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Abstract

Background: High-resolution esophageal manometry (HRM) is essential for diagnosing esophageal motility disorders, affecting
10%-15% of patients with dysphagia. Current interpretation via the Chicago Classification remains challenging, with interobserver
variability reaching 30%-40% even among experts. Artificial intelligence (AI) has emerged as a transformative tool to automate
HRM interpretation.

Objective: We aimed to evaluate current AI HRM applications and assess diagnostic accuracy, methodological approaches,
clinical validation, implementation barriers, and real-world implications for gastroenterology practice.

Methods: We searched PubMed/MEDLINE, Embase, Cochrane Library, and Web of Science through November 2025, for
studies using AI or machine learning to interpret esophageal HRM. Eligible studies included original research evaluating such
interpretation in adults with esophageal symptoms, published in English. We excluded case reports, reviews, abstracts, and studies
without outcomes. Data on AI model tasks and diagnostic outcomes were extracted. Primary outcomes included diagnostic
accuracy metrics, secondary outcomes encompassing external validation performance, real-time processing capabilities, and
comparison with expert interpretation. Two reviewers independently screened studies and extracted data. Study quality was
appraised using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) criteria. Given the substantial heterogeneity,
we performed qualitative narrative synthesis rather than quantitative meta-analysis.

Results: Seventeen studies encompassing 4588 patients demonstrated progressive AI evolution across 3 phases. Early studies
(2013-2016, n=4) using traditional machine learning achieved 86.5%-94% accuracy for parameter extraction. Deep learning era
(2018-2022, n=8) achieved breakthrough performance: 97% (95% CI 95.7%-98.3%) accuracy for integrated relaxation pressure
classification, 91.32 (95% CI 87.0%-94.5%) for motility tracing, and 86% for complete Chicago Classification automation. Recent
multimodal approaches (2023-2024, n=5) incorporating acoustic analysis and fuzzy logic achieved 83%-95% accuracy while
reducing interpretation time from 15-20 to <2 minutes. AI systems demonstrated superior consistency with 0 intraobserver
variability compared to 15%-30% among human experts. However, critical gaps emerged: 0% (0/17) of studies performed external
validation, 82% (14/17) showed unclear patient selection bias, and none obtained regulatory approval. QUADAS-2 assessment
identified low risk of bias in 65% (11/17) of studies for the index test domain but high concern in 100% for applicability due to
lack of real-world testing.

Conclusions: This review demonstrates AI’s transformative potential for HRM interpretation, with diagnostic accuracies
reaching 97%. Real-world implications are significant, promising to enable standardized diagnostics across institutions, address
the critical shortage of motility experts affecting 70% of global health care systems, and reduce health care costs by 20%-30%
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through an 85%-90% reduction in interpretation time and decreased repeat procedures. Beyond synthesizing existing evidence,
this review brings new knowledge to the field through 3 key contributions: mapping the evolutionary trajectory from rule-based
to deep learning systems, quantifying AI’s superior reproducibility compared to human experts, and revealing the critical disconnect
between algorithmic performance and clinical translation. Future priorities include multicenter validation trials and regulatory
pathway development.

Trial Registration: PROSPERO CRD420251154237; https://www.crd.york.ac.uk/PROSPERO/view/CRD420251154237

(J Med Internet Res 2025;27:e85223) doi: 10.2196/85223
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Introduction

The diagnosis and classification of esophageal motility disorders
have undergone evolution since the introduction of
high-resolution esophageal manometry (HRM) in the early
2000s [1]. This technological advancement, characterized by
closely spaced pressure sensors providing spatiotemporal
pressure topography displays, has altered our understanding of
esophageal physiology and pathophysiology [1,2]. The
subsequent development and iterative refinement of the Chicago
Classification, now in its fourth version, has established a
standardized framework for HRM interpretation that has become
the global standard for esophageal motility assessment [3,4].
Despite these advances, significant challenges persist in clinical
practice, including substantial interobserver variability even
among expert interpreters, time-intensive analysis requirements,
and the need for extensive training to achieve competency in
HRM interpretation [5,6].

In recent years, interest in applying artificial intelligence (AI)
to medical data has surged [7,8]. AI in medicine encompasses
methods ranging from classical statistical models to advanced
deep learning and even generative models. These approaches
can rapidly analyze large datasets and automatically extract
complex features, making them well-suited to assist in health
care data interpretation [9]. Gastroenterology has seen rapid
exploration of AI for endoscopic image analysis, pathology
slide interpretation, and other tasks [10]. Recent comprehensive
reviews have demonstrated AI’s expanding role across
gastroenterological applications, from polyp detection to
diagnostic decision support systems, with particular promise in
image-based diagnostics [11]. Large language models have also
emerged as potential tools for clinical documentation and patient
education in gastroenterology, though their role in technical
interpretation remains under investigation [12]. Within the field
of neurogastroenterology and motility, AI technologies offer
particularly compelling advantages given the pattern-based
nature of HRM interpretation and the quantitative parameters
inherent to manometric analysis. Machine learning algorithms
excel at pattern recognition tasks, potentially surpassing human
capabilities in identifying subtle abnormalities and maintaining
consistent diagnostic criteria application [13,14]. Furthermore,
AI systems can process vast quantities of data instantaneously,
enabling real-time interpretation that could transform clinical
workflow efficiency [7,10]. Recent reviews have examined AI

applications in general gastroenterology [7-10]. However, a
focused analysis of HRM-specific applications remains lacking.

The evolution of AI methodologies in medical imaging and
signal processing has particular relevance to HRM analysis [15].
Early applications relied on traditional machine learning
approaches such as support vector machines and random forests,
which required manual feature extraction and engineering
[10,16]. These methods, while showing promise, were limited
by their dependence on predefined features and inability to
capture complex spatiotemporal patterns inherent to esophageal
pressure topography. The advent of deep learning, particularly
convolutional neural networks (CNNs), has revolutionized
medical image analysis by enabling automatic feature learning
directly from raw data [10,17]. For HRM, this capability allows
AI systems to identify novel patterns and relationships that may
not be apparent to human observers or captured by traditional
metrics. Recent systematic assessments of AI tools in esophageal
dysmotility diagnosis have documented the progression from
basic automation of landmark identification to sophisticated
deep learning models capable of comprehensive Chicago
Classification diagnosis [18]. Contemporary applications now
encompass not only HRM but also impedance-pH monitoring,
demonstrating the broadening scope of AI in esophageal
diagnostics [19].

Recent technological advances have further expanded the
potential applications of AI in esophageal motility assessment.
The integration of complementary diagnostic modalities, such
as Functional Luminal Imaging Probe (FLIP) technology and
high-resolution impedance manometry, provides
multidimensional data that can enhance diagnostic accuracy
[19]. AI platforms have demonstrated 89% accuracy in
automated interpretation of FLIP Panometry studies, validating
the feasibility of automated esophageal motility classification
during endoscopy [20]. AI systems are uniquely positioned to
synthesize these complex, multimodal datasets, potentially
revealing pathophysiological insights that single-modality
assessment cannot provide [11]. Moreover, the development of
cloud-based computing infrastructure and edge computing
capabilities enables the deployment of sophisticated AI models
in diverse clinical settings, from tertiary referral centers to
community practices [21,22]. The emergence of generative
artificial intelligence and large language model–assisted
development has further accelerated model creation, with recent
studies demonstrating the successful implementation of
Gemini-assisted (Google LLC) deep learning for automated
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HRM diagnosis, achieving high diagnostic precision across
multiple motility disorder categories [23].

Despite these promising developments, no comprehensive
systematic review has evaluated the full spectrum of AI
applications in HRM interpretation or assessed their
methodological quality. Therefore, this systematic review aims
to (1) systematically evaluate current AI applications in HRM
interpretation, (2) assess diagnostic accuracy across different
AI methodologies, (3) evaluate methodological quality, and (4)
identify barriers to clinical implementation and future research
priorities.

Methods

Study Design
The protocol was registered in PROSPERO (International
Prospective Register of Systematic Review;
CRD420251154237) before initiating the search. This systematic
review followed the PRISMA (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses) 2020 reporting
guidelines [24] (Multimedia Appendix 1), PRISMA-Diagnostic
Test Accuracy (Multimedia Appendix 2) checklist [25], and
PRISMA-S (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses-Search, an extension to the PRISMA
statement for reporting literature searches in systematic reviews;
Multimedia Appendix 3) checklist [26].

Database and Searching Strategy
We searched PubMed/MEDLINE, Embase, Cochrane Library,
and Web of Science through September 2025, for studies using
AI or machine learning to interpret esophageal HRM. Search
strategies incorporated keywords and indexed terms, including
(“artificial intelligence” OR “machine learning” OR “deep
learning” OR “neural network” OR “computer-aided diagnosis”)
AND (“high-resolution manometry” OR “HRM” OR
“esophageal manometry” OR “esophageal motility” OR
“Chicago Classification”; Textbox 1). Gray literature sources
were searched to reduce publication bias.

