JOURNAL OF MEDICAL INTERNET RESEARCH Gong et d

Review

Al in Esophageal Motility Disorders: Systematic Review of
High-Resolution Manometry Studies

Eun Jeong Gong“%3, MD, PhD; Chang Seok Bang®**, MD, PhD; Jae Jun Lee**, MD, PhD; Gwang Ho Baik? MD

1Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea

2Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea

3Ingtitute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea

4Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
5Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea

Corresponding Author:

Chang Seok Bang, MD, PhD
Department of Internal Medicine
Hallym University College of Medicine
Sakju-ro 77

Chuncheon, Gangwon, 24253

Republic of Korea

Phone: 82 332405000

Fax: 82 332418064

Email: csbang@hallym.ac.kr

Abstract

Background: High-resolution esophageal manometry (HRM) isessential for diagnosing esophageal motility disorders, affecting
10%-15% of patientswith dysphagia. Current interpretation viathe Chicago Classification remains challenging, with interobserver
variability reaching 30%-40% even among experts. Artificial intelligence (Al) has emerged as a transformative tool to automate
HRM interpretation.

Objective: We aimed to evaluate current Al HRM applications and assess diagnostic accuracy, methodological approaches,
clinical validation, implementation barriers, and real-world implications for gastroenterology practice.

Methods: We searched PubMed/MEDLINE, Embase, Cochrane Library, and Web of Science through November 2025, for
studies using Al or machine learning to interpret esophageal HRM. Eligible studies included original research evaluating such
interpretation in adults with esophageal symptoms, published in English. We excluded casereports, reviews, abstracts, and studies
without outcomes. Data on Al model tasks and diagnostic outcomes were extracted. Primary outcomes included diagnostic
accuracy metrics, secondary outcomes encompassing externa validation performance, real-time processing capabilities, and
comparison with expert interpretation. Two reviewers independently screened studies and extracted data. Study quality was
appraised using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) criteria. Given the substantial heterogeneity,
we performed qualitative narrative synthesis rather than quantitative meta-analysis.

Results. Seventeen studies encompassing 4588 patients demonstrated progressive Al evolution across 3 phases. Early studies
(2013-2016, n=4) using traditional machine learning achieved 86.5%-94% accuracy for parameter extraction. Deep learning era
(2018-2022, n=8) achieved breakthrough performance: 97% (95% Cl 95.7%-98.3%) accuracy for integrated rel axation pressure
classification, 91.32 (95% Cl 87.0%-94.5%) for motility tracing, and 86% for complete Chicago Classification automation. Recent
multimodal approaches (2023-2024, n=5) incorporating acoustic analysis and fuzzy logic achieved 83%-95% accuracy while
reducing interpretation time from 15-20 to <2 minutes. Al systems demonstrated superior consistency with O intraobserver
variability compared to 15%-30% among human experts. However, critical gaps emerged: 0% (0/17) of studies performed external
validation, 82% (14/17) showed unclear patient selection bias, and none obtained regulatory approval. QUADAS-2 assessment
identified low risk of biasin 65% (11/17) of studies for the index test domain but high concern in 100% for applicability due to
lack of real-world testing.

Conclusions:  This review demonstrates Al’'s transformative potential for HRM interpretation, with diagnostic accuracies
reaching 97%. Real-world implications are significant, promising to enable standardized diagnostics across institutions, address
the critical shortage of motility experts affecting 70% of global health care systems, and reduce health care costs by 20%-30%
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through an 85%-90% reduction in interpretation time and decreased repeat procedures. Beyond synthesizing existing evidence,
this review brings new knowledge to the field through 3 key contributions: mapping the evolutionary trajectory from rule-based
to deep learning systems, quantifying Al’s superior reproducibility compared to human experts, and revealing the critical disconnect
between algorithmic performance and clinical trandation. Future priorities include multicenter validation trials and regulatory

pathway development.
Trial Registration:

(J Med Internet Res 2025;27:e85223) doi: 10.2196/85223
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Introduction

Thediagnosisand classification of esophageal motility disorders
have undergone evolution since the introduction of
high-resolution esophageal manometry (HRM) in the early
2000s [1]. This technological advancement, characterized by
closely spaced pressure sensors providing spatiotemporal
pressure topography displays, has altered our understanding of
esophageal physiology and pathophysiology [1,2]. The
subsequent devel opment and iterative refinement of the Chicago
Classification, now in its fourth version, has established a
standardized framework for HRM interpretation that has become
the global standard for esophageal motility assessment [3,4].
Despite these advances, significant challengespersistin clinical
practice, including substantial interobserver variability even
among expert interpreters, time-intensive analysisrequirements,
and the need for extensive training to achieve competency in
HRM interpretation [5,6].

In recent years, interest in applying artificial intelligence (Al)
to medical data has surged [7,8]. Al in medicine encompasses
methods ranging from classical statistical models to advanced
deep learning and even generative models. These approaches
can rapidly analyze large datasets and automatically extract
complex features, making them well-suited to assist in health
care data interpretation [9]. Gastroenterology has seen rapid
exploration of Al for endoscopic image analysis, pathology
dideinterpretation, and other tasks[10]. Recent comprehensive
reviews have demonstrated Al's expanding role across
gastroenterological applications, from polyp detection to
diagnostic decision support systems, with particular promisein
image-based diagnostics[11]. Large language modelshave also
emerged as potentia toolsfor clinical documentation and patient
education in gastroenterology, though their role in technical
interpretation remains under investigation [12]. Within thefield
of neurogastroenterology and motility, Al technologies offer
particularly compelling advantages given the pattern-based
nature of HRM interpretation and the quantitative parameters
inherent to manometric analysis. Machine learning agorithms
excel at pattern recognition tasks, potentially surpassing human
capabilitiesinidentifying subtle abnormalities and maintaining
consistent diagnostic criteria application [13,14]. Furthermore,
Al systems can process vast quantities of data instantaneously,
enabling real-time interpretation that could transform clinical
workflow efficiency [7,10]. Recent reviews have examined Al
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applications in general gastroenterology [7-10]. However, a
focused analysis of HRM-specific applicationsremainslacking.

