases, musculoskeletal disorders,
and cardiopulmonary diseases. All datasets have under-
gone deidentification and delinking processes and include
annotated information to facilitate AI training and valida-
tion. Specifically, our data-sharing platform includes: MRI
images of vestibular schwannoma; computed tomography
(CT) images of intracerebral hemorrhage; brain Fluorodeoxy-
glucose-Positron Emission Tomography/Magnetic Resonance
Imaging images for dementia diagnosis; primary brain tumor
MRI datasets, including meningioma, glioma, and pituitary
adenoma; MRI data of brain metastases, which represent
the largest collection nationwide; hand and foot X-rays
of rheumatoid arthritis; X-rays of compression fractures;
spinal X-rays of ankylosing spondylitis; chest CT images
and clinical data of atrial fibrillation patients; chest X-rays
for lung cancer screening; annotated preoperative liver CT
images; neck lymph node CT images with postoperative
pathology results; the Taiwan Aging and Mental Illness
Cohort brain imaging database; the dementia molecular
imaging database; fundus image datasets for glaucoma; and
fundus image datasets of polypoidal choroidal vasculopathy.

The data sharing platform is built on a comprehensive
architecture designed to support AI research by integrat-
ing 3 core systems: a CKAN-based sharing platform for
dataset management, a data application system, and a
dynamic authorization consent platform for patient privacy.
Specific features include a robust user authentication and

authorization mechanism, allowing dataset managers to grant
access to specific users or collaborators. The platform ensures
data integrity and ethical compliance through a multistep
deidentification process for all medical images and by linking
to the dynamic consent system (for sensitive clinical data),
which allows patients to manage their data sharing preferen-
ces in real-time. To use the database, researchers first search
for datasets on the platform, then apply for access through a
formal registration and review process. Once approved and
authorized by the dataset manager, users can obtain a login
key to programmatically access the data through standar-
dized protocols, such as DICOMweb, ensuring a secure,
convenient, and interoperable environment for third-party AI
applications.

This effort aims to advance research across 7 crucial
clinical areas that greatly benefit from AI technology,
including heart disease, neurological disorders, mental illness,
diabetes, cancer, genetic predispositions to complex diseases,
and medical imaging. Moreover, the platform underpins
collaboration between distinct teams specializing in AI
methodology, science and law, and data governance, jointly
fostering a robust data governance framework that emphasi-
zes FL, cloud-based AI solutions, and trusted AI practices.
Importantly, the system is designed to streamline the research
process while maintaining a focus on ethical standards and
participant privacy. In line with this, the platform incorpo-
rates a dynamic informed consent mechanism, especially
for datasets that are anonymized but cannot be completely
separated from their sources. This approach ensures that
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participants’ privacy is safeguarded while also enabling their
informed and ongoing consent, reflecting our commitment to
ethical research practices and the dynamic nature of consent
in medical studies.

Dynamic informed consent, a concept that has been
explored in various contexts, is a personalized, digital
communication interface that allows participants to manage
their consent preferences [95]. It has been proposed as
a solution to improve patient confidence and trust in the
use of electronic patient records in medical research [96].
In the context of privacy-aware pervasive health and well-
being, dynamic consent enables granular data consent and
management [97]. It has also been suggested as a poten-
tial solution to challenges in modern biomedical research,
including participant recruitment, informed consent, and
consent management [98]. The use of blockchain technol-
ogy has been proposed to enhance the privacy-preserving

aspects of dynamic consent in genomic data sharing [99].
The concept of dynamic informed consent has been further
explored in the context of personalized medicine, emphasiz-
ing the need for a more dynamic and enriched consent model
[100].

To enhance the privacy of participants contributing
to the data in our platform and increase participants’
engagement, we have developed a dynamic informed
consent system, named the Health Data Authorization
Service Platform (Figure 3). This collaborative effort
involves our data governance, humanities, science and law,
and clinical teams, aiming to facilitate scalable, dynamic
consent operations suitable for complex data environments.
The platform supports flexible data governance, allowing
data owners to dynamically express their consent pref-
erences, thereby making dynamic consent practical and
sustainable.

Figure 3. Health data authorization service platform. This diagram depicts the architecture of a medical data-sharing platform that integrates dynamic
consent for secure and transparent data sharing. The system centers on 4 key roles: the resource owner (RO), who owns the data; the resource server
(RS), where medical data are stored and managed; the requesting party (RP), typically researchers seeking data access; and the authorization server
(AS), the core component facilitating connections among the roles. This framework ensures data access is based on explicit consent from the data
owner, allowing real-time adjustments to consent settings for different data types and uses, such as academic research. The platform’s primary tasks
are to establish individual preferences, maintain consent history, and ensure trust and transparency between data owners and users, thereby advancing
responsible data science development.

The platform’s architecture encompasses 4 key roles: the
resource owner, usually the participants, who owns the
data; the resource server, which stores and manages medical
data; the requesting party, typically researchers seeking data
access; and the authorization server, the backbone of our
dynamic consent system, connecting the 3 roles. This system
ensures that data are accessed only with the owner’s express
consent, respecting their preferences and enhancing data use
transparency. Resource owners can modify their consent
settings at any time, reflecting changes in their willingness to
share different data types, like EMRs or medical imaging, for
specific purposes such as academic research. This flexibil-
ity ensures that data use aligns with the owners’ current
preferences. The platform seamlessly integrates with our

shared data framework, maintaining each citizen’s consent
history and enabling swift updates to consent forms as
needed. By streamlining the consent process and ensuring
data are shared according to owner permissions, our platform
respects individual preferences while promoting responsible
data science development. It exemplifies a forward-thinking
approach to data governance, enabling real-time adjustments
in consent and fostering a culture of trust and transparency
between data owners and users.