Textbox 1. Searching strategy to find the relevant papers. Comprehensive search strategies were used to identify studies on artificial intelligence (AI)
applications in HRM across 4 databases. Search strategies used MeSH (Medical Subject Headings) and Emtree keywords searched as free-text terms
in titles and abstracts covering: (1) AI/machine learning concepts, (2) esophageal motility disorders and gastrointestinal motility, and (3) HRM/esophageal
physiologic testing. Optimizing search sensitivity: we empirically tested both approaches (eg, “Gastrointestinal motility”[tiab] vs “Gastrointestinal
motility”[Mesh]) and found that searching MeSH keywords as free-text in (title and abstract [tiab]) yielded more comprehensive results. This captures
papers using these established terms that may not yet be formally indexed with the corresponding MeSH headings, or where these concepts appear in
titles or abstracts but are not assigned as subject headings. Searches were conducted from database inception through September 24, 2025 (initial search)
and updated October 27, 2025, and verified for reproducibility on November 6, 2025, with no language restrictions. The table displays exact search
syntax for MEDLINE via PubMed, Embase via OVID, Cochrane Library via Wiley, and Web of Science Core Collection, along with the number of
records retrieved from each source (lang: language; ab.ti.kw: abstract, title, and keyword; and ab: abstract).

Database: MEDLINE (through PubMed)

#1 “artificial intelligence”[tiab] OR “machine learning”[tiab] OR “deep learning”[tiab] OR “neural network”[tiab] OR “computer-aided diagnosis”[tiab]:
345034

#2 “high-resolution manometry”[tiab] OR “HRM”[tiab] OR “esophageal manometry”[tiab] OR “esophageal motility”[tiab] OR “Chicago
Classification”[tiab] OR “Gastrointestinal motility”[tiab]: 15092

#3 #1 AND #2: 116

#4 #3 AND English[Lang]: 114

Database: Embase-OVID

#1 'artificial intelligence':ab,ti,kw OR 'machine learning':ab,ti,kw OR 'deep learning':ab,ti,kw OR 'neural network':ab,ti,kw OR 'computer-aided
diagnosis':ab,ti,kw: 173049

#2 'high-resolution manometry':ab,ti,kw OR 'HRM':ab,ti,kw OR 'esophageal manometry':ab,ti,kw OR 'esophageal motility':ab,ti,kw OR 'Chicago
Classification':ab,ti,kw OR 'Gastrointestinal motility ':ab,ti,kw: 38254

#3 #1 AND #2: 73

#4 #3 AND ([article]/lim OR [article in press]/lim OR [review]/lim) AND [English]/lim: 39

Database: Cochrane Library (Through Wiley)

#1 'artificial intelligence':ab,ti,kw OR 'machine learning':ab,ti,kw OR 'deep learning':ab,ti,kw OR 'neural network':ab,ti,kw OR 'computer-aided
diagnosis':ab,ti,kw: 11482

#2 'high-resolution manometry':ab,ti,kw OR 'HRM':ab,ti,kw OR 'esophageal manometry':ab,ti,kw OR 'esophageal motility':ab,ti,kw OR 'Chicago
Classification':ab,ti,kw OR ‘Gastrointestinal motility’:ab,ti,kw: 4636

#3 #1 AND #2: 36

Database: Web of Science

#1 ab=(“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “computer-aided diagnosis”): 645285

#2 ab=(“high-resolution manometry” OR “HRM” OR “esophageal manometry” OR “esophageal motility” OR “Chicago Classification” OR
‘Gastrointestinal motility’): 9769

#3 #1 AND #2: 138
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Additional information sources were systematically searched
to identify gray literature and unpublished studies. We searched
the medRxiv preprint server [27] using the same search terms
to identify studies not yet formally published (advanced
searching tab). ClinicalTrials.gov [28] was searched to identify
ongoing or completed trials that may not have been published.
Reference lists of all included studies and relevant systematic
reviews were manually screened to identify additional eligible
studies. No citation reference searches were performed using
citation databases.

The search strategy was peer reviewed by information scientists
who have extensive expertise in systematic review methodology
and database search strategies.

The results from all database searches were exported and
deduplicated using EndNote X20 (Clarivate Analytics, 2020).
Automated deduplication was performed using EndNote’s
duplicate identification algorithm, followed by manual review
to identify and remove any remaining duplicates based on title,
author, year, and journal. Two reviewers (CSB and EJG)
independently screened studies, and discrepancies were resolved
by discussion (Multimedia Appendix 4).

Inclusion and Exclusion Criteria
We included both prospective and retrospective studies that
applied an AI-based algorithm to HRM measurements for
diagnosing or classifying esophageal motility disorders (eg,
achalasia subtypes, esophagogastric junction outflow
obstruction, distal esophageal spasm, hypercontractile
esophagus, ineffective motility, etc). We excluded nonhuman
studies, conference abstracts without full text, studies focusing
on anorectal manometry, and studies on other modalities (such
as FLIP or pH-impedance) unless they directly involved HRM
data integration.

The detailed inclusion criteria are as follows: (1) original
research applying AI, machine learning, or deep learning
techniques to HRM data; (2) evaluation of diagnostic accuracy,
classification performance, or clinical outcomes; (3) inclusion
of human participants or HRM studies; and (4) provision of
quantitative performance metrics. The exclusion criteria are as
follows: (1) review papers, editorials, or case reports without
original data; (2) used only conventional manometry without
high-resolution capabilities; (3) applied AI exclusively to other
esophageal diagnostic modalities without HRM integration; and
(4) lacked sufficient methodological detail for quality
assessment.

Data Extraction
Two independent reviewers (CSB and EJG) systematically
extracted data using a standardized, prepiloted form. Extracted
variables included: study characteristics (authors, year, country,
and design), patient demographics (sample size, age, and sex
distribution), HRM technical specifications (equipment,
protocol, and Chicago Classification version), AI methodology
(algorithm type, architecture, and training approach), dataset
characteristics (size, split ratios, and validation method),
performance metrics (sensitivity, specificity, accuracy, and area

under the receiver operating characteristic curve [AUROC]),
clinical outcomes when available, and implementation
considerations. Discrepancies were resolved through consensus
or third reviewer (GHB) arbitration. Authors were contacted
for missing or unclear data, with a maximum of 3 contact
attempts over 4 weeks.

Study Outcomes
Primary outcome measures included diagnostic accuracy metrics
for AI systems compared to expert interpretation as the reference
standard. Sensitivity, specificity, positive and negative predictive
values, and accuracy were calculated when raw data were
available. For studies reporting only AUROC values, these were
extracted directly. Meta-analysis was planned if sufficient
homogeneity existed across studies; however, due to significant
heterogeneity in AI approaches, patient populations, and
outcome definitions, a narrative synthesis was performed.

Secondary outcomes included: external validation performance
compared to internal validation, processing time for automated
interpretation, comparison with trainee interpretation, interrater
reliability metrics, and clinical outcomes when reported.
Subgroup analyses examined performance differences by: AI
methodology (traditional machine learning vs deep learning),
disorder category according to the Chicago Classification,
validation approach (internal vs external), and year of
publication to assess temporal trends.

Quality Assessment
We assessed the methodological quality and risk of bias of each
included study using the QUADAS-2 (Quality Assessment of
Diagnostic Accuracy Studies-2) tool. This tool evaluates risk
of bias in 4 domains: patient selection, index test, reference
standard, and flow and timing. For each domain, we judged the
risk of bias as low, high, or unclear based on the information
reported in the study, and we also noted any concerns regarding
applicability to the review question [29]. Two reviewers (CSB
and EJG) performed the QUADAS-2 assessments independently,
with disagreements resolved through discussion.

Results

Study Selection and Inclusion
Literature search yielded 411 studies from databases and 1
additional record from manual screening. After removing
duplicates, 175 studies remained. Following title and abstract
screening, 100 full-text papers were assessed for eligibility. Of
these, 83 were excluded. Ultimately, 17 studies met inclusion
criteria (Figure 1).

Figure 1 is the PRISMA flow diagram for systematic review of
AI applications in HRM (2013-2025). Literature search across
PubMed/MEDLINE, Embase, Cochrane Library, and Web of
Science (database inception through November 2025) identified
studies applying AI, machine learning, or deep learning
techniques to interpret HRM for diagnosis of esophageal motility
disorders. The diagram illustrates the screening process.
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Figure 1. Study selection flow.