The evolution of Al methodologies in medical imaging and
signal processing has particular relevanceto HRM analysis[15].
Early applications relied on traditiona machine learning
approaches such as support vector machines and random forests,
which required manual feature extraction and engineering
[10,16]. These methods, while showing promise, were limited
by their dependence on predefined features and inability to
capture complex spatiotemporal patternsinherent to esophageal
pressure topography. The advent of deep learning, particularly
convolutional neural networks (CNNSs), has revolutionized
medical image analysis by enabling automatic feature learning
directly fromraw data[10,17]. For HRM, this capability allows
Al systemstoidentify novel patterns and rel ationshipsthat may
not be apparent to human observers or captured by traditional
metrics. Recent systematic assessments of Al toolsin esophagea
dysmotility diagnosis have documented the progression from
basic automation of landmark identification to sophisticated
deep learning models capable of comprehensive Chicago
Classification diagnosis [18]. Contemporary applications now
encompass not only HRM but also impedance-pH monitoring,
demonstrating the broadening scope of Al in esophageal
diagnostics [19].

Recent technological advances have further expanded the
potential applications of Al in esophageal motility assessment.
The integration of complementary diagnostic modalities, such
as Functional Luminal Imaging Probe (FL1P) technology and
high-resolution impedance manometry, provides
multidimensional data that can enhance diagnostic accuracy
[19]. Al platforms have demonstrated 89% accuracy in
automated interpretation of FLIP Panometry studies, validating
the feasibility of automated esophageal motility classification
during endoscopy [20]. Al systems are uniquely positioned to
synthesize these complex, multimodal datasets, potentially
revealing pathophysiological insights that single-modality
assessment cannot provide [11]. Moreover, the devel opment of
cloud-based computing infrastructure and edge computing
capabilities enables the depl oyment of sophisticated Al models
in diverse clinical settings, from tertiary referral centers to
community practices [21,22]. The emergence of generative
artificial intelligence and large language model—assisted
devel opment hasfurther accel erated model creation, with recent
studies demonstrating the successful implementation of
Gemini-assisted (Google LLC) deep learning for automated
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HRM diagnosis, achieving high diagnostic precision across
multiple motility disorder categories[23].

Despite these promising developments, no comprehensive

Gong et a

Systematic Reviews and Meta-Analyses) 2020 reporting
guidelines[24] (MultimediaAppendix 1), PRISMA-Diagnostic
Test Accuracy (Multimedia Appendix 2) checklist [25], and

PRISMA-S (Preferred Reporting Itemsfor Systematic Reviews
and Meta-Analyses-Search, an extension to the PRISMA
statement for reporting literature searchesin systematic reviews;
Multimedia Appendix 3) checklist [26].

systematic review has evaluated the full spectrum of Al
applications in HRM interpretation or assessed their
methodological quality. Therefore, this systematic review aims
to (1) systematically evaluate current Al applicationsin HRM
interpretation, (2) assess diagnostic accuracy across different
Al methodologies, (3) evaluate methodological quality, and (4)
identify barriersto clinical implementation and future research

Database and Searching Strategy

We searched PubMed/MEDLINE, Embase, Cochrane Library,
and Web of Science through September 2025, for studies using

priorities. Al or machine learning to interpret esophageal HRM. Search

strategies incorporated keywords and indexed terms, including
Methods (“artificia intelligence” OR “machine learning” OR “deep
Study Design learning” OR “neural network” OR “computer-aided diagnosis’)

AND (“high-resolution manometry” OR “HRM” OR
The prOtOCOI was reglstered in PROSPERO (lnternationa' “ eg)phaged manome{ry“ OR *© esophageal m0t|||ty" OR
Prospective  Register ~ of  Systematic =~ Review; “Chicago Classification”; Textbox 1). Gray literature sources

CRD420251154237) beforeinitiating the search. Thissystematic
review followed the PRISMA (Preferred Reporting Items for

were searched to reduce publication bias.

Textbox 1. Searching strategy to find the relevant papers. Comprehensive search strategies were used to identify studies on artificial intelligence (Al)
applications in HRM across 4 databases. Search strategies used MeSH (Medical Subject Headings) and Emtree keywords searched as free-text terms
intitlesand abstracts covering: (1) Al/machinelearning concepts, (2) esophageal motility disorders and gastrointestinal motility, and (3) HRM/esophagea
physiologic testing. Optimizing search sensitivity: we empirically tested both approaches (eg, “ Gastrointestinal motility”[tiab] vs “Gastrointestinal
motility”[Mesh]) and found that searching MeSH keywords as free-text in (title and abstract [tiab]) yielded more comprehensive results. This captures
papers using these established terms that may not yet be formally indexed with the corresponding MeSH headings, or where these concepts appear in
titles or abstracts but are not assigned as subject headings. Searches were conducted from database i nception through September 24, 2025 (initial search)
and updated October 27, 2025, and verified for reproducibility on November 6, 2025, with no language restrictions. The table displays exact search
syntax for MEDLINE via PubMed, Embase via OVID, Cochrane Library via Wiley, and Web of Science Core Collection, along with the number of
records retrieved from each source (lang: language; ab.ti.kw: abstract, title, and keyword; and ab: abstract).

