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Abstract

Background: In recent years, large language models (LLMs) have experienced rapid development. LLM-based virtual patients
have begun to gain attention, offering new opportunities for simulations in medical education.

Objective: This study aims to systematically analyze the current applications, research trends, and challenges of LLM-based
virtual patients in medical education and to explore potential future directions for development.

Methods: This study adheres to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines. Five databases (Web of Science Core Collection, PubMed, IEEE Xplore, Embase,
and Scopus) were searched from January 1, 2018, to June 24, 2025, to identify studies related to the application of LLM-based
virtual patients in medical education. A comprehensive analysis of LLM-based virtual patients from research design to application
and evaluation was conducted.

Results: A total of 28 studies were included in this scoping review. Analysis revealed that 92.9% (26/28) of the studies were
published in the past 2 years, indicating that LLM-based virtual patient research is still in its early stages. The research primarily
focuses on medical training and spans a wide range of medical disciplines. When using LLMs, advanced technologies such as
social robots, virtual reality, and mixed reality are used to present LLM-based virtual patients. Combining these technologies
with various supplementary tools enhances the realism of LLM-based virtual patients and improves user interaction. The evaluation
of LLM-based virtual patients mainly emphasizes user experience. However, evaluation methods lack standardization, and only
13% (3/23) of studies used validated tools in assessing LLM-based virtual patients, while only 21.7% (5/23) of studies objectively
measured learning outcomes facilitated by LLM-based virtual patients. All included studies expressed a positive attitude toward
LLM-based virtual patients; however, they overlook privacy and security considerations in practical applications.

Conclusions: LLM-based virtual patients hold significant innovation potential in medical education and are still in the early
stages of development. They are primarily applied in medical training and show promise in communication skills training, although
they cannot replace real-world interactions. Moreover, the heterogeneity of research designs, the absence of nonverbal cues in
interactions, and concerns regarding privacy and security limit their broader implementation. Future research should focus on
improving the reliability, realism, safety, and scientific efficacy of LLM-based virtual patients.

Trial Registration: Open Science Framework Registries 10.17605/OSF.IO/DMC9Q; https://osf.io/DMC9Q/overview
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Introduction

In recent years, large language models (LLMs) have made
significant progress [1,2]. LLMs are high-performance artificial
intelligence (AI) systems capable of understanding and
generating natural language [3]. With advancements in AI,
LLMs have demonstrated great potential in tasks involving
natural language processing [4]. Their applications range from
text analysis and summarization to clinical applications,
showcasing their flexibility in providing valuable assistance
[5-7]. LLMs support user interactions through follow-up
questions and are fine-tuned to generate controlled outputs [8,9].
More importantly, they allow developers to create chatbots and
virtual assistants with customized behaviors [9]. Given these
capabilities, LLMs are expected to become efficient and feasible
tools across various domains, including medical education,
where traditional virtual patients have also been used.

Virtual patients are computer-based programs that simulate real
clinical scenarios, allowing learners to take on the role of health
care professionals. The goal is to develop skills and knowledge
in specific areas while enabling learners to practice
decision-making in a controlled interactive environment [10,11].
Virtual patients have been shown to be effective in teaching,
assessment, and clinical reasoning research [12] and have been
proposed as a valuable educational tool for practicing clinical
reasoning in undergraduate medical education [13]. They play
a crucial role in medical education.