Study Characteristics
Studies were published between 2013-2025, with 82% (14/17)
of the studies published in 2020 or later. The studies with clearly
documented patient numbers included: Hoffman et al [30], with
30 participants with dysphagia, Rohof et al [31], 50 patients
with gastroesophageal reflux disease, Jungheim et al [32] with
15 healthy volunteers, Kou et al [33] with 2161 HRM cases,
Kou et al [34] study with 1741 HRM cases, Wang et al [35]
with 229 esophageal motility cases from 229 individuals,
Surdea-Blaga et al [36] with 192 HRM studies (patients),
Rafieivand et al [37] with 67 patients, Zifan et al [38] with 60

patients, and Lankarani et al [39] with 43 patients. The total
confirmed patient count from studies with explicit numbers was
at least 4588 patients, though several studies did not report exact
patient numbers. Publication years ranged from 2013 to 2025,
with 82% (14/17) published after 2020, reflecting the recent
emergence of this field. Study designs were predominantly
retrospective cohort studies (n=15, 88%), with 2 methodological
development studies (n=2, 12%; Rohof et al [31] and Kou et al
[33]). No prospective validation studies were identified. All
studies used the Chicago Classification as the reference standard,
with varying versions used across studies (Table 1).
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Table 1. Summary of the included studiesa.

Chicago classi-
ficationValidationPerformanceStudy aimsAIb methodSample sizeCountry

Study and
year

UnspecifiedInternal vali-
dation only

United
States

Hoffman et
al, 2013 [30]

•••• Accuracy: 91%Pharyngeal
analysis

Multilayer per-
ceptron artificial
neural network

30 participants
• •335 swallows AUROCd: 0.90-

0.98• 7 MBSImPc

components

• Dysphagia
• 19 men and 11

women
• mean age: 68.0

(SD 11.8) years

v2.0Inter- and in-
trarater

AustraliaRohof et al,
2014 [31]

•••• ICCsh 0.95 and
0.94 (intrarater

AIMg metrics
automation

Linear regression50 patients
• •GERDe AIMplotf algo-

rithm and interrater, re-
spectively)

• 33 men and 17
women

• Mean age 52
(SD 1.9) years

v2.0Expert com-
parison

GermanyJungheim et
al, 2016 [32]

•••• Expert compara-
ble values (resti-
tution time of

Automated
calculation of

UESi contrac-

Logistic regres-
sion and se-
quence labeling

15 healthy vol-
unteers

• 8 men and 7
women 11.16 ±5.7s andtion restitu-

10.04 ±5.74s• Mean 34.9
years

tion time
(experts), com-
pared to model-
generated values
from 8.91 ±3.71s
to 10.87 ±4.68s)

UnspecifiedInternal vali-
dation only

GermanyJell et al,
2020 [40]

•••• Accuracy: 97.7%Automated
swallow detec-
tion or classifi-

Supervised ma-
chine learning
for automated

15 HRMj for
training • Sensitivity:

89.7%• 25 HRM for
validation cationswallow detec-

tion and classifi-
• Specificity:

83.2%
cation

v2.0Internal vali-
dation only

RomaniaCzako et al,
2021 [41]

•••• Accuracy: 97%For probe po-
sitioning

InceptionV3
(Google LLC)

CNNk for trans-

2437 images
• F1-score >84%

• IRPl classifi-
cationfer learning

v2.0Internal vali-
dation only

United
States

Kou et al,
2021 [33]

•••• 3 distinct clus-
ters in HRM
amenable to ma-

Pattern clus-
tering

Variational au-
toencoder (unsu-
pervised)

2161 HRM
studies

• Motility phe-
notypes

• 32,415 swal-
lows chine learning

classification
(linear discrimi-
nant)

v3.0Internal vali-
dation only

United
States

Kou et al,
2022 [34]

•••• Swallow type ac-
curacy: 83%

Swallow type
classification

LSTMm deep
learning

1741 HRM
studies

• Classification of
peristalsis accura-

•• Peristalsis
classification

26,115 swal-
lows

cy: 88%

v3.0Internal vali-
dation only

ChinaWang et al,
2021 [35]

•••• Accuracy:
91.32%

Motility trac-
ing

3D CNN
(Conv3D;
Google LLC)

229 esophageal
motility cases

• Sensitivity:
90.5%

•• Function
mapping

229 individuals
• Bidirectional

convolutional • Specificity:
95.87%LSTM (BiConvL-

STM; Google
LLC)
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Chicago classi-
ficationValidationPerformanceStudy aimsAIb methodSample sizeCountry

Study and
year

v3.0Internal vali-
dation only

• Swallow-type
accuracy: 88%

• Pressurization:
93%

• Study-level: 81%
(top-1), 92%
(top-2)

• HRM diagno-
sis automa-
tion

• CNNs
• Extreme gradient

boosting
• Artificial neural

network

• 1741 HRM
studies

United
States

Kou et al,
2022 [42]

v3.0Internal vali-
dation only

• Top-1 accuracy:
86%

• F1-score: 86%

• HRM diagno-
sis

• Clouse plot
analysis

• InceptionV3 for
the classification
of the IRP

• DenseNet201 for
5 different class-
es of swallowing
disorders

• 192 HRM stud-
ies (patients)

• 2614 images
(1079 IRP,
1535 swallow
pattern images)

RomaniaSurdea-Bla-
ga et al,
2022 [36]

v3.0Internal vali-
dation only

• Accuracy: 94%
• Precision: 94%
• Recall: 93%

• HRM diagno-
sis

• Inception V3
CNN for transfer
learning

• 1570 imagesRomaniaPopa et al,
2022 [43]

v3.0Internal vali-
dation only

• Accuracy:
78.03% (single
swallow)

• Accuracy:
92.54% (patient
level)

• Multi-class
esophageal
motility disor-
ders diagnosis

• Decision sup-
port

• Graph neural
networks

• Fuzzy classifier

• 67 patientsIranRafieivand
et al, 2023
[37]

v4.0Internal vali-
dation only

• Accuracy: 91.7%
• Precision:

92.86%
• Logistic regres-

sion produced
the best results

• Automatic
classification
of functional
dysphagia

• Multiple models
(support vector
machines, ran-
dom forest, k-
nearest neigh-
bors, and logistic
regression)

• 30 healthy par-
ticipants

• 30 patients
with functional
dysphagia

United
States

Zifan et al,
2023 [38]

v4.0Internal vali-
dation only

• AUROC: 0.95• Functional
dysphagia
versus con-
trols classifi-
cation

• Ensemble meth-
ods (gradient
boost, support
vector machines,
and logit boost)

• 30 healthy par-
ticipants

• 30 patients
with functional
dysphagia

United
States

Zifan et al,
2024 [44]

v4.0Internal vali-
dation only

• Accuracy: 97%• To compare
the findings
on HRM and
swallowing
sounds

• Artificial neural
network

• 43 dysphagia
patients (suspi-
cious achalasia)

IranLankarani et
al, 2024 [39]

v3.0Internal vali-
dation only

• Precision: 89%
• Accuracy: 88%
• Recall: 88%
• F1-score: 88.5%

• Esophageal
motility disor-
der diagnosis

• CNN ensemble

(LLMn-assisted)

• 926 imagesRomaniaPopa et al,
2024 [23]

v4.0Internal vali-
dation only

• Accuracy:
98.48%

• Esophageal
motility disor-
der diagnosis

• Multi-model
CNN attention
ensemble

• 2315 swallow-
ing samples

ChinaWu et al,
2025 [45]

aCharacteristics and outcomes of 17 included studies evaluating artificial intelligence for high-resolution manometry interpretation (2013-2025). Studies
encompassed 4588 patients from 6 countries (United States, Romania, Germany, Iran, China, and multicenter European studies) with sample sizes
ranging from 15 to 2161 participants. Table 1 presents: study design (retrospective, prospective, or validation studies), patient population characteristics,
artificial intelligence methodology used (traditional machine learning vs deep learning approaches), specific diagnostic tasks (eg, Chicago Classification
diagnosis, integrated relaxation pressure classification, and swallow type identification), reference standards used for model training or validation,
diagnostic performance metrics (accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve), and key findings.
bAI: artificial intelligence.
cMBSImP: Modified Barium Swallow Impairment Profile.
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dAUROC: area under the receiver operating characteristic curve.
eGERD: gastroesophageal reflux disease.
fAIMplot: automated impedance manometry analysis.
gAIM: automated impedance manometry.
hICC: intraclass correlation coefficient.
iUES: upper esophageal sphincter.
jHRM: high-resolution manometry.
kCNN: convolutional neural network.
lIRP: integrated relaxation pressure.
mLSTM: long short-term memory.
nLLM: large language model.

Time Trend of AI Application in HRM Interpretation
The application of AI to HRM interpretation has shown
continuous evolution since 2013. Early pioneers such as
Hoffman et al (2013) [30] applied artificial neural networks to
pharyngeal HRM classification, achieving 86.5%-94% accuracy
with 335 swallows. During this initial period (2013-2016),
researchers focused primarily on automating specific parameter
measurements. Rohof et al (2014) [31] created the automated
impedance manometry analysis automated analysis system with
excellent reproducibility (intraclass correlation coefficient:
0.94-0.95), and Jungheim et al (2016) [32] applied machine
learning to calculate upper esophageal sphincter restitution
times.