Database: MEDLINE (through PubM ed)

#1“artificial intelligence” [tiab] OR “machinelearning” [tiab] OR “deep learning” [tiab] OR “neura network” [tiab] OR “ computer-aided diagnosis’ [tiab]:
345034

#2 “high-resolution manometry”[tiadb] OR “HRM"[tiab] OR “esophageal manometry”[tiab] OR “esophageal motility”[tiab] OR *“Chicago
Classification”[tiab] OR “ Gastrointestinal motility”[tiab]: 15092

#3 #1 AND #2: 116
#4 #3 AND English[Lang]: 114
Database: Embase-OVID

#1 'artificia intelligence’:ab,ti,kw OR 'machine learning':ab,ti,kw OR 'deep learning':ab,ti,kw OR 'neura network':ab,ti,kw OR 'computer-aided
diagnosis:ab,ti,kw: 173049

#2 'high-resolution manometry':ab,ti,kw OR 'HRM":ab,ti,kw OR 'esophageal manometry':ab,ti,kw OR 'esophageal motility':ab,ti,kw OR 'Chicago
Classification':ab,ti,kw OR 'Gastrointestinal motility ":ab,ti,kw: 38254

#3#1 AND #2: 73
#4 #3 AND ([article]/lim OR [articlein press]/lim OR [review]/lim) AND [English]/lim: 39
Database: Cochrane Library (Through Wiley)

#1 'artificia intelligence’:ab,ti,kw OR 'machine learning":ab,ti,kw OR 'deep learningab,ti,kw OR 'neura network':ab,ti,kw OR '‘computer-aided
diagnosis::ab,ti,kw: 11482

#2 'high-resolution manometry":ab,ti,kw OR 'HRM":ab,ti,kw OR 'esophageal manometry':ab,ti,kw OR 'esophageal motility':ab,ti,kw OR 'Chicago
Classification':ab,ti,kw OR ‘ Gastrointestinal motility’:ab,ti,kw: 4636

#3 #1 AND #2: 36
Database: Web of Science
#1 ab=("artificial intelligence” OR “machine learning” OR “deep learning” OR “neura network” OR “computer-aided diagnosis’): 645285

#2 ab=("high-resolution manometry” OR “HRM” OR “esophageal manometry” OR “esophageal motility” OR “Chicago Classification” OR
‘Gastrointestinal motility’): 9769

#3#1 AND #2: 138
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Additional information sources were systematically searched
toidentify gray literature and unpublished studies. We searched
the medRxiv preprint server [27] using the same search terms
to identify studies not yet formally published (advanced
searching tab). Clinical Trials.gov [28] was searched to identify
ongoing or completed trials that may not have been published.
Reference lists of all included studies and relevant systematic
reviews were manually screened to identify additional eligible
studies. No citation reference searches were performed using
citation databases.

The search strategy was peer reviewed by information scientists
who have extensive expertise in systematic review methodol ogy
and database search strategies.

The results from al database searches were exported and
deduplicated using EndNote X20 (Clarivate Analytics, 2020).
Automated deduplication was performed using EndNote's
duplicate identification algorithm, followed by manual review
to identify and remove any remaining duplicates based on title,
author, year, and journal. Two reviewers (CSB and EJG)
independently screened studies, and discrepancieswere resolved
by discussion (Multimedia Appendix 4).

Inclusion and Exclusion Criteria

We included both prospective and retrospective studies that
applied an Al-based agorithm to HRM measurements for
diagnosing or classifying esophageal motility disorders (eg,
achalasia subtypes, esophagogastric junction outflow
obstruction, distal esophageal spasm, hypercontractile
esophagus, ineffective matility, etc). We excluded nonhuman
studies, conference abstracts without full text, studies focusing
on anorectal manometry, and studies on other modalities (such
as FLIP or pH-impedance) unless they directly involved HRM
dataintegration.

The detailed inclusion criteria are as follows: (1) origina
research applying Al, machine learning, or deep learning
techniquesto HRM data; (2) eval uation of diagnostic accuracy,
classification performance, or clinical outcomes; (3) inclusion
of human participants or HRM studies; and (4) provision of
guantitative performance metrics. The exclusion criteriaare as
follows: (1) review papers, editorials, or case reports without
original data; (2) used only conventional manometry without
high-resolution capabilities; (3) applied Al exclusively to other
esophageal diagnostic modalitieswithout HRM integration; and
(4) lacked sufficient methodological detail for quality
assessment.

Data Extraction

Two independent reviewers (CSB and EJG) systematically
extracted data using a standardized, prepiloted form. Extracted
variablesincluded: study characteristics (authors, year, country,
and design), patient demographics (sample size, age, and sex
distribution), HRM technical specifications (egquipment,
protocol, and Chicago Classification version), Al methodol ogy
(algorithm type, architecture, and training approach), dataset
characteristics (size, split ratios, and validation method),
performance metrics (sensitivity, specificity, accuracy, and area
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under the receiver operating characteristic curve [AUROC]),
clinica outcomes when available, and implementation
considerations. Discrepancieswere resolved through consensus
or third reviewer (GHB) arbitration. Authors were contacted
for missing or unclear data, with a maximum of 3 contact
attempts over 4 weeks.

Study Outcomes

Primary outcome measuresincluded diagnostic accuracy metrics
for Al systems compared to expert interpretation asthereference
standard. Sensitivity, specificity, positive and negative predictive
values, and accuracy were calculated when raw data were
available. For studiesreporting only AUROC val ues, these were
extracted directly. Meta-analysis was planned if sufficient
homogeneity existed across studies; however, dueto significant
heterogeneity in Al approaches, patient populations, and
outcome definitions, a narrative synthesis was performed.

Secondary outcomesincluded: external validation performance
compared to internal validation, processing time for automated
interpretation, comparison with trainee interpretation, interrater
reliability metrics, and clinica outcomes when reported.
Subgroup analyses examined performance differences by: Al
methodology (traditional machine learning vs deep learning),
disorder category according to the Chicago Classification,
validation approach (internal vs externa), and year of
publication to assess temporal trends.

Quality Assessment

We assessed the methodol ogical quality and risk of bias of each
included study using the QUADAS-2 (Quality Assessment of
Diagnostic Accuracy Studies-2) tool. This tool evaluates risk
of bias in 4 domains: patient selection, index test, reference
standard, and flow and timing. For each domain, we judged the
risk of bias as low, high, or unclear based on the information
reported in the study, and we also noted any concernsregarding
applicability to the review question [29]. Two reviewers (CSB
and EJG) performed the QUADA S-2 assessmentsindependently,
with disagreements resolved through discussion.