These initiatives in Taiwan can be understood within the
global context of evolving data privacy regulations. Unlike
the “one-time, broad consent” model often used in US-based
research under the Common Rule, Taiwan’s move toward
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dynamic consent aligns more closely with the principles of
the European Union’s General Data Protection Regulation
[101]. The General Data Protection Regulation mandates
that consent must be specific, informed, and easily revoca-
ble. The dynamic consent system builds on this by pro-
viding a technological interface for participants to manage
their preferences granularly and continuously, representing
a best-practice approach to balancing research needs with
individual autonomy and privacy rights.

Acceleration of Medical AI Research
Through Open Databases
The advent of medical open databases has significantly
accelerated the field of medical AI research, fostering an
environment of innovation and rapid development [102]. By
providing researchers with access to vast amounts of health-
related data, these databases have become a cornerstone for
advancements in predictive analytics, diagnostic algorithms,
and personalized medicine.

One of the most notable contributions of open medical
databases to AI research is the democratization of data
[103]. Historically, the scarcity and inaccessibility of medical
data posed substantial hurdles to AI development. However,
platforms like PhysioNet, established in 1999, have bridged
this gap by offering a plethora of datasets ranging from
physiological signals to clinical outcomes [104]. However,
challenges remain, including the need for large datasets
and the lack of external validation in perioperative medi-
cine [105]. The use of open science approaches, including
data liberation and crowdsourcing, can help address these
challenges [106]. The integration of networked medical
devices and clinical repositories based on open standards can
further enhance AI research in high-acuity medical environ-
ments [107]. This enhanced availability allows researchers
from diverse backgrounds and institutions to engage in health
care innovation, leveling the playing field and stimulating a
surge in AI-based solutions.

The availability of open databases has catalyzed the
application of diverse AI methodologies to complex medical
problems. Deep learning, particularly convolutional neu-
ral networks, has achieved state-of-the-art performance
by leveraging large-scale imaging datasets; for example,
researchers have trained convolutional neural networks on
millions of images from The Cancer Imaging Archive to
develop algorithms capable of detecting and classifying
tumors in radiological scans with accuracy comparable to
human experts [108]. For structured data such as the genetic
and clinical information in the UK Biobank, traditional ML
models like random forests and gradient boosting have been
widely used, excelling at identifying complex patterns to
predict disease risk, including the calculation of polygenic
risk scores for coronary artery disease based on thousands
of genetic variants [109]. In addition, natural language
processing techniques have been applied to large reposito-
ries of unstructured clinical notes, such as those in the
Medical Information Mart for Intensive Care version IV

(MIMIC-IV) database (part of PhysioNet), to extract critical
information on symptoms, treatments, and outcomes, thereby
enabling large-scale retrospective studies that were previously
infeasible [110].

Open medical databases encompass a wide variety of
data types, including EMRs, imaging, genomic sequences,
and more. This diversity enables AI researchers to explore
multifaceted health care questions, from predicting disease
trajectories to optimizing treatment plans. Moreover, the
rich, varied datasets facilitate the training of more robust
and generalizable AI models, capable of addressing complex
medical scenarios across different populations and settings.
The shared nature of open databases fosters collabora-
tion across the global research community [111]. Through
platforms that offer shared data, researchers can combine
their expertise to tackle larger and more complex problems
than they could individually. This collaborative approach has
led to significant breakthroughs in AI, such as algorithms that
can detect diseases from images with accuracy rivaling that of
trained professionals [112,113].

Open databases also streamline the validation and
implementation phases of AI development [114]. Access to
diverse datasets enables researchers to rigorously test their
algorithms under various conditions and patient demograph-
ics, ensuring their reliability and effectiveness. The expan-
sion of these databases has significantly propelled medical
AI research forward, marking a new phase of health care
innovation with faster discoveries, collaborative efforts, and a
commitment to ethical data use. As the field evolves, the role
of open databases in shaping the future of medicine remains
pivotal.

Conclusions
In conclusion, the evolution toward medical open databases,
exemplified by the inception of platforms like PhysioNet in
1999 and their progression over the past 25 years, alongside
the integration of PETs, marks a significant milestone in
the domain of biomedical research and health care innova-
tion. This journey not only fosters an unprecedented level of
collaboration and accessibility but also emphasizes the crucial
need to address privacy concerns and ethical considerations
diligently. The ongoing efforts to balance data sharing
with individual privacy protection are underscored by the
adaptation of legal frameworks and the implementation of
cryptographic and data management solutions. The introduc-
tion and growth of medical open databases have been pivotal,
providing a wealth of data that has propelled research and
innovation while highlighting the challenges and respon-
sibilities of managing sensitive information. Specifically,
the availability of open medical databases has significantly
accelerated AI research, leading to breakthroughs in disease
prediction, diagnostics, and personalized medicine. As we
continue to explore the vast potential of open science and
FL, the landscape of health care research is on the brink
of remarkable transformations. These advancements promise
enhanced patient outcomes, faster medical discoveries, and
a more inclusive global research community, all achieved
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by adhering to the highest standards of privacy and ethical
integrity.
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