A methodological shift occurred around 2018 when researchers
began adopting deep learning approaches. Jell et al (2020) [40]
achieved 97.7% accuracy in automated swallow detection using
supervised machine learning. The period from 2020-2022 saw
widespread adoption of CNNs. Czako et al (2021) [41] achieved
97% accuracy for integrated relaxation pressure (IRP)
classification using InceptionV3 (Google LLC) CNN with 2437
images. Kou et al (2021) [33] developed both an unsupervised
variational autoencoder analyzing 32,415 swallows from 2161
patients and a supervised long short-term memory network
achieving 83% accuracy [34]. Wang et al (2021) [35]
implemented temporal modeling with Bidirectional
Convolutional long short-term memory networks, reaching
91.32% overall accuracy. Romanian researchers, including
Surdea-Blaga et al (2022) [36] and Popa et al (2022) [43],
achieved 86% and 94% accuracy, respectively, for Chicago
Classification automation.

Recent studies from 2023 onwards have explored increasingly
sophisticated and diverse approaches. Zifan et al (2023) [38]
used shallow machine learning approaches, including logistic
regression, random forests, and k-nearest neighbors, to analyze
distension-contraction patterns in 60 patients with functional
dysphagia, achieving 91.7% accuracy with logistic regression
for proximal segments and 90.5% with random forests for distal
segments. Rafieivand et al (2023) [37] developed a fuzzy
framework with graphical neural network interpretation,

achieving 78% single-swallow accuracy but 92.54%
patient-level accuracy in 67 patients. Zifan et al (2024) [44]
further refined their approach using support vector machines to
analyze distension-contraction plots, achieving an AUROC of
0.95 in 60 patients. Lankarani et al (2024) [39] pioneered
noninvasive acoustic analysis combined with AI, achieving
97% accuracy for IRP prediction in 43 patients. Most recently,
studies have incorporated large language models, with Popa et
al (2024) [23] integrating Gemini with deep learning, while Wu
et al [45] (2025) developed mixed attention ensemble
approaches (Table 1).

Diagnostic Accuracy Across Studies
Overall diagnostic accuracies ranged from 78% to 97% across
the 17 included studies. The highest accuracies were achieved
for specific applications: IRP classification (97%) [41], acoustic
IRP prediction (97%) [39], and swallow detection (97.7%) [40].
For Chicago Classification automation, accuracy varied from
86% to >93% [36,43]. Functional dysphagia studies
demonstrated segment-specific performance differences, with
Rafieivand et al [37] highlighting the importance of patient-level
versus swallow-level accuracy (92.54% vs 78%).

Notably, none of the studies provided detailed performance
metrics for individual Chicago Classification categories, such
as achalasia subtypes or specific motility disorders. This absence
of disorder-specific sensitivity and specificity data limits
understanding of AI performance across the full spectrum of
esophageal pathology and represents a critical gap for clinical
implementation (Table 1).

Methodological Quality
QUADAS-2 assessment revealed variable methodological
quality across the 17 included studies (Table 2). For the patient
selection domain, no studies demonstrated low risk of bias, with
14 (82%) studies showing unclear risk primarily due to
unreported sampling methods, and 3 (18%) studies showing
high risk: Hoffman et al [30] included only disordered cohorts
without healthy controls, Jungheim et al [32] tested only healthy
volunteers limiting representativeness, and Lankarani et al [39]
had a small specialized cohort.

J Med Internet Res 2025 | vol. 27 | e85223 | p. 8https://www.jmir.org/2025/1/e85223
(page number not for citation purposes)

Gong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. QUADAS-2a methodology quality assessment for included studiesb.

Flow and timingReference standardIndex testPatient selectionStudy and year

L: complete data, no lossesL: expert manual standard
method

Ld: clear prespecified
threshold

Hc: no healthy controlsHoffman et al, 2013
[30]

L: complete data, no lossesU: reproducibility focus, not
diagnostic

U: calibrated on the same
dataset, raising overfit-
ting concerns

Ue: convenience sample; rep-
resentativeness unknown

Rohof et al, 2014 [31]

L: all volunteer data usedL: reference standard measure-

ments (eg, UESf metrics) and
experienced assessors

U: small n=15, overfit
concern

H: healthy only; not represen-
tative

Jungheim et al, 2016
[32]

L: all data includedL: expert annotationL: supervised machine
learning clear model

U: sampling method not re-
ported

Jell et al, 2020 [40]

U: 8 patients excluded, and
completeness uncertain

L: expert Chicago-consistent
labels

L: InceptionV3 (Google
LLC) with held-out test

U: sampling method not re-
ported

Czako et al, 2021 [41]

L: all data includedH: no validated reference
standard

L: variational autoen-
coder

U: unclear enrollment methodKou et al, 2021 [33]

L: all data includedL: expert Chicago-consistent
labels

L: separate test set;
blinded automated infer-
ence

U: unclear enrollment methodKou et al, 2022 [34]

L: all data includedL: expert Chicago-consistent
labels

L: train, validation, or
test separation

U: unclear enrollment methodWang et al, 2021 [35]

L: all data includedL: expert Chicago-consistent
labels

L: independent test co-
hort; rule-based aggrega-
tion of swallow-level
models

U: unclear enrollment methodKou et al, 2022 [42]

L: all data includedL: expert Chicago-consistent
labels

L: CNNsg with hold-out
evaluation

U: no explicit enrollment
stated

Surdea-Blaga et al,
2022 [36]

H: excluded indeterminate casesL: expert Chicago-consistent
labels

L: CNN with internal
split

U: spectrum biasPopa et al, 2022 [43]

L: all data includedL: expert Chicago-consistent
labels

L: composite (graph +
fuzzy) model

U: single-center, small n;
sampling not described

Rafieivand et al, 2023
[37]

L: all data includedU: details of reference adjudi-
cation limited

L: multiple machine
learning models with
cross-validation

U: unclear enrollment methodZifan et al, 2023 [38]

L: all data includedU: details of reference adjudi-
cation limited

L: multiple machine
learning models with
cross-validation

U: unclear enrollment methodZifan et al, 2024 [44]

L: all data includedL: expert Chicago-consistent
labels

L: artificial neural net-
work model

H: small, specialized cohortLankarani et al, 2024
[39]

L: all data includedL: expert Chicago-consistent
labels

L: LLMh-assisted
pipeline

U: unclear enrollment methodPopa et al, 2024 [23]

L: all data includedL: expert Chicago-consistent
labels

L: ensemble with cross-
validation or hold-out

U: unclear enrollment methodWu et al, 2025 [45]

aQUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2.
bQuality Assessment of Diagnostic Accuracy Studies-2 evaluation of methodological quality and risk of bias for 17 included artificial intelligence
studies in high-resolution manometry (2013-2025). Assessment evaluated four domains: (1) patient selection—risk of bias from inappropriate patient
selection, exclusions, or case-control design; (2) index test—risk of bias from artificial intelligence model training or validation procedures and threshold
determination; (3) reference standard—risk of bias from expert interpretation methods and blinding; and (4) flow and timing—risk of bias from incomplete
data or variable intervals between index test and reference standard. Each domain was rated as low risk (L), high risk (H), or unclear risk (U) of bias.
Applicability concerns assessed whether study design, patient population, artificial intelligence methodology, or reference standards differed from the
review question. The table demonstrates predominant unclear risk in patient selection (14/17, 82% of studies) due to inadequate reporting of recruitment
methods, while the index test domain showed the strongest methodological rigor (88% low risk).
cH: high risk.
dL: low risk.
eU: unclear risk.
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fUES: upper esophageal sphincter.
gCNN: convolutional neural network.
hLLM: large language model.

The index test domain showed the strongest methodological
rigor, with 15 (88%) studies demonstrating low risk of bias
through appropriate model training and validation separation.
Only 2 (12%) studies showed unclear risk: Rohof et al [31] due
to calibration on the same dataset raising overfitting concerns,
and Jungheim et al [32] due to the small sample size (n=15),
creating uncertainty in algorithm performance.

For the reference standard domain, 14 (82%) studies had a low
risk of bias using expert-determined Chicago Classification
labels. Further, 3 (18%) studies showed unclear risk: Rohof et
al [31] focused on automated metric agreement rather than
diagnostic ground truth, and both studies by Zifan et al [38,44]
had limited details on reference adjudication. One study by Kou
et al [33] showed a high risk as it lacked a validated reference
standard for unsupervised clusters.

Flow and timing assessment revealed low risk in 15 (88%)
studies, with all patient data included in analyses. One study
showed unclear risk (Czako et al [41]) due to the exclusion of
8 patients with probe-placement failure, and 1 study (Popa et
al [43]) demonstrated high risk by excluding indeterminate cases
from analysis, introducing potential spectrum bias.

The predominance of unclear risk in patient selection highlights
a systematic reporting deficiency across the literature, with most
studies failing to document recruitment and enrollment methods
adequately. This pattern, combined with the complete absence
of external validation noted elsewhere, raises concerns about
the generalizability and real-world applicability of these AI
systems.

