

Research Letter

Engagement With Text Messaging Improves Cardiovascular Medication Adherence: Secondary Analysis of a Randomized Controlled Trial

Rowan Shore-Plavec¹, PSM; Rachel Zucker², MPH; Thomas J Glorioso³, MS; Sheana Bull⁴, PhD; Larry A Allen⁵, MD, MHS; Joseph J Saseen^{6,7}, PharmD; Katy E Trinkley^{6,7,8}, PharmD; Pamela Peterson⁵, MD, MSPH; Joy Waughtal⁸, MPH; P Michael Ho², MD, PhD

¹College of Natural Sciences and Mathematics, University of Denver, Denver, CO, United States

²Institute for Health Research, Kaiser Permanente Colorado, Aurora, CO, United States

³Clinical Assessment, Reporting, and Tracking Program, Office of Quality and Patient Safety, Veterans Health Administration, Washington, DC, United States

⁴Clinic Chat LLC, Denver, CO, United States

⁵Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States

⁶Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States

⁷Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States

⁸Adult and Child Center for Outcomes Research and Delivery Science (ACCORDS), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States

Corresponding Author:

Rachel Zucker, MPH

Institute for Health Research, Kaiser Permanente Colorado

16601 East Centretech Parkway

Aurora, CO 80011

United States

Phone: 1 303-739-3595

Email: rachel.x.zucker@kp.org

Abstract

We conducted this secondary analysis to assess whether greater engagement with a text messaging intervention was associated with improved cardiovascular medication adherence at 12 months.

International Registered Report Identifier (IRRID): RR2-10.1186/s13063-021-05453-9

J Med Internet Res 2025;27:e80794; doi: [10.2196/80794](https://doi.org/10.2196/80794)

Keywords: cardiovascular disease; medication adherence; texting; interactive chatbot; behavioral nudges

Introduction

Medication nonadherence remains a significant barrier to the optimal management of chronic cardiovascular diseases, leading to increased morbidity and health care costs [1]. Digital interventions, particularly text-based nudges, are potential strategies for enhancing medication adherence [2-5]. The Nudge study (NCT 03973931) compared the effectiveness of three different text-based interventions versus usual care to improve medication adherence among patients with documented medication refill gaps (time between medication supply end and the next refill) [6]. There was no difference in

adherence (assessed by proportion of days covered [PDC]) at 12 months between any of the intervention groups and usual care [6].

While the main Nudge study results were null [6], prior studies suggest patient engagement in mHealth interventions is critical to their success [2,7,8]. We conducted this secondary analysis to assess whether greater engagement with the text messaging interventions was associated with improved medication adherence at 12 months. We hypothesized that patients who replied to study texts would have higher medication adherence defined by a shorter gap length between medication refills and higher refill adherence.

Methods

Ethical Considerations

The study was deemed minimal risk, and a waiver of consent was obtained from the Colorado Multiple Institutional Review Board (18-2779). A deidentified dataset was used for the current analyses. Patients were not compensated to participate in the study.

Study Overview

Details of the main Nudge study have been previously described, including the inclusion and exclusion criteria [1]. For secondary analyses, we restricted the cohort to patients randomized to text messaging arms in the study. During the intervention period, patients receiving study texts could respond: (1) “STOP” to opt-out of the study; (2) “DONE” if medication had been refilled; (3) numeric response in reply to a chatbot question; or (4) free text response. We categorized patient engagement into four mutually exclusive groups: (1) “Opt-out Response” for “STOP;” (2) “Other Response” for

any non-standard, free text reply (“[Multimedia Appendix 1](#)”); (3) “Standard Response” for standard replies like “DONE” or a numeric response; and (4) “No response” for patients who did not reply to any messages.

Differences between groups were tested using ANOVA for continuous variables and multiple degree of freedom chi-squared tests for categorical variables ([Table 1](#)). Adjusted PDC differences between responders and nonresponders were estimated using a Generalized Estimating Equation model with an identity link and independent covariance, adjusting for the treatment arm and relevant patient characteristics ([Table 1](#)). The median unadjusted gap lengths (calculated as the number of days from the end of medication supply to the subsequent refill) with interquartile ranges were calculated for initial enrollment gaps using Kaplan-Meier estimates. Unadjusted gap lengths and the 1-year PDC by response status were reported along with adjusted estimates of differences in PDC relative to those without a response. Analyses were performed using R software (version 4.4.1; R Foundation for Statistical Computing), with $\alpha=.05$.

Table 1. Patient demographics, clinical characteristics and study assignment across response groups.