However, the application of virtual patients faces logistical
challenges and high costs for large-scale implementation [14].
For instance, studies have shown that the technological
development cost of a virtual patient is US $12 per hour, with
the average monthly cost of developing and maintaining a virtual
patient system being US $324.75 [15,16]. These limitations
often prevent all students from engaging in interactive skill
practice or performing multiple exercises, significantly reducing
the effectiveness of the practice. However, the emergence of
LLMs as a disruptive technology offers unprecedented
opportunities to overcome the limitations faced by traditional
virtual patients. LLM-based virtual patients combine natural
language processing technology with medical knowledge, using
LLMs to construct virtual avatars. These avatars are designed
to simulate the behavior, symptoms, diagnostic processes, and
disease progression of real patients, creating highly realistic
and diverse virtual patient models [17-19]. They can present
standardized patients in various scenarios, supporting students’
clinical reasoning, decision-making, and problem-solving skills
while also providing performance analysis and feedback [20,21].
Although LLMs face inherent limitations and negative impacts
in practical applications, such as “hallucinations” [22] and
influences on independent thinking [23], these challenges do
not prevent LLMs from offering new opportunities in medical
education simulations.

Recent research has discussed the application of traditional
virtual patients, with some systematic reviews highlighting the
positive impact of virtual patient simulators on medical
communication training. These reviews emphasize the
adaptability of virtual patients and their value as a supplement
to traditional educational methods [24,25]. However, to date,
no study has comprehensively summarized the application of
LLM-based virtual patients in medical education. This paper
aims to provide a comprehensive overview of the positioning,
challenges, and future directions of LLM-based virtual patients
in medical education, offering a reference for the better
development and application of LLM-based virtual patients.

As an innovative and transformative technology, LLM-based
virtual patients demonstrate tremendous potential in medical
practice and are expected to drive the field toward greater
efficiency, precision, and personalization. To comprehensively
analyze their current applications, technological challenges, and
future directions, this paper focuses on the following key issues:
(1) In which areas of medical education are LLM-based virtual
patients primarily applied? Which medical disciplines are
involved, and what are the main research directions? (2) What
are the primary LLMs currently used? How are the models
fine-tuned, and what is the role of prompt engineering? (3) How
are LLM-based virtual patients specifically implemented in
practical applications? Specifically, how is the instructional
design (application scenarios and learning activity design),
technological design (integrated technology ecosystem,
interaction modes, and auxiliary tools), and assessment design
(user experience, learning outcomes assessment, evaluation
standards, and evaluation roles) structured? (4) What are the
key challenges faced by LLM-based virtual patients, and what
are the future research directions?

Methods

Study Design
This study uses a scoping review methodology due to the
diversity of the research questions, the heterogeneity of the
studies, and the lack of comprehensive previous reviews on this
topic [26,27]. The scoping review framework follows the
approach proposed by Arksey and O’Malley [26] and is reported
according to the PRISMA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping
Reviews) checklist for scoping reviews [27]. The complete
PRISMA-ScR checklist is available in Multimedia Appendix
1. This scoping review has been registered in the Open Science
Framework (10.17605/OSF.IO/DMC9Q).

Several factors led to deviations from the original protocol
regarding inclusion and exclusion criteria. First, given that AI
is a rapidly evolving field and high-impact journals frequently
publish important peer-reviewed original research in the form
of “research letters,” we decided not to exclude conference
papers and letters. Second, considering the growing attention
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on compact LLMs with fewer than 10 billion parameters, we
removed the restriction on the model size in the inclusion
criteria. Additionally, due to potential difficulties in retrieving
non-English literature, and given that English-language
publications adequately cover key developments in the fields
of natural sciences and medicine, we decided to exclude
non-English papers.

Data Sources and Search Strategy
To ensure comprehensive retrieval and consider the
interdisciplinary nature of LLM-based virtual patients in medical
applications, a literature search was conducted across 5 major
databases: PubMed, Web of Science Core Collection, Scopus,
Embase, and IEEE Xplore. We collaborated with librarians and
medical informatics experts to develop the search strategy. To

ensure thoroughness and minimize the risk of missing relevant
literature, the core search terms included 2 categories: one
related to “generative AI” and “large language models” and the
other related to “virtual patients,” using Boolean operators (eg,
AND and OR) for combination. Additionally, we reviewed the
reference lists and citations of relevant papers. The search time
frame was from June 2018 to April 24, 2025. June 2018 marks
the release of the first generative AI model [28]. Literature
management and duplicate removal were conducted using
EndNote (version 20; Clarivate Analytics) software. A detailed
description of the search strategy can be found in Table S1 in
Multimedia Appendix 2.