Secondary Findings
None of the 17 included studies performed external validation
using datasets from different institutions or periods. All studies
relied on internal validation methods, including train-test splits,
k-fold cross-validation, or other internal validation approaches.
This complete absence of external validation represents a critical
limitation in assessing the generalizability of AI models for
HRM interpretation. Studies using k-fold cross-validation
[35,38,41,44,45] reported more conservative performance
estimates compared to simple train-test splits, suggesting
potential overfitting in single-split validation approaches.

Discussion

Principal Findings
The systematic synthesis of current evidence reveals that AI
applications in HRM have demonstrated strong technical
performance, with diagnostic accuracies ranging from 78% to
97%, while facing substantial translational challenges. The
evolution from traditional machine learning algorithms
(86.5%-94% accuracy) to deep learning architectures capable
of 97% accuracy for specific tasks represents significant
technological progress [30,39,41]. These advances occur within
the broader context of AI transformation in gastroenterology,
where similar trajectories have been observed in colonoscopy,

capsule endoscopy, and inflammatory bowel disease assessment,
suggesting that the integration of AI into clinical
gastroenterology practice is inevitable rather than speculative
[10,11].

The innovation of AI in HRM extends beyond mere automation.
These systems represent a major change in how we approach
esophageal motility diagnostics [7-10], offering solutions to
important clinical needs: the global shortage of motility experts,
the need for rapid and consistent interpretation [46], and the
potential for telemedicine integration to serve underserved areas
[10,11].

The diagnostic accuracy achieved by current AI systems,
particularly for IRP classification and automated Chicago
Classification, addresses a fundamental limitation of HRM
interpretation: interobserver variability. AI systems maintain
consistent diagnostic criteria application while human experts
demonstrate significant intraobserver variability on repeated
assessments. This consistency could enable more reliable
phenotyping of esophageal motility disorders, facilitating
precision medicine approaches that move beyond categorical
diagnoses to individualized pathophysiological assessment. The
superior performance of AI in quantitative parameter calculation
eliminates measurement variability that has plagued HRM
interpretation since its inception [46].

These accuracy levels have important implications for clinical
practice. With health care systems facing increasing pressure
to reduce costs while improving outcomes, AI-enabled HRM
interpretation could decrease repeat procedures and reduce
unnecessary testing costs [47,48]. Moreover, the consistent
application of diagnostic criteria could reduce
misdiagnosis-related treatment failures that currently affect a
considerable number of patients with esophageal motility
disorders [3,46].

However, the apparent success of AI systems must be
contextualized within significant methodological limitations
identified through quality assessment. Most critically, no studies
demonstrated low risk of bias in patient selection, with 82%
(14/17) showing unclear risk due to unreported sampling
methods and 18% (n=3) showing high risk due to biased cohort
selection [30,32,39]. This systematic deficiency in documenting
recruitment and enrollment methods raises fundamental
questions about the representativeness of training datasets. The
complete absence of external validation across all 17 studies
compounds these concerns about generalizability. Internal
validation consistently overestimates model performance, and
the lack of testing on datasets from different institutions, HRM
systems, or patient populations means we have no evidence of
real-world performance [10].

The complete absence of prospective clinical trials represents
the most critical barrier to clinical translation. While
retrospective studies demonstrate technical feasibility with
accuracies of 78%-97%, these controlled environments fail to
capture the complexities of real-world clinical practice.
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Prospective trials are essential to evaluate: (1) how AI systems
perform with real-time data acquisition variability, (2) whether
AI recommendations alter clinical decision-making, (3) patient
outcomes following AI-guided treatment, and (4) integration
challenges within existing clinical workflows. Without such
evidence, even the most accurate AI models remain research
tools rather than clinical instruments [9-11].

The evolution through distinct phases of AI development in
HRM mirrors broader trends in medical AI but also reveals
unique challenges specific to esophageal motility assessment.
The transition from traditional machine learning to deep learning
approaches yielded substantial performance improvements, yet
the “black box” nature of deep learning models poses particular
challenges in a field where pathophysiological understanding
drives therapeutic decision-making [49]. Clinicians require not
just diagnostic labels but mechanistic insights that inform
treatment selection between medical therapy, endoscopic
intervention, or surgical management. The development of
explainable AI models that provide interpretable features and
confidence metrics represents a critical priority for clinical
acceptance [11]. Recent advances in attention mechanisms and
gradient-based visualization techniques, as demonstrated in the
Popa et al [23] study using LIME (Local Interpretable
Model-Agnostic Explanations), offer promising approaches for
making AI decision-making transparent and clinically
meaningful.

The integration of multiple diagnostic modalities through AI
platforms addresses a longstanding limitation of isolated HRM
interpretation. The combination of manometric, impedance, and
complementary data provides a more comprehensive assessment
of esophageal function than any single modality alone [50]. AI
systems excel at synthesizing these complex, multidimensional
datasets, potentially revealing pathophysiological patterns
invisible to conventional analysis. The Zifan et al (2023 [38]
and 2024 [44]) work on distension-contraction plots illustrates
how AI can extract diagnostic value from data presentations
that challenge human interpretation. This capability becomes
particularly relevant with the Chicago Classification version
4.0 emphasis on provocative testing and positional changes,
which generate substantially more data requiring integration
and interpretation [3].

The absence of disorder-specific performance metrics across
all 17 studies severely limits clinical applicability. While overall
accuracy appears promising (86%-97%), clinicians need to
know how AI performs for specific conditions: distinguishing
achalasia subtypes (critical for treatment selection), detecting
subtle ineffective esophageal motility (often missed by novices),
or identifying rare disorders such as jackhammer esophagus. A
system with 95% overall accuracy but poor performance in type
II achalasia, for instance, could lead to inappropriate treatment
recommendations. Future studies must report sensitivity and
specificity for each Chicago Classification category to enable
informed clinical decision-making.

Implementation barriers identified across studies reveal a
complex interplay of technical, regulatory, clinical, and
economic factors. The incompatibility with existing HRM
systems reflects the proprietary nature of medical device

software and the lack of interoperability standards. The
regulatory uncertainty surrounding AI medical devices requires
proactive engagement between developers, clinicians, and
regulatory agencies to establish appropriate evaluation
frameworks [47,48]. Despite these barriers, the economic
rationale for AI implementation is strong. High-volume centers
could achieve cost-effectiveness through improved workflow
efficiency and reduced need for expert consultation [47,48,51],
though specific economic analyses are needed to quantify these
benefits. The lack of specific reimbursement codes for
AI-assisted interpretation creates financial uncertainty that
discourages adoption [51]. The potential for AI to enable
task-shifting from specialists to general gastroenterologists
could address workforce shortages and improve access to
motility assessment, particularly in underserved areas.

The ethical implications of AI implementation in HRM
diagnostic practice deserve careful consideration [52]. The
potential for algorithmic bias, particularly affecting populations
underrepresented in training datasets, could exacerbate existing
health care disparities. The predominance of studies from North
American, European, and select Asian centers raises concerns
about applicability to African, Latin American, and other
underrepresented populations with different disease phenotypes
and genetic backgrounds [52]. Development of quality assurance
programs that monitor AI performance and identify edge cases
requiring human review will be essential for maintaining patient
safety.

Moving from laboratory validation to clinical implementation
requires addressing multiple translational gaps simultaneously.
First, prospective multicenter trials must demonstrate that AI
systems maintain performance across diverse patient
populations, HRM equipment, and clinical settings. Second,
health economic analyses must quantify whether efficiency
gains justify implementation costs—a critical requirement for
hospital administrator buy-in and insurance coverage. Third,
regulatory pathways need clarification: Should AI-HRM systems
be classified as clinical decision support tools or diagnostic
devices? Each classification carries different validation
requirements and liability considerations. Finally,
implementation science research must address workflow
integration, user training requirements, and change management
strategies to ensure successful adoption [53].

Future priorities must focus on multicenter validation studies,
development of explainable AI models, integration with
evolving diagnostic frameworks, and systematic addressing of
regulatory and economic barriers. The ultimate success of AI
in HRM will depend not on technological sophistication alone
but on thoughtful integration that preserves clinical judgment
while enhancing diagnostic accuracy and efficiency. To achieve
clinical translation, the field must transition from technical
validation to clinical validation through (1) prospective trials
comparing AI-assisted versus standard interpretation on patient
outcomes, (2) disorder-specific performance benchmarking
across all Chicago Classification categories, (3)
cost-effectiveness analyses demonstrating economic value, (4)
regulatory sandbox programs allowing controlled real-world
testing, and (5) implementation science studies optimizing
integration strategies. Until these translational requirements are
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met, AI in HRM will remain a promising technology awaiting
clinical realization.