Variable	Counts of type of response				P value
	No (n=3686)	Opt-out (n=456)	Other (n=843)	Standard (n=1963)	
Study arm, n (%)					<.001
Generic	1395 (38)	155 (34)	233 (28)	541 (28)	
Behavioral	1184 (32)	139 (30)	251 (30)	731 (37)	
Behavioral + Chatbot	1107 (30)	162 (36)	359 (42)	691 (35)	
Health care system, n (%)					<.001
Denver Health	3083 (84)	277 (61)	668 (79)	1314 (67)	
UCHealth	290 (8)	100 (22)	53 (6)	261 (13)	
Veterans Affairs	313 (8)	79 (17)	122 (15)	388 (20)	
Demographics					
Age, mean (SD)	59.9 (12.9)	62.9 (13.2)	59.5 (11.2)	59.9 (12.7)	<.001
Female, (n) %	1732 (47)	189 (41)	413 (49)	929 (47)	.07
Race, n (%)					.01
American Indian or Alaska Native	37 (1)	5 (1)	12 (1)	18 (1)	
Asian	50 (1)	1 (1)	7 (1)	23 (1)	
Black or African American	636 (17)	47 (10)	137 (16)	305 (16)	
Native Hawaiian/Pacific Islander	7 (1)	0 (0)	0 (0)	4 (1)	
White	2522 (68)	362 (79)	579 (69)	1339 (70)	
Multiple	20 (1)	4 (1)	6 (1)	10 (1)	
Unknown	414 (11)	37 (8)	102 (12)	204 (10)	
Ethnicity, n (%)					<.001
Hispanic	1904 (51)	0150 (33)	470 (56)	891 (45)	
Non-Hispanic	1759 (48)	302 (66)	367 (43)	1051 (54)	
Unknown	23 (1)	4 (1)	6 (1)	21 (1)	
Spanish speaking, n (%)	1033 (28)	70 (15)	335 (4)	513 (26)	<.001
Marital status, n (%)					<.001
Married	1430 (38)	200 (44)	375 (44)	909 (46)	

Variable	Counts of type of response				P value
	No (n=3686)	Opt-out (n=456)	Other (n=843)	Standard (n=1963)	
Single	1545 (42)	156 (34)	288 (34)	647 (33)	
Divorced/Widowed	693 (19)	97 (21)	177 (21)	383 (20)	
Unknown	18 (1)	3 (1)	3 (1)	24 (1)	
Insurance, n (%)					<.001
Medicare	1446 (39)	213 (47)	274 (32)	658 (33)	
Medicaid	1141 (31)	90 (20)	212 (25)	477 (24)	
Commercial	649 (17)	75 (16)	239 (28)	471 (24)	
Veterans Affairs	9 (1)	3 (1)	1 (1)	10 (1)	
None	299 (8)	36 (8)	87 (10)	209 (11)	
Unknown	142 (4)	39 (8)	30 (4)	138 (7)	
At least 1 interactive voice response message, n (%)	273 (7)	57 (12)	17 (2)	269 (14)	<.001
Qualifying condition(s) ^a , n (%)					
Atrial fibrillation	206 (6)	41 (9)	40 (5)	127 (6)	.01
Coronary artery disease	537 (15)	80 (18)	93 (11)	272 (14)	.01
Diabetes mellitus	1883 (51)	229 (50)	438 (52)	924 (47)	.02
Hyperlipidemia	1634 (44)	246 (54)	382 (45)	951 (48)	<.001
Hypertension	2922 (79)	367 (8)	657 (78)	1541 (79)	.65
Medical history, n (%)					
Congestive heart failure	298 (8)	39 (9)	52 (6)	133 (7)	.10
Chronic kidney disease	355 (10)	39 (9)	61 (7)	141 (7)	.01
Cardiovascular disease	244 (7)	32 (7)	40 (5)	96 (5)	.02
Depression	675 (18)	88 (19)	164 (19)	399 (20)	.32
Prior myocardial infarction	185 (5)	23 (5)	34 (4)	83 (4)	.43
Prior revascularization	100 (3)	21 (5)	22 (3)	46 (2)	.07
Posttraumatic stress disorder	144 (4)	26 (6)	47 (6)	117 (6)	<.01
Substance abuse	170 (5)	21 (5)	39 (5)	76 (4)	.61
Baseline medication class, % (n)					
Active class					.04
1	917 (25)	97 (21)	192 (23)	522 (26)	
2	876 (24)	115 (25)	210 (25)	586 (26)	
3+	1893 (51)	244 (54)	441 (52)	935 (48)	
Study class					<.001
1	2467 (67)	345 (76)	588 (70)	1433 (73)	
2	770 (21)	70 (15)	167 (20)	361 (18)	
3+	449 (12)	41 (9)	88 (10)	169 (9)	

^aThis number exceeds 100% due to the fact that one patient can have more than one qualifying condition(s) for this study.