Inclusion and Exclusion Criteria
The inclusion and exclusion criteria are listed in Textbox 1.

Textbox 1. The inclusion and exclusion criteria.

Inclusion criteria

• The literature must focus on research related to large language model–based virtual patients.

• The literature must explicitly address the application of large language model–based virtual patients in medical education, including technical
development or practical case studies.

• Eligible types of literature include journal papers, conference papers, and research letters.

Exclusion criteria

• Studies for which the full text is not accessible.

• Duplicate publications.

• Conference abstracts, preprints, books, editorials, reviews, and retracted studies.

• Studies unrelated to medicine, such as research from nonmedical fields like psychology, which does not involve any aspect of medical education.

• Non-English language publications.

Screening and Data Extraction
Before formally determining the inclusion or exclusion of
literature, 3 researchers (JZ, SL, and Xin Liu) randomly selected
30 studies for an initial screening to assess the reliability of the
screening process. The final calculated Cohen κ value was 0.89,
indicating high consistency, and no adjustments were made to
the inclusion or exclusion criteria or the researchers involved.
In the formal independent screening process, any disagreements
were ultimately resolved through intervention by SS. The
screening and validation process was completed on April 26,
2025.

To accurately extract data from the included studies, we
followed the PRISMA-ScR and created a data extraction form
using Microsoft Excel. Two evaluators (JZ and SS)
independently completed the form after receiving professional
training based on the Medical Literature Information Retrieval
[29] textbook. Any disagreements between the evaluators were
resolved through discussion.

First, we extracted general information from the studies,
including the publication year, country, study type, and research
objectives. To gain a deeper understanding of the potential
applications and challenges of LLMs in medicine, we
summarized the key findings and limitations of each study.

Next, the design data extracted consisted of two aspects: (1)
general characteristics of LLMs, such as model type,
open-source availability, model training (fine-tuning and prompt
engineering), and other technologies or tools integrated into
LLM-based virtual patients, such as voice assistants and
hardware devices, to illustrate the specific design of LLM-based
virtual patients; and (2) medical specialty, medical context and
tasks, simulated patients, avatars (eg, social robots), participants,
and sample sizes to demonstrate the specific application design
of LLM-based virtual patients.

Finally, the evaluation data extracted included the evaluation
domains (user experience, learning outcomes), evaluation tools
(eg, scales and questionnaires), and evaluators (eg, experts) to
provide an overview of the overall evaluation details of
LLM-based virtual patients use in each study. The data
extraction table is provided in Table S2 in Multimedia Appendix
2.

Additionally, to better understand the differences between the
studies, we used 2 separate tools for quality assessment (2
authors [WQ and SS] conducted separate evaluations, and any
discrepancies in the final scores were addressed through
intervention and discussion by a third author [SC]). Medical
Education Research Study Quality Instrument [30], a validated
tool for evaluating the quality of quantitative medical education
research, has a scoring range from 5=lowest quality to
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18=highest quality. For qualitative research, we used the
QualSyst standard [31], which includes a checklist of 10 criteria
for assessing qualitative studies. The score, representing the
ratio of obtained points to the maximum possible score, ranges
from 0=lowest quality to 1=highest quality. For mixed methods
studies, we used both tools simultaneously and reported the
scores separately.

For the extracted data, in addition to using the PRISMA-ScR
method, we used various other techniques including narrative
synthesis, thematic analysis, mapping or data visualization, and
descriptive statistical analysis. These methods were used to
describe, summarize, and present the application scenarios,
research progress, advantages, and limitations of LLM-based
virtual patients in medical education in comprehensive formats
such as tables, flowcharts, and diagrams.