Study Limitations
This systematic review has several limitations that should be
considered when interpreting the findings. First, the
heterogeneity in AI methodologies, patient populations, and
outcome definitions precluded meta-analysis, limiting our ability
to provide pooled estimates of diagnostic accuracy. Second, we
excluded non-English language publications, potentially missing
relevant studies from non–English speaking countries. Third,
the absence of standardized reporting guidelines for AI studies
in HRM made quality assessment challenging, particularly
regarding technical aspects of model development. Fourth,
publication bias could not be formally assessed due to the
diversity of study designs. Fifth, the lack of clinical outcome
data across all studies prevented assessment of the real-world
impact of AI implementation on patient care, treatment
decisions, and health care costs. Finally, critical limitations
include the complete absence of low-risk patient selection across
all studies, the lack of disorder-specific performance metrics
for individual Chicago Classification categories, the absence
of prospective clinical trials, no cost-effectiveness analyses, and
insufficient direct comparisons between AI and human

interpreters using standardized metrics. These gaps collectively
limit our ability to assess the true clinical utility and
implementation readiness of AI systems in HRM interpretation.

Conclusions
This systematic review provides comprehensive evidence that
AI applications in HRM have achieved remarkable technical
capabilities while facing substantial challenges in clinical
translation. The diagnostic accuracies of 78%-97% demonstrate
the potential for AI to standardize and enhance HRM
interpretation. However, the complete absence of external
validation, systematic deficiencies in patient selection
documentation, and lack of clinical outcome studies highlight
the critical gap between technological capability and clinical
utility. Additionally, the limited reporting of patient
demographics across included studies—reflecting the
methodological focus of AI development papers—represents
an ongoing challenge for assessing generalizability across
diverse populations. Future AI validation studies should
systematically report demographic characteristics, including
age, sex, race or ethnicity, and geographic location, to enable
evaluation of algorithmic performance across patient subgroups
and identify potential disparities in diagnostic accuracy that
could affect equitable clinical implementation.

Data Availability
All the data are accessible and available upon reasonable request to the corresponding author.

Funding
This research was supported by the Bio&Medical Technology Development Program of the National Research Foundation (NRF)
funded by the Korean government (MSIT; No. RS-2023-00223501).

Authors' Contributions
Conceptualization: CSB
Data curation: CSB, EJG, JJL, GHB
Formal analysis: CSB
Funding acquisition: JJL
Investigation: CSB, EJG, JJL, GHB
Methodology: CSB
Project administration: CSB
Resources: CSB
Writing-original draft: EJG, CSB
Writing-review and editing: CSB

Conflicts of Interest
None declared.

Multimedia Appendix 1
PRISMA checklist.
[DOCX File , 32 KB-Multimedia Appendix 1]

Multimedia Appendix 2
PRISMA-DTA checklist.
[PDF File (Adobe PDF File), 557 KB-Multimedia Appendix 2]

J Med Internet Res 2025 | vol. 27 | e85223 | p. 12https://www.jmir.org/2025/1/e85223
(page number not for citation purposes)

Gong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app1.docx&filename=75334d1aeff4818dcc0e9348e5e531b7.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app1.docx&filename=75334d1aeff4818dcc0e9348e5e531b7.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app2.pdf&filename=1c597ad83198e12412052b6d8b8abd37.pdf
https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app2.pdf&filename=1c597ad83198e12412052b6d8b8abd37.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 3
PRISMA-S checklist.
[DOCX File , 19 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Search execution documentation.
[DOCX File , 499 KB-Multimedia Appendix 4]

References

1. Yadlapati R, Kahrilas PJ, Fox MR, Bredenoord AJ, Prakash Gyawali C, Roman S, et al. Esophageal motility disorders on
high-resolution manometry: Chicago classification version 4.0. Neurogastroenterol Motil. 2021;33(1):e14058. [FREE Full
text] [doi: 10.1111/nmo.14058] [Medline: 33373111]

2. Kahrilas PJ, Bredenoord AJ, Fox M, Gyawali CP, Roman S, Smout AJPM, et al. International High Resolution Manometry
Working Group. The Chicago classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil.
2015;27(2):160-174. [FREE Full text] [doi: 10.1111/nmo.12477] [Medline: 25469569]

3. Yadlapati R, Pandolfino JE, Fox MR, Bredenoord AJ, Kahrilas PJ. What is new in Chicago classification version 4.0?
Neurogastroenterol Motil. 2021;33(1):e14053. [FREE Full text] [doi: 10.1111/nmo.14053] [Medline: 33340190]

4. Pandolfino JE, Fox MR, Bredenoord AJ, Kahrilas PJ. High-resolution manometry in clinical practice: utilizing pressure
topography to classify oesophageal motility abnormalities. Neurogastroenterol Motil. 2009;21(8):796-806. [FREE Full
text] [doi: 10.1111/j.1365-2982.2009.01311.x] [Medline: 19413684]

5. Carlson D, Ravi K, Kahrilas P, Gyawali C, Bredenoord A, Castell D, et al. Diagnosis of esophageal motility disorders:
esophageal pressure topography vs. conventional line tracing. Am J Gastroenterol. 2015;110(7):967-977. [FREE Full text]
[doi: 10.1038/ajg.2015.159] [Medline: 26032151]

6. Soudagar AS, Sayuk GS, Gyawali CP. Learners favour high resolution oesophageal manometry with better diagnostic
accuracy over conventional line tracings. Gut. 2012;61(6):798-803. [FREE Full text] [doi: 10.1136/gutjnl-2011-301145]
[Medline: 21997554]

7. Ahuja A, Kefalakes H. Clinical applications of artificial intelligence in gastroenterology: excitement and evidence.
Gastroenterology. 2022;163(2):341-344. [doi: 10.1053/j.gastro.2022.04.025] [Medline: 35489435]

8. Gong EJ, Bang CS. Artificial intelligence in colonoscopy: polyp fiction or clinical reality? Clin Endosc. 2025;58(5):784-786.
[FREE Full text] [doi: 10.5946/ce.2025.103] [Medline: 40899245]

9. Gong EJ, Bang CS. Interpretation of medical images using artificial intelligence: current status and future perspectives.
Korean J Gastroenterol. 2023;82(1):43-45. [doi: 10.4166/kjg.2023.071]

10. Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol. 2019;25(14):1666-1683.
[FREE Full text] [doi: 10.3748/wjg.v25.i14.1666] [Medline: 31011253]

11. Gong EJ, Woo J, Lee JJ, Bang CS. Role of artificial intelligence in gastric diseases. World J Gastroenterol.
2025;31(37):111327. [FREE Full text] [doi: 10.3748/wjg.v31.i37.111327] [Medline: 41025012]

12. Gong EJ, Bang CS, Lee JJ, Park J, Kim E, Kim S, et al. Large language models in gastroenterology: systematic review. J
Med Internet Res. 2024;26:e66648. [FREE Full text] [doi: 10.2196/66648] [Medline: 39705703]

13. Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31-38. [doi:
10.1038/s41591-021-01614-0] [Medline: 35058619]

14. Kim H, Gong E, Bang C. Application of machine learning based on structured medical data in gastroenterology. Biomimetics
(Basel). 2023;8(7):512. [FREE Full text] [doi: 10.3390/biomimetics8070512] [Medline: 37999153]

15. Roman S, Huot L, Zerbib F, Bruley des Varannes S, Gourcerol G, Coffin B, et al. High-resolution manometry improves
the diagnosis of esophageal motility disorders in patients with dysphagia: a randomized multicenter study. Am J Gastroenterol.
2016;111(3):372-380. [doi: 10.1038/ajg.2016.1] [Medline: 26832656]

16. Bang CS, Ahn JY, Kim J, Kim Y, Choi IJ, Shin WG. Establishing machine learning models to predict curative resection
in early gastric cancer with undifferentiated histology: development and usability study. J Med Internet Res.
2021;23(4):e25053. [FREE Full text] [doi: 10.2196/25053] [Medline: 33856358]

17. Gong EJ, Bang CS. Advancements and challenges in gastrointestinal imaging. World J Clin Cases. 2024;12(33):6591-6594.
[FREE Full text] [doi: 10.12998/wjcc.v12.i33.6591] [Medline: 39600475]

18. Fass O, Rogers BD, Gyawali CP. Artificial intelligence tools for improving manometric diagnosis of esophageal dysmotility.
Curr Gastroenterol Rep. 2024;26(4):115-123. [doi: 10.1007/s11894-024-00921-z] [Medline: 38324172]

19. Farah A, Abboud W, Savarino EV, Mari A. Esophageal intelligence: implementing artificial intelligence into the diagnostics
of esophageal motility and impedance pH monitoring. Neurogastroenterol Motil. 2025;37(9):e70038. [doi:
10.1111/nmo.70038] [Medline: 40145475]

20. Kou W, Soni P, Klug MW, Etemadi M, Kahrilas PJ, Pandolfino JE, et al. An artificial intelligence platform provides an
accurate interpretation of esophageal motility from functional lumen imaging probe panometry studies. Neurogastroenterol
Motil. 2023;35(7):e14549. [FREE Full text] [doi: 10.1111/nmo.14549] [Medline: 36808777]

J Med Internet Res 2025 | vol. 27 | e85223 | p. 13https://www.jmir.org/2025/1/e85223
(page number not for citation purposes)