Results

Study Selection and Inclusion

Literature search yielded 411 studies from databases and 1
additional record from manua screening. After removing
duplicates, 175 studies remained. Following title and abstract
screening, 100 full-text papers were assessed for eligibility. Of
these, 83 were excluded. Ultimately, 17 studies met inclusion
criteria (Figure 1).

Figure 1isthe PRISMA flow diagram for systematic review of
Al applicationsin HRM (2013-2025). Literature search across
PubMed/MEDLINE, Embase, Cochrane Library, and Web of
Science (database inception through November 2025) identified
studies applying Al, machine learning, or deep learning
techniquesto interpret HRM for diagnosis of esophageal motility
disorders. The diagram illustrates the screening process.
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Figure 1. Study selection flow.
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Study Char acteristics

Studies were published between 2013-2025, with 82% (14/17)
of the studies published in 2020 or | ater. The studieswith clearly
documented patient numbersincluded: Hoffman et al [30], with
30 participants with dysphagia, Rohof et al [31], 50 patients
with gastroesophageal reflux disease, Jungheim et al [32] with
15 healthy volunteers, Kou et al [33] with 2161 HRM cases,
Kou et al [34] study with 1741 HRM cases, Wang et al [35]
with 229 esophageal motility cases from 229 individuals,
Surdea-Blaga et a [36] with 192 HRM studies (patients),
Rafieivand et al [37] with 67 patients, Zifan et a [38] with 60

https://www.jmir.org/2025/1/e85223
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patients, and Lankarani et a [39] with 43 patients. The total
confirmed patient count from studieswith explicit numberswas
at least 4588 patients, though severa studiesdid not report exact
patient numbers. Publication years ranged from 2013 to 2025,
with 82% (14/17) published after 2020, reflecting the recent
emergence of this field. Study designs were predominantly
retrospective cohort studies (n=15, 88%), with 2 methodol ogical
development studies (n=2, 12%; Rohof et a [31] and Kou et &
[33]). No prospective validation studies were identified. All
studies used the Chicago Classification asthe reference standard,
with varying versions used across studies (Table 1).
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Table 1. Summary of the included studies®.
Study and Chicagoclass-
year Country  Samplesize AIP method Study aims Performance Validation fication
Hoffmanet  United « 3Oparticipants « Multilayer per- «  Pharynged Accuracy: 91%  Internal vali- Unspecified
al, 2013[30] States « 335swdlows ceptron artificial analysis AUROCY: 0.90- dationonly
« Dysphagia neural network < 7 MBSIMP® 098
+ 19menand1l components
women
« meanage: 68.0
(SD 11.8) years
Rohof etal, Austradia « 50 patients « Linearregresson «  A|MY9metrics iccd' 095ang  Inter-andin- v2.0
2014 [31] * GERD® *  AlMplot’ ago- automation 0.94 (intrarater ~ travater
e« 33menand17 rithm andinterrater, re-
women spectively)
« Meanage52
(SD 1.9) years
Jungheimet Germany « 15hedthyvol- « Logisticregres «  Automated Expert compara- Expert com- v2.0
a, 2016 [32] unteers sion and se- calculation of ble values (resti- parison
+ 8menand7 quence labeling UES contrac- tution time of
women tion restitu- 11.16 +5.7sand
. Mean 34.9 tion time 10.04 £5.74s
years (experts), com-
pared to model-
generated values
from8.91+3.71s
t0 10.87 +4.68s)
Jell et al, Germany « 15HRMIifor ¢ Supervissdma . Automated Accuracy: 97.7% Internal vali-  Unspecified
2020 [40] training chine learning swallow detec- Sensitivity: dation only
.« 25HRM for for automated tionor dlassifi- 89.7%
validation swallow detec- cation Specificity:
tion and classifi- 83.2%
cation
Czakoetal, Romania « 2437images « InceptionV3 «  For probe po- Accuracy: 97%  Interna vali- v2.0
2021 [41] (Google LLC) sitioning Fl-score>84%  dation only
CNNKfortranss *  IRP classifi-
fer learning cation
Kou et a, United « 2161HRM o Varidtiond au- .«  Patternclus- 3digtinct clus-  Interna vali- v2.0
2021 [33] States studies toencoder (unsu- tering tersin HRM dation only
. 32415swal- pervised) . Motility phe- amenable to ma-
lows notypes chinelearning
classification
(linear discrimi-
nant)
Kouet a, United o 1741HRM *  LSTM™deep «  Swallow type Swalowtypeac- Internal vali- v3.0
2022 [34] States studies learning classification curacy: 83% dation only
o 26,115 swal- o Peristasis Classification of
lows classification peristasisaccura
cy: 88%
Wangetal, China e 229esophageal « 3D CNN . Motility trac- Accuracy: Internal vali- v3.0
2021 [35] motility cases (Conv3D; ing 91.32% dation only
e 229individuas Google LLC) .  Function Sensitivity:
« Bidirectiona mapping 90.5%
convolutional Specificity:
LSTM (BiCorwL- 95.87%
STM; Google
LLC)
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Study and Chicagoclass-
year Country  Samplesize AI® method Study aims Performance Validation fication
Kou et al, United e 1741 HRM CNNs « HRMdiagno- . Swallow-type Internal vali- v3.0
2022 [42] States studies Extreme gradient sisautoma- accuracy: 88%  dation only
boosting tion o  Pressurization:
Artificial neural 93%
network o Study-level: 81%
(top-1), 92%
(top-2)
Surdea-Bla= Romania .  192HRM stud- InceptionvV3for « HRMdiagno- « Top-laccuracy: Interna vali- v3.0
gaeta, ies (patients) the classification sis 86% dation only
2022 [36] o  2614images of the IRP o« Clouseplot « Fl-score: 86%
(1079 IRP, DenseNet201 for analysis
1535 swallow 5 different class-
pattern images) esof swallowing
disorders
Popaet d, Romania « 1570 images Inception V3 « HRMdiagno- « Accuracy: 94% Interna vai- v3.0
2022 [43] CNN for transfer sis « Precision: 94%  dation only
learning o Recdl: 93%
Rafielvand  Iran . 67 patients Graph neural o Multi-class «  Accuracy: Internal vali- v3.0
et al, 2023 networks esophageal 78.03% (single  dation only
[37] Fuzzy classifier motility disor- swallow)
dersdiagnosis «  Accuracy:
«  Decisionsup- 92.54% (patient
port level)
Zifaneta, United « 30 hedthy par- Multiplemodels «  Automatic o Accuracy:91.7% Internal vali- v4.0
2023 [38] States ticipants (support vector classification «  Precision: dation only
o 30 patients machines, ran- of functional 92.86%
with functional dom forest, k- dysphagia « Logistic regres-
dysphagia nearest neigh- sion produced
bors, and logistic the best results
regression)
Zifaneta,  United e 30 healthy par- Ensemblemeth- «  Functional « AUROC: 0.95 Internd vali- v4.0
2024 [44] States ticipants ods (gradient dysphagia dation only
o 30 patients boost, support Versus con-
with functional vector machines, trols classifi-
dysphagia and logit boost) cation
Lankarani et Iran . 43 dysphagia Artificia neural .« Tocompare .«  Accuracy: 97% Interna vali- v4.0
a, 2024 [39] patients (suspi- network the findings dation only
ciousachadasia) on HRM and
swallowing
sounds
Popacet al, Romania « 926 images CNN ensemble «  Esophageal o Precision: 89% Internal vali- v3.0
2024 [23] (LLM"-assisted) motility disor- «  Accuracy: 88%  dation only
der diagnosis «  Recal: 88%
e  Fl-score: 88.5%
Wuetd, China o 2315swallow- Multi-model o  Esophageal « Accuracy: Internd vali- v4.0
2025 [45] ing samples CNN attention motility disor- 98.48% dation only
ensemble der diagnosis