Results

Study Selection
A preliminary search across the 5 databases identified a total
of 4795 papers. After removing duplicates, 3917 papers
remained. Non-English language papers, reviews, conference
abstracts, editorials, preprints, and similar publications were
excluded, leaving 3312 papers. Three researchers (JZ, SS, and
SL) screened the titles and abstracts of these papers and
conducted further evaluation, resulting in 27 studies that met
the inclusion criteria for this review. An additional study that
met all the inclusion criteria was identified through citations in
the included papers. Therefore, a total of 28 studies were
included in this review. Figure 1 shows the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
flowchart.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of study selection. WOS: Web of Science.

Study Characteristics
The included studies (N=28) were published between 2023 and
2025, with the majority concentrated in 2024 and 2025,
accounting for 92.9% (26/28) of the total. This field has attracted
widespread attention across various countries and regions, with
research conducted in 13 different countries or regions. The top
3 countries with the most studies were the United States (6/28,
21.4%), Germany (5/28, 17.9%), and Japan (3/28, 10.7%). The

basic information and quality assessment results for each study
can be found in Multimedia Appendix 3.

Development and Design
In total, 7 studies involved the development and design of
LLM-based virtual patient programs or platforms [32-38].
Weisman et al [32] provided a detailed description of the steps
taken by their team in developing a GPT-4–based virtual
simulated patient and communication training platform. Prior
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to development, they conducted in-depth interviews to guide
design decisions. Other studies provided a more general
overview of LLM-based virtual patient applications or platforms.
Notably, the virtual patient developed by Shindo et al [36]
included a mechanism that identifies and corrects overly detailed
initial responses from ChatGPT.

Practical Applications

Overview
In total, 23 studies assessed the actual effectiveness of
LLM-based virtual patients, with 2 studies first focusing on
design and development before evaluating the practical
application of LLM-based virtual patients [32,33]. In contrast,
studies evaluating the actual application accounted for over 80%
(23/28) of the total, indicating that LLM-based virtual patients
in medical education are shifting from the technical development
phase to the application phase. This transition highlights the

potential anticipated in improving the quality and efficiency of
medical education. This is also the primary focus of our study,
and we will present a clear and comprehensive overview of the
entire process, from research design to application and
evaluation, across 5 key aspects.

Medical Field and Educational Tasks
These studies cover 13 medical specialties, with the highest
number in general medicine (n=9), followed by rheumatology
and dentistry, each with 2 studies. All these studies are related
to medical training in medical education, specifically examining
whether interaction with LLM-based virtual patients can help
train key medical skills such as history taking and clinical
reasoning. For example, Baugerud et al [39] explored the
potential of a ChatGPT-3–based child avatar to train participants
in interview skills in the context of suspected abuse. Regarding
LLM-simulated patients, all but 2 studies explicitly defined the
types of simulated patients used [40,41], as detailed in Table 1.

Table 1. Research directions, medical fields, and research content included in large language model–based virtual patient studies.

Simulated patientsMedical fieldApplication categoryReference

Patient with respiratory distressNursingCommunication skillsBenfatah et al [42]

Patient with rheumatic diseaseRheumatologyClinical reasoningBorg et al [43]

Patient with herniated lumbar disc or stroke or
meningitis or concussion

Neurology or neurosurgeryClinical decision-makingBrügge et al [20]

A mother expecting preterm deliveryObstetricsN/AaGray et al [44]

Patient with nausea, weight loss, and chronic fatigueGeneral medicineHistory takingHolderried et al [45]

Patient with nausea, weight loss, and chronic fatigueGeneral medicineHistory takingHolderried et al [21]

A survivor of a traffic accidentEmergency medicineCommunication skillsGutiérrez Maquilón et
al [46]

Patient with fractured humerusAnesthesiologyAnesthesia trainingSardesai et al [47]

Patient with chest pain or abdominal pain or cough
or heartburn or fatigue or fever or dizziness or
shortness of breath

General medicineInterviewing skillsYamamoto et al [48]