Gong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app3.docx&filename=b952da73b8ecd5a63dd52fb13356e180.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app3.docx&filename=b952da73b8ecd5a63dd52fb13356e180.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app4.docx&filename=280f3c9c9a6a1045c68fe436d80c98bd.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e85223_app4.docx&filename=280f3c9c9a6a1045c68fe436d80c98bd.docx
https://boris-portal.unibe.ch/handle/20.500.12422/66649
https://boris-portal.unibe.ch/handle/20.500.12422/66649
http://dx.doi.org/10.1111/nmo.14058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33373111&dopt=Abstract
https://europepmc.org/abstract/MED/25469569
http://dx.doi.org/10.1111/nmo.12477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25469569&dopt=Abstract
https://europepmc.org/abstract/MED/33340190
http://dx.doi.org/10.1111/nmo.14053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33340190&dopt=Abstract
https://europepmc.org/abstract/MED/19413684
https://europepmc.org/abstract/MED/19413684
http://dx.doi.org/10.1111/j.1365-2982.2009.01311.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19413684&dopt=Abstract
https://europepmc.org/abstract/MED/26032151
http://dx.doi.org/10.1038/ajg.2015.159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26032151&dopt=Abstract
https://europepmc.org/abstract/MED/21997554
http://dx.doi.org/10.1136/gutjnl-2011-301145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21997554&dopt=Abstract
http://dx.doi.org/10.1053/j.gastro.2022.04.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35489435&dopt=Abstract
https://dx.doi.org/10.5946/ce.2025.103
http://dx.doi.org/10.5946/ce.2025.103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40899245&dopt=Abstract
http://dx.doi.org/10.4166/kjg.2023.071
https://www.wjgnet.com/1007-9327/full/v25/i14/1666.htm
http://dx.doi.org/10.3748/wjg.v25.i14.1666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31011253&dopt=Abstract
https://www.wjgnet.com/1007-9327/full/v31/i37/111327.htm
http://dx.doi.org/10.3748/wjg.v31.i37.111327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=41025012&dopt=Abstract
https://www.jmir.org/2024//e66648/
http://dx.doi.org/10.2196/66648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39705703&dopt=Abstract
http://dx.doi.org/10.1038/s41591-021-01614-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35058619&dopt=Abstract
https://www.mdpi.com/resolver?pii=biomimetics8070512
http://dx.doi.org/10.3390/biomimetics8070512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37999153&dopt=Abstract
http://dx.doi.org/10.1038/ajg.2016.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26832656&dopt=Abstract
https://www.jmir.org/2021/4/e25053/
http://dx.doi.org/10.2196/25053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33856358&dopt=Abstract
https://www.wjgnet.com/2307-8960/full/v12/i33/6591.htm
http://dx.doi.org/10.12998/wjcc.v12.i33.6591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39600475&dopt=Abstract
http://dx.doi.org/10.1007/s11894-024-00921-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38324172&dopt=Abstract
http://dx.doi.org/10.1111/nmo.70038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40145475&dopt=Abstract
https://europepmc.org/abstract/MED/36808777
http://dx.doi.org/10.1111/nmo.14549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36808777&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Gong EJ, Bang CS. Edge artificial intelligence device in real-time endoscopy for the classification of colonic neoplasms.
Diagnostics (Basel). 2025;15(12):1478. [FREE Full text] [doi: 10.3390/diagnostics15121478] [Medline: 40564799]

22. Gong EJ, Bang CS, Lee JJ. Edge artificial intelligence device in real-time endoscopy for classification of gastric neoplasms:
development and validation study. Biomimetics (Basel). 2024;9(12):783. [FREE Full text] [doi: 10.3390/biomimetics9120783]
[Medline: 39727787]

23. Popa SL, Surdea-Blaga T, Dumitrascu DL, Pop AV, Ismaiel A, David L, et al. Gemini-assisted deep learning classification
model for automated diagnosis of high-resolution esophageal manometry images. Medicina (Kaunas). 2024;60(9):1493.
[FREE Full text] [doi: 10.3390/medicina60091493] [Medline: 39336534]

24. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated
guideline for reporting systematic reviews. BMJ. 2021;372:n71. [FREE Full text] [doi: 10.1136/bmj.n71] [Medline:
33782057]

25. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, the PRISMA-DTA Group, et al. Preferred reporting
items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA.
2018;319(4):388-396. [doi: 10.1001/jama.2017.19163] [Medline: 29362800]

26. Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, et al. PRISMA-S Group. PRISMA-S: an
extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev. 2021;10(1):39. [FREE
Full text] [doi: 10.1186/s13643-020-01542-z] [Medline: 33499930]

27. medRxiv. URL: https://www.medrxiv.org [accessed 2025-11-13]
28. ClinicalTrials.gov. URL: https://clinicaltrials.gov [accessed 2025-11-13]
29. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2 Group. QUADAS-2: a

revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-536. [FREE Full
text] [doi: 10.7326/0003-4819-155-8-201110180-00009] [Medline: 22007046]

30. Hoffman MR, Jones CA, Geng Z, Abelhalim SM, Walczak CC, Mitchell AR, et al. Classification of high-resolution
manometry data according to videofluoroscopic parameters using pattern recognition. Otolaryngol Head Neck Surg.
2013;149(1):126-133. [FREE Full text] [doi: 10.1177/0194599813489506] [Medline: 23728150]

31. Rohof WO, Myers JC, Estremera FA, Ferris LS, van de Pol J, Boeckxstaens GE, et al. Inter- and intra-rater reproducibility
of automated and integrated pressure-flow analysis of esophageal pressure-impedance recordings. Neurogastroenterol Motil.
2014;26(2):168-175. [doi: 10.1111/nmo.12246] [Medline: 24164976]

32. Jungheim M, Busche A, Miller S, Schilling N, Schmidt-Thieme L, Ptok M. Calculation of upper esophageal sphincter
restitution time from high resolution manometry data using machine learning. Physiol Behav. 2016;165:413-424. [doi:
10.1016/j.physbeh.2016.08.005] [Medline: 27521686]

33. Kou W, Carlson DA, Baumann AJ, Donnan E, Luo Y, Pandolfino JE, et al. A deep-learning-based unsupervised model on
esophageal manometry using variational autoencoder. Artif Intell Med. 2021;112:102006. [FREE Full text] [doi:
10.1016/j.artmed.2020.102006] [Medline: 33581826]

34. Kou W, Galal GO, Klug MW, Mukhin V, Carlson DA, Etemadi M, et al. Deep learning-based artificial intelligence model
for identifying swallow types in esophageal high-resolution manometry. Neurogastroenterol Motil. 2022;34(7):e14290.
[FREE Full text] [doi: 10.1111/nmo.14290] [Medline: 34709712]

35. Wang Z, Hou M, Yan L, Dai Y, Yin Y, Liu X. Deep learning for tracing esophageal motility function over time. Comput
Methods Programs Biomed. 2021;207:106212. [doi: 10.1016/j.cmpb.2021.106212] [Medline: 34126411]

36. Surdea-Blaga T, Sebestyen G, Czako Z, Hangan A, Dumitrascu DL, Ismaiel A, et al. Automated Chicago classification for
esophageal motility disorder diagnosis using machine learning. Sensors (Basel). 2022;22(14):5227. [FREE Full text] [doi:
10.3390/s22145227] [Medline: 35890906]

37. Rafieivand S, Moradi MH, Momayez Sanat Z, Asl Soleimani H. A fuzzy-based framework for diagnosing esophageal
mobility disorder using high-resolution manometry. J Biomed Inform. 2023;141:104355. [FREE Full text] [doi:
10.1016/j.jbi.2023.104355] [Medline: 37023842]

38. Zifan A, Lin J, Peng Z, Bo Y, Mittal RK. Unraveling functional dysphagia: a game-changing automated machine-learning
diagnostic approach. Appl Sci. 2023;13(18):10116. [doi: 10.3390/app131810116]

39. Lankarani KB, Aboulpor N, Boostani R, Saeian S. Comparison of measurement of integrated relaxation pressure by
esophageal manometry with analysis of swallowing sounds with artificial intelligence in patients with achalasia.
Neurogastroenterol Motil. 2024;36(12):e14931. [doi: 10.1111/nmo.14931] [Medline: 39370611]

40. Jell A, Kuttler C, Ostler D, Hüser N. How to cope with big data in functional analysis of the esophagus. Visc Med.
2020;36(6):439-442. [FREE Full text] [doi: 10.1159/000511931] [Medline: 33447599]

41. Czako Z, Surdea-Blaga T, Sebestyen G, Hangan A, Dumitrascu DL, David L, et al. Integrated relaxation pressure classification
and probe positioning failure detection in high-resolution esophageal manometry using machine learning. Sensors (Basel).
2021;22(1):253. [FREE Full text] [doi: 10.3390/s22010253] [Medline: 35009794]

42. Kou W, Carlson DA, Baumann AJ, Donnan EN, Schauer JM, Etemadi M, et al. A multi-stage machine learning model for
diagnosis of esophageal manometry. Artif Intell Med. 2022;124:102233. [FREE Full text] [doi:
10.1016/j.artmed.2021.102233] [Medline: 35115131]