8Characteristics and outcomes of 17 included studies eval uating artificial intelligence for high-resol ution manometry interpretation (2013-2025). Studies
encompassed 4588 patients from 6 countries (United States, Romania, Germany, Iran, China, and multicenter European studies) with sample sizes
ranging from 15 to 2161 participants. Table 1 presents: study design (retrospective, prospective, or validation studies), patient population characteristics,
artificial intelligence methodology used (traditional machinelearning vs deep learning approaches), specific diagnostic tasks (eg, Chicago Classification
diagnosis, integrated relaxation pressure classification, and swallow type identification), reference standards used for model training or validation,
diagnostic performance metrics (accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve), and key findings.

bAI: artificial intelligence.
“MBSImP: Modified Barium Swallow Impairment Profile.
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dAUROC: area under the receiver operating characteristic curve.
€GERD: gastroesophageal reflux disease.

LY, plot: automated impedance manometry analysis.
9AIM: automated impedance manometry.

PICC: intraclass correlation coefficient.

IUES: upper esophageal sphincter.

JHRM: high-resolution manometry.

KCNIN: convolutional neural network.

IRP; integrated relaxation pressure.

M|_STM: long short-term memory.

"LLM: large language model.

Time Trend of Al Application in HRM Inter pretation

The application of Al to HRM interpretation has shown
continuous evolution since 2013. Early pioneers such as
Hoffman et a (2013) [30] applied artificial neural networksto
pharyngeal HRM classification, achieving 86.5%-94% accuracy
with 335 swallows. During this initial period (2013-2016),
researchersfocused primarily on automating specific parameter
measurements. Rohof et al (2014) [31] created the automated
impedance manometry analysis automated analysis system with
excellent reproducibility (intraclass correlation coefficient:
0.94-0.95), and Jungheim et al (2016) [32] applied machine
learning to calculate upper esophageal sphincter restitution
times.

A methodological shift occurred around 2018 when researchers
began adopting deep learning approaches. Jell et al (2020) [40]
achieved 97.7% accuracy in automated swallow detection using
supervised machine learning. The period from 2020-2022 saw
widespread adoption of CNNs. Czako et al (2021) [41] achieved
97% accuracy for integrated relaxation pressure (IRP)
classification using InceptionV 3 (Google LL C) CNN with 2437
images. Kou et al (2021) [33] developed both an unsupervised
variational autoencoder analyzing 32,415 swallows from 2161
patients and a supervised long short-term memory network
achieving 83% accuracy [34]. Wang et a (2021) [35]
implemented tempora modeling with  Bidirectional
Convolutional long short-term memory networks, reaching
91.32% overall accuracy. Romanian researchers, including
Surdea-Blaga et a (2022) [36] and Popa et a (2022) [43],
achieved 86% and 94% accuracy, respectively, for Chicago
Classification automation.

Recent studies from 2023 onwards have explored increasingly
sophisticated and diverse approaches. Zifan et a (2023) [38]
used shallow machine learning approaches, including logistic
regression, random forests, and k-nearest neighbors, to analyze
distension-contraction patterns in 60 patients with functional
dysphagia, achieving 91.7% accuracy with logistic regression
for proximal segmentsand 90.5% with random forestsfor distal
segments. Rafieivand et a (2023) [37] developed a fuzzy
framework with graphical neural network interpretation,
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achieving 78% single-swallow accuracy but 92.54%
patient-level accuracy in 67 patients. Zifan et al (2024) [44]
further refined their approach using support vector machinesto
analyze distension-contraction plots, achieving an AUROC of
0.95 in 60 patients. Lankarani et al (2024) [39] pioneered
noninvasive acoustic analysis combined with Al, achieving
97% accuracy for IRP prediction in 43 patients. Most recently,
studies have incorporated large language models, with Popa et
al (2024) [23] integrating Gemini with deep learning, while Wu
et a [45] (2025) developed mixed attention ensemble
approaches (Table 1).