Patient with cardiac conditionsCardiology and emergency medicineEmpathic expressionAster et al [49]

Patient with rheumatic diseaseRheumatologyClinical reasoningBorg et al [50]

Patient with diabetes or chronic coughAmbulatory medicineN/ACook et al [51]

Child survivor of abuseDentalInformation gathering skillsKo et al [52]

Patient with hypertension or brucellosisGeneral medicineClinical case managementÖncü et al [53]

Patient with brain hemorrhageGeneral medicineHistory takingRädel-Ablass et al
[54]

Patient with inflammatory bowel diseaseGastroenterologyHistory takingWang et al [55]

Patient with dental conditionsDentalHistory takingOr et al [56]

Patient with chronic cough or type 2 diabetesGeneral medicineN/ACook [18]

Patient with urinary problemUrologyHistory takingYi and Kim [33]

N/AGeneral medicineN/AAbou Karam [40]

Patient with abnormal mammogram resultsGeneral medicineCommunication skillsWeisman et al [32]

Child survivor of sexual or physical abusePsychologyInterviewing skillsBaugerud et al [39]

N/AGeneral medicineN/ALiu et al [41]

aN/A: not applicable.
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LLM Strategy and Prompting
OpenAI’s GPT series models are the most frequently used, with
95.7% (22/23) of the studies incorporating them, the majority

using more advanced versions, namely, ChatGPT-3.5 or higher.
Other LLMs used include HyperCLOVA. Detailed information
is provided in Table 2.

Table 2. Information on the use of models in large language model–based virtual patients, language, fine-tuning, and prompts.

ReferencePromptFine-tuningLanguageLLMs

[42]ScenarioNoNot specifiedChatGPT (not specified)

[43]Scenario, behavioral, emotional simulationNoEnglishGPT-3.5-turbo

[20]Scenario, behavioral, communication style, feedbackNoGermanGPT-3.5

[44]Scenario, communication style, emotional simulationNoEnglishGPT-3.5

[45]Scenario, behavioral, feedbackNoGermanGPT-4

[21]Scenario, behavioralNoGermanGPT-3.5-turbo

[46]Scenario, behavioral, communication style, emotional
simulation

NoGermanGPT-3.5-turbo

[47]Not specifiedCustom knowledge
bank

EnglishNot specified

[48]Scenario, emotional simulationNoJapaneseGPT-4-turbo

[49]Scenario, behavioral, communication styleNoGermanGPT-3.5

[50]Scenario, behavioral, emotional simulationNoEnglishGPT-3.5-turbo

[51]Scenario, behavioral, communication style, emotional
simulation, feedback

NoEnglishGPT-3.5-turbo or 4-turbo

[52]ScenarioNoNorwegianGPT-3

[53]ScenarioNoEnglishGPT-4o

[54]Scenario, behavioral, communication styleNoNot specifiedGPT-4

[55]Scenario, behavioral, communication style, emotional
simulation

NoEnglish or ChineseGPT-4

[56]Not specifiedNoEnglishGPT-3.5 Instruct

[33]Not specifiedScripts of medical in-
terviews

KoreanHyperCLOVA

[40]Not specifiedNoNot specifiedGPT-3.5

[32]Scenario, behavioral, emotional simulation, feedbackNoEnglishGPT-4

[18]Scenario, behavioral, communication style, emotional
simulation

NoEnglishGPT-3.5-turbo or 4

[39]Not specified741 mock interviewsNot specifiedGPT-3

[41]Not specifiedNoNot specifiedGPT-3.5-turbo

In the research process, to better adapt the LLM to specific
application needs and improve its performance in simulating
patients, some researchers fine-tuned the models. Fine-tuning
involves updating the model’s weights using smaller,
domain-specific corpora. In total, 13% (3/23) of the studies
involved fine-tuning the LLMs used for simulated patients
[33,39,47]. For instance, Baugerud et al [39] fine-tuned their
model using 741 mock interviews sourced from a forensic
interview training program.