Results

A total of 9501 patients were enrolled; 9269 had complete follow-up data (the CONSORT diagram has been published previously [6]). After excluding 2321 usual care patients, we analyzed 6948 individuals; 3262 (46.9%) responded to an intervention message. Among the 3262 responders, 456 (14%) opted out, 843 (25.8%) provided other responses and 1963 (60.2%) provided standard responses. Patients who engaged with the messages, particularly standard responders,

differed significantly from nonresponders, with engagement more likely among those in certain health care systems or on fewer medications (Table 1).

Patients who engaged with the texts, regardless of response type, had a shorter gap length compared to patients who did not respond. In addition, patients who responded to any messages had a higher adherence at 12 months, which persisted after the adjustment for demographics and clinical characteristics (Table 2).

Table 2. Initial gap length and 1-year medication adherence (proportion of days covered; PDC) by patient response type.

Patient response type	Unadjusted	Adjusted			
	Initial gap length in days, median (IQR)	1-year PDC	Difference in PDC	95% CI	P value
Response					
No response (Ref)	16 (1-109)	55.9	— ^a	—	—
Any response	7 (1-29)	71	15.2	13.7-16.8	<.001
Sub-groups (Ref: No response)					
Opt-out	8 (1-41)	67.5	9.6	6.1-13.1	<.001
Other	7 (1-32)	70	14.5	12.2-16.7	<.001
Standard	7 (1-25)	72.1	16.6	14.9-18.4	<.001

^anot applicable.

Discussion

This secondary analysis assessed the association between engagement and medication adherence in a text messaging clinical trial. We enrolled a diverse patient population including a large proportion of Hispanic and Spanish-speaking patients as well as patients who are traditionally medically underserved (ie, receiving care at federally qualified health centers and veterans affairs centers). Overall, 47% of intervention arm patients engaged with texts. Any engagement was associated with shorter medication gap lengths, and higher medication adherence at 12 months. While our participants included diverse and traditionally underserved patients, these findings may not be generalizable to patients without access to or comfort with text messaging, who would have been ineligible for the parent trial.

Another potential limitation lies in our response classification criteria. Patients who submitted nonstandard responses were placed exclusively in the “Other Response” group, which may conflate ambiguous interactions with more meaningful engagement. Furthermore, we cannot determine causality between engagement and adherence given this post-hoc analysis.

Our findings are consistent with prior literature highlighting the importance of patient engagement in mHealth interventions to improve adherence and self-management [2-5]. Collectively, these findings suggest that patient engagement is a strong marker for, and is closely associated with, higher medication adherence.

Acknowledgments

This work received logistical and technical support from the NIH Pragmatic Trials Collaboratory Coordinating Center through cooperative agreement U24AT009676 from the National Center for Complementary and Integrative Health (NCCIH), National Institute of Allergy and Infectious Diseases (NIAID), National Cancer Institute (NCI), National Institute on Aging (NIA), National Heart, Lung, and Blood Institute (NHLBI), National Institute of Nursing Research (NINR), National Institute of Minority Health and Health Disparities (NIMHD), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH Office of Behavioral and Social Sciences Research (OBSSR), and NIH Office of Disease Prevention (ODP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NHLBI or the NCCIH, NIAID, NCI, NIA, NINR, NIMHD, NIAMS, OBSSR, or ODP, or the NIH. No generative AI was used in any portion of the manuscript generation.

Funding

This work was supported within the National Institutes of Health (NIH) Pragmatic Trials Collaboratory by cooperative agreement UG3HL168504 from the National Heart, Lung, and Blood Institute (NHLBI).

Data Availability

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions

Conceptualization: SB, MH, LA, JS, KT and PP

Data curation: TG

Formal analysis: TG

Funding acquisition: SB and MH

Methodology: SB, MH, LA, JS, KT and PP

Project administration: JW

Writing – original draft: RSP and RZ

Writing – review & editing: SB, MH, LA, JS, KT, PP, and JW

Conflicts of Interest

SB is the President and a Co-Founder of Clinic Chat, LLC, the company that developed and deployed the AI Chatbot described in this article.