Diagnostic Accuracy Across Studies

Overall diagnostic accuracies ranged from 78% to 97% across
the 17 included studies. The highest accuracies were achieved
for specific applications. IRP classification (97%) [41], acoustic
IRP prediction (97%) [39], and swallow detection (97.7%) [40].
For Chicago Classification automation, accuracy varied from
86% to >93% [36,43]. Functional dysphagia studies
demonstrated segment-specific performance differences, with
Rafieivand et al [37] highlighting theimportance of patient-level
versus swallow-level accuracy (92.54% vs 78%).

Notably, none of the studies provided detailed performance
metrics for individual Chicago Classification categories, such
asachalasiasubtypes or specific motility disorders. Thisabsence
of disorder-specific sensitivity and specificity data limits
understanding of Al performance across the full spectrum of
esophageal pathology and represents a critical gap for clinical
implementation (Table 1).

Methodological Quality

QUADAS-2 assessment revealed variable methodological
quality across the 17 included studies (Table 2). For the patient
selection domain, no studies demonstrated [ow risk of bias, with
14 (82%) studies showing unclear risk primarily due to
unreported sampling methods, and 3 (18%) studies showing
high risk: Hoffman et a [30] included only disordered cohorts
without healthy controls, Jungheim et al [32] tested only healthy
volunteers limiting representativeness, and Lankarani et al [39]
had a small specialized cohort.
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Table 2. QUADAS-22 methodology quality assessment for included studies”.

Study and year Patient selection Index test Reference standard Flow and timing
Hoffman et al, 2013 H no healthy controls LY clear prespecified L: expert manual standard L: complete data, no losses
(30] threshold method

Rohof et a, 2014 [31] & convenience sample; rep- Y- calibratedonthesame  U: reproducibility focus, not  L: complete data, no losses
resentativeness unknown dataset, raising overfit-  diagnostic
ting concerns
Jungheim et a, 2016 H: healthy only; not represen-  U: small n=15, overfit L: referencestandard measure-  L: al volunteer data used

[32] tative concern ments (eg, UES' metrics) and
experienced assessors

Jell et al, 2020 [40] U: sampling method not re-  L: supervised machine  L: expert annotation L: al dataincluded
ported learning clear model
Czako et al, 2021 [41] U: sampling method not re-  L: InceptionV3 (Google L: expert Chicago-consistent  U: 8 patients excluded, and
ported LLC) with held-out test  |abels completeness uncertain
Kou et al, 2021 [33] U: unclear enrollment method  L: variational autoen- H: no validated reference L: al dataincluded
coder standard
Kou et a, 2022 [34] U: unclear enroliment method  L: separate test set; L: expert Chicago-consistent L: al dataincluded
blinded automated infer-  labels
ence

Wang et al, 2021 [35]  U: unclear enrollment method L: train, validation, or L: expert Chicago-consistent L: al dataincluded
test separation labels

Kou et a, 2022 [42] U: unclear enroliment method  L: independent test co-  L: expert Chicago-consistent L: all data included
hort; rule-based aggrega-  1abels
tion of swallow-level

models

Surdea-Blagaet a, U: no explicit enrollment L: cNN< with hold-out  L: expert Chicago-consistent  L: all dataincluded

2022 [36] stated evaluation labels

Popaet al, 2022 [43] U: spectrum bias L: CNN with internal L: expert Chicago-consistent H: excluded indeterminate cases
split labels

Rafieivand et al, 2023  U: single-center, small n; L: composite (graph + L: expert Chicago-consistent L: all dataincluded

[37] sampling not described fuzzy) model labels

Zifan et a, 2023 [38] U: unclear enrollment method  L: multiple machine U: detailsof referenceadjudi- L: al dataincluded
learning models with cation limited
cross-validation

Zifan et a, 2024 [44] U: unclear enrollment method  L: multiple machine U: detailsof referenceadjudi- L: al dataincluded
learning models with cation limited
cross-validation

Lankarani et al, 2024  H: small, specialized cohort  L: artificial neural net-  L: expert Chicago-consistent L: all dataincluded

[39] work model labels

Popaet al, 2024 [23] U: unclear enrollment method | - | | m"-assisted L: expert Chicago-consistent L: all dataincluded
pipeline |abels

Wu et a, 2025 [45] U: unclear enroliment method  L: ensemble with cross-  L: expert Chicago-consistent L: all data included

validation or hold-out labels

3QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2.

bQuality Assessment of Diagnostic Accuracy Studies-2 evaluation of methodological quality and risk of bias for 17 included artificial intelligence
studies in high-resolution manometry (2013-2025). Assessment evaluated four domains: (1) patient selection—risk of bias from inappropriate patient
selection, exclusions, or case-control design; (2) index test—risk of biasfrom artificial intelligence model training or validation procedures and threshold
determination; (3) reference standard—risk of biasfrom expert interpretation methods and blinding; and (4) flow and timing—risk of biasfrom incomplete
data or variable intervals between index test and reference standard. Each domain was rated as low risk (L), high risk (H), or unclear risk (U) of bias.
Applicability concerns assessed whether study design, patient population, artificial intelligence methodology, or reference standards differed from the
review question. The table demonstrates predominant unclear risk in patient selection (14/17, 82% of studies) due to inadequate reporting of recruitment
methods, while the index test domain showed the strongest methodological rigor (88% low risk).

H: high risk.
9L : Jow risk.
€U: unclear risk.
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fUES: upper esophageal sphincter.
9CNN: convolutional neural network.
PLLM: large language model .

The index test domain showed the strongest methodological
rigor, with 15 (88%) studies demonstrating low risk of bias
through appropriate model training and validation separation.
Only 2 (12%) studies showed unclear risk: Rohof et a [31] due
to calibration on the same dataset raising overfitting concerns,
and Jungheim et a [32] due to the small sample size (n=15),
creating uncertainty in algorithm performance.