To ensure the desired interaction between participants and
LLM-simulated patients, carefully designed prompts were used
to elicit the required responses from the LLMs. In total, 69.6%
(16/23) of the studies described or provided the full prompts
used in their research, of which 26.1% (6/23) of the studies used
prompt engineering to iteratively optimize the prompts

[20,21,32,45,54,55]. A notable example is the study by Wang
et al [55], where they conducted multiple preliminary tests to
standardize the evaluation of the model’s responses, generated
a list of questions, and then adjusted the prompts until the
LLM-based virtual patients performed optimally. Only then,
did they finalize the prompt version. A deeper analysis of the
16 studies that described or provided full prompts revealed that
the prompts could be classified into five types: (1) contextual
prompts: providing background information and setting the
interaction scenario, (2) behavioral prompts: restricting or
guiding the model’s responses, (3) communication style
prompts: adjusting the language style or changing the mode of
communication, (4) emotional simulation prompts: incorporating
specific emotional responses into the answers, and (5) feedback
prompts: offering personalized suggestions based on user
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performance. The types of prompts used in each study are
provided in Table 2, and typical examples of each prompt type
are presented in Table S1 in Multimedia Appendix 4.

Instructional Design Features
A summary of the scenarios presented in each study revealed
that the most frequently reported scenario was taking a history
inventory with an LLM-based virtual patient (20/23, 87%). Each
study’s scenarios were reviewed based on the
Calgary-Cambridge model of medical communication steps
[57], which include (1) gathering information from the patient,
(2) building a relationship with the patient, and (3) explaining
and planning. Excluding 3 studies [18,32,40], the remaining
87% (20/23) of the studies reported communication skills related
to gathering information from the patient. No studies involved
building a relationship with the patient or explaining and
planning. All studies focused solely on verbal communication
skills, without addressing nonverbal behaviors such as gestures
or nodding.

In total, 21.7% (5/23) of the studies focused on aspects aimed
at improving learning outcomes [20,32,45,51,52], specifically
the accuracy and usefulness of feedback automatically generated
by LLM-based virtual patients. For instance, Brügge et al [20]
demonstrated that the intervention group receiving AI-generated
personalized feedback performed better in clinical

decision-making (CDM) than the control group, supporting the
effectiveness of feedback. Additionally, 4.3% (1/23) of the study
incorporated an additional learning activity, namely, a
group-based follow-up workshop [43]. In this workshop,
students could discuss and share any issues encountered during
the LLM-based virtual patient exercises. Such workshops
facilitated better learning outcomes after practicing with
LLM-based virtual patients.

Technological Design Features
LLM-based virtual patients are presented through integrated
technological ecosystems such as the web, hardware, platforms,
software, or applications (Table 3). The most commonly used
platform is OpenAI’s public web user interface, used in 7
studies, followed by laptops and social robots, each used in 2
studies. Additionally, to achieve more immersive interactions
with LLM-based virtual patients, some studies incorporated
advanced technological ecosystems such as mixed reality (MR)
and virtual reality (VR). For example, Gutiérrez Maquilón et
al [46] examined the integration of GPT-based AI into an MR
virtual patient application for communication training of
emergency medical services personnel. The system delivered
an immersive, sensorially rich MR environment that closely
simulated real-world emergency scenarios, maximizing
ecological validity.
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Table 3. Technology ecosystem, interaction modality, and auxiliary tools in the application research of large language model–based virtual patients.