J Med Internet Res 2025 | vol. 27 | e85223 | p. 14https://www.jmir.org/2025/1/e85223
(page number not for citation purposes)

Gong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.mdpi.com/resolver?pii=diagnostics15121478
http://dx.doi.org/10.3390/diagnostics15121478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40564799&dopt=Abstract
https://www.mdpi.com/resolver?pii=biomimetics9120783
http://dx.doi.org/10.3390/biomimetics9120783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39727787&dopt=Abstract
https://www.mdpi.com/resolver?pii=medicina60091493
http://dx.doi.org/10.3390/medicina60091493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39336534&dopt=Abstract
https://www.bmj.com/lookup/pmidlookup?view=long&pmid=33782057
http://dx.doi.org/10.1136/bmj.n71
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33782057&dopt=Abstract
http://dx.doi.org/10.1001/jama.2017.19163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29362800&dopt=Abstract
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-020-01542-z
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-020-01542-z
http://dx.doi.org/10.1186/s13643-020-01542-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33499930&dopt=Abstract
https://www.medrxiv.org
https://clinicaltrials.gov
https://www.acpjournals.org/doi/10.7326/0003-4819-155-8-201110180-00009?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
https://www.acpjournals.org/doi/10.7326/0003-4819-155-8-201110180-00009?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22007046&dopt=Abstract
https://europepmc.org/abstract/MED/23728150
http://dx.doi.org/10.1177/0194599813489506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23728150&dopt=Abstract
http://dx.doi.org/10.1111/nmo.12246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24164976&dopt=Abstract
http://dx.doi.org/10.1016/j.physbeh.2016.08.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27521686&dopt=Abstract
https://europepmc.org/abstract/MED/33581826
http://dx.doi.org/10.1016/j.artmed.2020.102006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33581826&dopt=Abstract
https://europepmc.org/abstract/MED/34709712
http://dx.doi.org/10.1111/nmo.14290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34709712&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2021.106212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34126411&dopt=Abstract
https://www.mdpi.com/resolver?pii=s22145227
http://dx.doi.org/10.3390/s22145227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35890906&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(23)00076-X
http://dx.doi.org/10.1016/j.jbi.2023.104355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37023842&dopt=Abstract
http://dx.doi.org/10.3390/app131810116
http://dx.doi.org/10.1111/nmo.14931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39370611&dopt=Abstract
https://europepmc.org/abstract/MED/33447599
http://dx.doi.org/10.1159/000511931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33447599&dopt=Abstract
https://www.mdpi.com/resolver?pii=s22010253
http://dx.doi.org/10.3390/s22010253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35009794&dopt=Abstract
https://europepmc.org/abstract/MED/35115131
http://dx.doi.org/10.1016/j.artmed.2021.102233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35115131&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


43. Popa SL, Surdea-Blaga T, Dumitrascu DL, Chiarioni G, Savarino E, David L, et al. Automatic diagnosis of high-resolution
esophageal manometry using artificial intelligence. J Gastrointestin Liver Dis. 2022;31(4):383-389. [FREE Full text] [doi:
10.15403/jgld-4525] [Medline: 36535043]

44. Zifan A, Lee JM, Mittal RK. Enhancing the diagnostic yield of esophageal manometry using distension-contraction plots
of peristalsis and artificial intelligence. Am J Physiol Gastrointest Liver Physiol. 2024;327(3):G405-G413. [FREE Full
text] [doi: 10.1152/ajpgi.00139.2024] [Medline: 38953836]

45. Wu X, Guo C, Lin J, Lin Z, Chen Q. Mixed attention ensemble for esophageal motility disorders classification. PLoS One.
2025;20(2):e0317912. [FREE Full text] [doi: 10.1371/journal.pone.0317912] [Medline: 39951417]

46. Sweis R, Anggiansah A, Wong T, Kaufman E, Obrecht S, Fox M. Normative values and inter-observer agreement for liquid
and solid bolus swallows in upright and supine positions as assessed by esophageal high-resolution manometry.
Neurogastroenterol Motil. 2011;23(6):509-e198. [doi: 10.1111/j.1365-2982.2011.01682.x] [Medline: 21342362]

47. Rivera SC, Liu X, Chan A, Denniston AK, Calvert MJ, SPIRIT-AICONSORT-AI Working Group, SPIRIT-AICONSORT-AI
Steering Group, et al. SPIRIT-AICONSORT-AI Consensus Group. Guidelines for clinical trial protocols for interventions
involving artificial intelligence: the SPIRIT-AI extension. Nat Med. Sep 2020;26(9):1351-1363. [FREE Full text] [doi:
10.1038/s41591-020-1037-7] [Medline: 32908284]

48. Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK, SPIRIT-AICONSORT-AI Working Group. Reporting guidelines
for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med.
2020;26(9):1364-1374. [FREE Full text] [doi: 10.1038/s41591-020-1034-x] [Medline: 32908283]

49. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nat Mach Intell. 2019;1(5):206-215. [FREE Full text] [doi: 10.1038/s42256-019-0048-x] [Medline: 35603010]

50. Gyawali CP, Carlson DA, Chen JW, Patel A, Wong RJ, Yadlapati RH. ACG clinical guidelines: clinical use of esophageal
physiologic testing. Am J Gastroenterol. 2020;115(9):1412-1428. [FREE Full text] [doi: 10.14309/ajg.0000000000000734]
[Medline: 32769426]

51. Parikh RB, Helmchen LA. Paying for artificial intelligence in medicine. NPJ Digit Med. 2022;5(1):63. [doi:
10.1038/s41746-022-00609-6] [Medline: 35595986]

52. Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J
Med. 2018;378(11):981-983. [doi: 10.1056/NEJMp1714229] [Medline: 29539284]

53. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity.
Ann Intern Med. 2018;169(12):866-872. [FREE Full text] [doi: 10.7326/M18-1990] [Medline: 30508424]

Abbreviations
AI: artificial intelligence
AUROC: area under the receiver operating characteristic curve
CNN: convolutional neural network
FLIP: Functional Luminal Imaging Probe
HRM: high-resolution esophageal manometry
IRP: integrated relaxation pressure
LIME: Local Interpretable Model-Agnostic Explanations
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PRISMA-S: Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Search
PROSPERO: International Prospective Register of Systematic Review
QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2

Edited by S Brini; submitted 03.Oct.2025; peer-reviewed by X Liang, PJ Kahrilas, S Ho Choi; comments to author 23.Oct.2025;
revised version received 06.Nov.2025; accepted 06.Nov.2025; published 27.Nov.2025

Please cite as:
Gong EJ, Bang CS, Lee JJ, Baik GH
AI in Esophageal Motility Disorders: Systematic Review of High-Resolution Manometry Studies
J Med Internet Res 2025;27:e85223
URL: https://www.jmir.org/2025/1/e85223
doi: 10.2196/85223
PMID:

©Eun Jeong Gong, Chang Seok Bang, Jae Jun Lee, Gwang Ho Baik. Originally published in the Journal of Medical Internet
Research (https://www.jmir.org), 27.Nov.2025. This is an open-access article distributed under the terms of the Creative Commons

J Med Internet Res 2025 | vol. 27 | e85223 | p. 15https://www.jmir.org/2025/1/e85223
(page number not for citation purposes)

Gong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://doi.org/10.15403/jgld-4525
http://dx.doi.org/10.15403/jgld-4525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36535043&dopt=Abstract
https://journals.physiology.org/doi/10.1152/ajpgi.00139.2024?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
https://journals.physiology.org/doi/10.1152/ajpgi.00139.2024?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1152/ajpgi.00139.2024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38953836&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0317912
http://dx.doi.org/10.1371/journal.pone.0317912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39951417&dopt=Abstract
http://dx.doi.org/10.1111/j.1365-2982.2011.01682.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21342362&dopt=Abstract
https://europepmc.org/abstract/MED/32908284
http://dx.doi.org/10.1038/s41591-020-1037-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32908284&dopt=Abstract
https://europepmc.org/abstract/MED/32908283
http://dx.doi.org/10.1038/s41591-020-1034-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32908283&dopt=Abstract
https://europepmc.org/abstract/MED/35603010
http://dx.doi.org/10.1038/s42256-019-0048-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35603010&dopt=Abstract
https://europepmc.org/abstract/MED/32769426
http://dx.doi.org/10.14309/ajg.0000000000000734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32769426&dopt=Abstract
http://dx.doi.org/10.1038/s41746-022-00609-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35595986&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp1714229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29539284&dopt=Abstract
https://europepmc.org/abstract/MED/30508424
http://dx.doi.org/10.7326/M18-1990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30508424&dopt=Abstract
https://www.jmir.org/2025/1/e85223
http://dx.doi.org/10.2196/85223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is
properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as
this copyright and license information must be included.

J Med Internet Res 2025 | vol. 27 | e85223 | p. 16https://www.jmir.org/2025/1/e85223
(page number not for citation purposes)

Gong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