For the reference standard domain, 14 (82%) studies had alow
risk of bias using expert-determined Chicago Classification
labels. Further, 3 (18%) studies showed unclear risk: Rohof et
al [31] focused on automated metric agreement rather than
diagnostic ground truth, and both studies by Zifan et al [38,44]
had limited details on reference adjudication. One study by Kou
et a [33] showed a high risk asit lacked a validated reference
standard for unsupervised clusters.

Flow and timing assessment revealed low risk in 15 (88%)
studies, with al patient data included in analyses. One study
showed unclear risk (Czako et al [41]) due to the exclusion of
8 patients with probe-placement failure, and 1 study (Popa et
al [43]) demonstrated high risk by excluding indeterminate cases
from analysis, introducing potential spectrum bias.

The predominance of unclear risk in patient sel ection highlights
asystematic reporting deficiency acrosstheliterature, with most
studiesfailing to document recruitment and enrollment methods
adequately. This pattern, combined with the compl ete absence
of external validation noted elsewhere, raises concerns about
the generalizability and real-world applicability of these Al
systems.

Secondary Findings

None of the 17 included studies performed external validation
using datasets from different institutions or periods. All studies
relied on internal validation methods, including train-test splits,
k-fold cross-validation, or other internal validation approaches.
Thiscomplete absence of externa validation representsacritical
limitation in assessing the generalizability of Al models for
HRM interpretation. Studies using k-fold cross-validation
[35,38,41,44,45] reported more conservative performance
estimates compared to simple train-test splits, suggesting
potential overfitting in single-split validation approaches.

Discussion

Principal Findings

The systematic synthesis of current evidence reveals that Al
applications in HRM have demonstrated strong technical
performance, with diagnostic accuracies ranging from 78% to
97%, while facing substantial trandlational challenges. The
evolution from traditional machine learning algorithms
(86.5%-94% accuracy) to deep learning architectures capable
of 97% accuracy for specific tasks represents significant
technological progress[30,39,41]. These advances occur within
the broader context of Al transformation in gastroenterology,
where similar trajectories have been observed in colonoscopy,
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capsule endoscopy, and inflammatory bowel disease assessment,
suggesting that the integration of Al into clinical
gastroenterology practice is inevitable rather than speculative
[10,11].

Theinnovation of Al in HRM extends beyond mere automation.
These systems represent a major change in how we approach
esophageal motility diagnostics [7-10], offering solutions to
important clinical needs:. the global shortage of motility experts,
the need for rapid and consistent interpretation [46], and the
potential for telemedicineintegration to serve underserved areas
[10,11].

The diagnostic accuracy achieved by current Al systems,
particularly for IRP classification and automated Chicago
Classification, addresses a fundamental limitation of HRM
interpretation: interobserver variability. Al systems maintain
consistent diagnostic criteria application while human experts
demonstrate significant intraobserver variability on repeated
assessments. This consistency could enable more reliable
phenotyping of esophageal motility disorders, facilitating
precision medicine approaches that move beyond categorical
diagnosesto individualized pathophysiological assessment. The
superior performance of Al in quantitative parameter calculation
eliminates measurement variability that has plagued HRM
interpretation since its inception [46].

These accuracy levels have important implications for clinical
practice. With health care systems facing increasing pressure
to reduce costs while improving outcomes, Al-enabled HRM
interpretation could decrease repeat procedures and reduce
unnecessary testing costs [47,48]. Moreover, the consistent
application of diagnostic criteria could reduce
misdiagnosis-related treatment failures that currently affect a
considerable number of patients with esophageal moatility
disorders|[3,46].

However, the apparent success of Al systems must be
contextualized within significant methodological limitations
identified through quality assessment. Most critically, no studies
demonstrated low risk of bias in patient selection, with 82%
(14/17) showing unclear risk due to unreported sampling
methods and 18% (n=3) showing high risk due to biased cohort
selection [30,32,39]. This systematic deficiency in documenting
recruitment and enrollment methods raises fundamental
guestions about the representativeness of training datasets. The
complete absence of external validation across all 17 studies
compounds these concerns about generaizability. Internal
validation consistently overestimates model performance, and
the lack of testing on datasets from different institutions, HRM
systems, or patient populations means we have no evidence of
real-world performance [10].

The complete absence of prospective clinical trials represents
the most critical barrier to clinica trandation. While
retrospective studies demonstrate technical feasibility with
accuracies of 78%-97%, these controlled environments fail to
capture the complexities of rea-world clinical practice.

JMed Internet Res 2025 | vol. 27 | €85223 | p. 10
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Prospective trials are essential to evaluate: (1) how Al systems
perform with real-time data acquisition variability, (2) whether
Al recommendations alter clinical decision-making, (3) patient
outcomes following Al-guided treatment, and (4) integration
challenges within existing clinical workflows. Without such
evidence, even the most accurate Al models remain research
tools rather than clinical instruments[9-11].

The evolution through distinct phases of Al development in
HRM mirrors broader trends in medical Al but also reveals
unique challenges specific to esophageal motility assessment.
Thetransition from traditional machinelearning to deep learning
approachesyielded substantial performanceimprovements, yet
the“black box” nature of deep learning models poses particul ar
challenges in a field where pathophysiological understanding
drives therapeutic decision-making [49]. Clinicians require not
just diagnostic labels but mechanistic insights that inform
treatment selection between medical therapy, endoscopic
intervention, or surgical management. The development of
explainable Al models that provide interpretable features and
confidence metrics represents a critical priority for clinical
acceptance [11]. Recent advancesin attention mechanisms and
gradient-based visualization techniques, as demonstrated in the
Popa et a [23] study using LIME (Loca Interpretable
M odel-Agnostic Explanations), offer promising approachesfor
making Al decision-making transparent and clinically
meaningful.