ReferenceAuxiliary toolsInteraction modalityTechnology ecosystem

Web

[20]NoTextOpenAI’s public web UIa

[44]NoTextOpenAI’s public web UI

[49]NoTextOpenAI’s public web UI

[55]NoTextOpenAI’s public web UI

[18]NoTextOpenAI’s public web UI

[33]NoTextOpenAI’s public web UI

[41]NoTextOpenAI’s public web UI

[21]NoTextSelf-developed web interface

Hardware

[42]NoTextLaptops

[43]Furhat software development kitRobot+voiceSocial robot

[45]NoTextLaptops

[46]Microsoft LifeChat LX-3000 headset, Ope-
nAI Whisper, ElevenLabs

3D avatar rendering+voiceMRb

[50]Furhat software development kitRobot+voiceSocial robot

[53]NoVoiceTablet

[39]IBM Watson services3D avatar rendering+voiceVRc

Platform

[47]No2D avatar+text or voiceConvAI

[48]NoTextMiibo or LINE Corporation

[54]NoTextGuided Conversation Designer

[56]NoTextVercel

Software or program

[51]NoTextPython

[32]HyperskillVoiceHyperskill

Other

[52]NoStatic avatar+textNot specified

[40]N/AN/AN/Ad

aUI: user interface.
bMR: mixed reality.
cVR: virtual reality.
dN/A: not applicable.

Regarding interaction modes, the majority of studies used natural
language, including text (n=14) and voice (n=7), with 1 study
supporting both modes. In contrast, the languages used in the
studies were more diverse, encompassing 5 different languages
(Table 2). One study tested the impact of Chinese and English
on LLM-based virtual patient performance, finding no
significant performance differences between the test groups
using different language combinations [55].

Furthermore, only 26.1% (6/23) of the studies used patient
avatars, 4 of which were virtual avatars [39,46,47,52], and 2
were physical embodiments, that is, social robots. In total, 2

studies provided details on the creation and presentation of
virtual avatars, both using the Unity game engine for 3D
rendering of human models or virtual avatars, which were then
presented to participants using head-mounted displays [39,46].
Details are provided in Table 3.

To enhance the realism of virtual patients and improve the user
experience, 21.7% (5/23) of the studies used auxiliary tools for
LLM-based virtual patients. These tools can be categorized into
voice modules, transcription modules, and emotional
visualization modules (details and categorization of tools are
provided in Table S2 in Multimedia Appendix 4). A notable
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example is 2 studies of Borg et al [43,50], where LLM-based
virtual patients were presented through social robots,
supplemented by the use of FurhatSDK. This setup allowed for
voice interaction, as well as the display of subtle facial
expressions and emotions, making the virtual patients more
anthropomorphic [43,50].

Evaluation Features
Among the 23 studies, a total of 398 participants were clearly
identified as experimental participants interacting with
LLM-based virtual patients, including various groups such as
medical students, clinicians, and emergency medical personnel.
Medical students comprised 71.6% (285/398) of the participants,
while medical educators made up only 0.5% (2/398).

Two methods were used to evaluate the practical application of
LLM-based virtual patients: assessing the user experience of
LLM-based virtual patients (23 studies) and evaluating the
learning outcomes facilitated by LLM-based virtual patients (5
studies) [20,48,49,52,53]. The characteristics of these 2 types
of assessments, including the measurement domains, tools,
evaluators, and results, are provided in Multimedia Appendix
5.

Based on Nielsen’s usability concepts [58] and existing literature
on the assessment criteria for standardized patients and virtual
patients [25,59], we reviewed the user evaluations of LLM-based
virtual patients used in these studies. The evaluation standards
included (1) technological design, (2) realism of simulation,
and (3) practicality of learning. In total, 47.8% (11/23) of the
studies commonly used at least 1 of the following standards to
assess technological design: (1) usability (overall experience
or perception after use), (2) satisfaction (acceptance), and (3)
errors (technical issues). Regarding the realism of simulation,
60.9% (14/23) of the studies assessed it by asking about
authenticity or contextualization. Authenticity (the degree to
which LLM-based virtual patients resemble real patients) was
the most focused-on area (14/14, 100%). In total, 21.4% (3/14)
of the studies assessed contextualization (how closely the
simulation resembles real-world scenarios). A total of 39.1%
(9/23) of the studies evaluated users’ perceptions of the
practicality of LLM-based virtual patients in learning,
specifically in terms of the learning process (how much they
helped achieve target skills) or feedback quality (usefulness or
appropriateness of the provided feedback).