Multimedia Appendix 1

Examples of text message responses from participants classified as "Other Response."

[[XLSX File \(Microsoft Excel File, 17 KB - Multimedia Appendix 1\)](#)]

References

1. Glasgow RE, Knoepke CE, Magid D, et al. The NUDGE trial pragmatic trial to enhance cardiovascular medication adherence: study protocol for a randomized controlled trial. *Trials*. Aug 11, 2021;22(1):528. [doi: [10.1186/s13063-021-05453-9](https://doi.org/10.1186/s13063-021-05453-9)] [Medline: [34380527](#)]
2. Horne BD, Muhlestein JB, Lappé DL, et al. Behavioral nudges as patient decision support for medication adherence: the ENCOURAGE randomized controlled trial. *Am Heart J*. Feb 2022;244:125-134. [doi: [10.1016/j.ahj.2021.11.001](https://doi.org/10.1016/j.ahj.2021.11.001)] [Medline: [34798073](#)]
3. Miao Y, Luo Y, Zhao Y, Liu M, Wang H, Wu Y. Effectiveness of eHealth interventions in improving medication adherence among patients with cardiovascular disease: systematic review and meta-analysis. *J Med Internet Res*. Jul 15, 2024;26:e58013. [doi: [10.2196/58013](https://doi.org/10.2196/58013)] [Medline: [39008845](#)]
4. Calderon Martinez E, Zachariah Saji S, Salazar Ore JV, et al. Text messages as a tool to improve cardiovascular disease risk factors control: a systematic review and meta-analysis of randomized clinical trials. *BMC Public Health*. Apr 4, 2025;25(1):1284. [doi: [10.1186/s12889-025-21818-0](https://doi.org/10.1186/s12889-025-21818-0)] [Medline: [40186180](#)]
5. Qi Y, Mohamad E, Azlan AA, Zhang C, Ma Y, Wu A. Digital health solutions for cardiovascular disease prevention: systematic review. *J Med Internet Res*. Jan 23, 2025;27:e64981. [doi: [10.2196/64981](https://doi.org/10.2196/64981)] [Medline: [39847411](#)]
6. Ho PM, Glorioso TJ, Allen LA, et al. Personalized patient data and behavioral nudges to improve adherence to chronic cardiovascular medications: a randomized pragmatic trial. *JAMA*. Jan 7, 2025;333(1):49-59. [doi: [10.1001/jama.2024.21739](https://doi.org/10.1001/jama.2024.21739)] [Medline: [39621340](#)]
7. Waughtal J, Glorioso TJ, Sandy LM, et al. Patient engagement with prescription refill text reminders across time and major societal events. *Cardiovasc Digit Health J*. Aug 2023;4(4):133-136. [doi: [10.1016/j.cvdhj.2023.06.002](https://doi.org/10.1016/j.cvdhj.2023.06.002)] [Medline: [37600444](#)]
8. Waughtal J, Luong P, Sandy L, Chavez C, Ho PM, Bull S. Nudge me: tailoring text messages for prescription adherence through N-of-1 interviews. *Transl Behav Med*. Oct 23, 2021;11(10):1832-1838. [doi: [10.1093/tbm/ibab056](https://doi.org/10.1093/tbm/ibab056)] [Medline: [34080636](#)]

Abbreviations

PDC: proportion of days covered

Edited by Andrew Coristine; peer-reviewed by Odumbo Oluwole, Rebecca Omachonu; submitted 16.Jul.2025; final revised version received 24.Oct.2025; accepted 24.Oct.2025; published 24.Nov.2025

Please cite as:

*Shore-Plavec R, Zucker R, Glorioso TJ, Bull S, Allen LA, Saseen JJ, Trinkley KE, Peterson P, Waughtal J, Ho PM. Engagement With Text Messaging Improves Cardiovascular Medication Adherence: Secondary Analysis of a Randomized Controlled Trial. *J Med Internet Res* 2025;27:e80794*

URL: <https://www.jmir.org/2025/1/e80794>

doi: [10.2196/80794](https://doi.org/10.2196/80794)

© Rowan Shore-Plavec, Rachel Zucker, Thomas J Glorioso, Sheana Bull, Larry A Allen, Joseph J Saseen, Katy E Trinkley, Pamela Peterson, Joy Waughtal, P Michael Ho. Originally published in the Journal of Medical Internet Research (<https://www.jmir.org>), 24.Nov.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on <https://www.jmir.org/>, as well as this copyright and license information must be included.