The integration of multiple diagnostic modalities through Al
platforms addresses alongstanding limitation of isolated HRM
interpretation. The combination of manometric, impedance, and
complementary data provides amore comprehensive assessment
of esophageal function than any single modality alone [50]. Al
systemsexcel at synthesizing these complex, multidimensional
datasets, potentially revealing pathophysiological patterns
invisible to conventional analysis. The Zifan et a (2023 [38]
and 2024 [44]) work on distension-contraction plotsillustrates
how Al can extract diagnostic value from data presentations
that challenge human interpretation. This capability becomes
particularly relevant with the Chicago Classification version
4.0 emphasis on provocative testing and positional changes,
which generate substantially more data requiring integration
and interpretation [3].

The absence of disorder-specific performance metrics across
all 17 studies severely limitsclinical applicability. While overall
accuracy appears promising (86%-97%), clinicians need to
know how Al performs for specific conditions: distinguishing
achalasia subtypes (critical for treatment selection), detecting
subtle ineffective esophageal motility (often missed by novices),
or identifying rare disorders such as jackhammer esophagus. A
system with 95% overall accuracy but poor performanceintype
Il achalasia, for instance, could lead to inappropriate treatment
recommendations. Future studies must report sensitivity and
specificity for each Chicago Classification category to enable
informed clinical decision-making.

Implementation barriers identified across studies revea a
complex interplay of technical, regulatory, clinical, and
economic factors. The incompatibility with existing HRM
systems reflects the proprietary nature of medical device
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software and the lack of interoperability standards. The
regulatory uncertainty surrounding Al medical devicesrequires
proactive engagement between developers, clinicians, and
regulatory agencies to establish appropriate evaluation
frameworks [47,48]. Despite these barriers, the economic
rationalefor Al implementation is strong. High-volume centers
could achieve cost-effectiveness through improved workflow
efficiency and reduced need for expert consultation [47,48,51],
though specific economic analyses are needed to quantify these
benefits. The lack of specific reimbursement codes for
Al-assisted interpretation creates financial uncertainty that
discourages adoption [51]. The potential for Al to enable
task-shifting from specialists to general gastroenterologists
could address workforce shortages and improve access to
motility assessment, particularly in underserved areas.

The ethical implications of Al implementation in HRM
diagnostic practice deserve careful consideration [52]. The
potential for algorithmic bias, particul arly affecting populations
underrepresented in training datasets, could exacerbate existing
health care disparities. The predominance of studiesfrom North
American, European, and select Asian centers raises concerns
about applicability to African, Latin American, and other
underrepresented popul ationswith different disease phenotypes
and genetic backgrounds[52]. Devel opment of quality assurance
programs that monitor Al performance and identify edge cases
requiring human review will be essential for maintaining patient
safety.

Moving from laboratory validation to clinical implementation
requires addressing multiple trandlational gaps simultaneously.
First, prospective multicenter trials must demonstrate that Al
systems maintain performance across diverse patient
populations, HRM equipment, and clinical settings. Second,
health economic analyses must quantify whether efficiency
gains justify implementation costs—a critical requirement for
hospital administrator buy-in and insurance coverage. Third,
regulatory pathways need clarification: Should AI-HRM systems
be classified as clinical decision support tools or diagnostic
devices? Each classification carries different validation
requirements and liability considerations.  Finaly,
implementation science research must address workflow
integration, user training requirements, and change management
strategies to ensure successful adoption [53].

Future priorities must focus on multicenter validation studies,
development of explainable Al models, integration with
evolving diagnostic frameworks, and systematic addressing of
regulatory and economic barriers. The ultimate success of Al
in HRM will depend not on technological sophistication alone
but on thoughtful integration that preserves clinical judgment
while enhancing diagnostic accuracy and efficiency. To achieve
clinical translation, the field must transition from technical
validation to clinical validation through (1) prospective trias
comparing Al-assisted versus standard interpretation on patient
outcomes, (2) disorder-specific performance benchmarking
across al Chicago Classification categories, (3)
cost-effectiveness analyses demonstrating economic value, (4)
regulatory sandbox programs allowing controlled real-world
testing, and (5) implementation science studies optimizing
integration strategies. Until thesetranslational requirementsare
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met, Al in HRM will remain a promising technology awaiting
clinical realization.

Study Limitations

This systematic review has severa limitations that should be
considered when interpreting the findings. First, the
heterogeneity in Al methodologies, patient populations, and
outcome definitions precluded meta-analysis, limiting our ability
to provide pooled estimates of diagnostic accuracy. Second, we
excluded non-English language publications, potentially missing
relevant studies from non—English speaking countries. Third,
the absence of standardized reporting guidelines for Al studies
in HRM made quality assessment challenging, particularly
regarding technical aspects of model development. Fourth,
publication bias could not be formally assessed due to the
diversity of study designs. Fifth, the lack of clinical outcome
data across all studies prevented assessment of the real-world
impact of Al implementation on patient care, treatment
decisions, and health care costs. Finaly, critica limitations
include the compl ete absence of low-risk patient sel ection across
al studies, the lack of disorder-specific performance metrics
for individual Chicago Classification categories, the absence
of prospectiveclinical trias, no cost-effectiveness analyses, and
insufficient direct comparisons between Al and human

Gong et a

interpreters using standardized metrics. These gaps collectively
limit our ability to assess the true clinical utility and
implementation readiness of Al systemsin HRM interpretation.

Conclusions

This systematic review provides comprehensive evidence that
Al applications in HRM have achieved remarkable technical
capabilities while facing substantial challenges in clinical
trandation. The diagnostic accuracies of 78%-97% demonstrate
the potential for Al to standardize and enhance HRM
interpretation. However, the complete absence of external
validation, systematic deficiencies in patient selection
documentation, and lack of clinical outcome studies highlight
the critical gap between technological capability and clinical
utility. Additionally, the limited reporting of patient
demographics across included studies—reflecting the
methodological focus of Al development papers—represents
an ongoing challenge for assessing generalizability across
diverse populations. Future Al validation studies should
systematically report demographic characteristics, including
age, sex, race or ethnicity, and geographic location, to enable
evaluation of algorithmic performance across patient subgroups
and identify potential disparities in diagnostic accuracy that
could affect equitable clinical implementation.
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