For the measurement tools, 3 validated questionnaires were
used to assess usability in the technological characteristics
[21,46]; 1 validated questionnaire was used to assess authenticity
in the simulation realism [50]. Among the self-developed
evaluation tools, 3 studies validated and reviewed their scales
or questionnaires, which somewhat enhanced the validity,
reliability, and applicability of these self-created assessment
tools [33,51,54]. Across the 23 studies that evaluated user
experience with LLM-based virtual patients, a total of 22
different assessment tools were used. Among these, 18 studies
used self-assessment tools completed by users, while 4 studies
used expert assessments conducted by clinicians, medical
professors, or other domain experts.

Although these studies applied to various skills training (Table
1), only 21.7% (5/23) of the studies assessed learning outcomes
in terms of objective skill measurements. In these studies, the
researchers measured changes in learners’ skills, such as CDM,
and empathetic expression in specific scenarios. One study used
a self-created tool for objective skill measurement [53], while
the others used validated or reliable tools. For example, the
Clinical Reasoning Indicator-History Taking Inventory was
used to measure clinical reasoning skills [20]. Of the 5 studies
evaluating learning outcomes, 4 used expert assessment, and 1
used self-assessment.

Quality assessment revealed heterogeneity and frequent
inconsistencies in the study designs and evaluations, making it
challenging to assess the performance of LLM-based virtual
patients. Therefore, we provided a general overview of the
research findings. Information on the tasks, performance or
results, sample sizes, clinical validation methods, and participant
demographics for each study can be found in Multimedia
Appendix 6. Among these studies, 2 were controlled
experiments. The remaining studies were observational in nature.
Overall, the included studies demonstrated a positive attitude
toward the application of LLM-based virtual patients.

Discussion

Principal Findings
Our review indicates that the application of LLM-based virtual
patients has gained considerable momentum in recent years,
with many research teams developing diverse and innovative
applications. However, the heterogeneity in study designs,
evaluation standards, learning outcomes, and their measurements
limits the ability to make direct comparisons and draw definitive
conclusions, indicating that future research has much ground
to cover.

LLMs for Simulated Patients
In these studies, the primary LLM used is the ChatGPT series,
indicating that current research on LLM-based virtual patients
heavily relies on proprietary models. ChatGPT is a closed-source
proprietary model, which raises significant open science issues
related to transparency and reproducibility [60,61]. Different
OpenAI models, in particular, exhibit notable differences; yet,
the source of these discrepancies remains opaque, as OpenAI’s
closed-source policy makes testing and evaluation impossible.
Additionally, OpenAI (and similar systems) continuously
updates its models, meaning that research conducted using
ChatGPT today may not be directly replicable, or even
reproducible, within the next 6 months [62]. This presents
challenges to the reproducibility of LLM-based virtual patient
research outcomes. In contrast to closed-source (or proprietary)
models, open-source models are not affected by undisclosed
updates and can be fully deployed locally, avoiding some
clinical data privacy issues associated with closed-source models
[63]. Furthermore, using open-source LLMs is crucial for
reproducibility. With open-source LLMs, researchers can
examine the internal structure of the model to understand how
it works, customize the code, and flag errors [64]. These details
include adjustable parameters and the data on which the model
is trained. Currently, many high-performance open-source
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LLMs, such as DeepSeek and LLaMA, have emerged,
demonstrating strong capabilities in specific domains [65].
Exploring the use of these models could reduce reliance on a
single model, greatly improving the universality and
reproducibility of research.

To enhance the scientific rigor and scalability of LLM-based
simulated patients, the research community must adopt more
controlled methodologies. Among studies using ChatGPT, only
2 mentioned setting the “temperature” hyperparameter [49,51],
with one of them exploring whether the temperature affects
LLM-based virtual patients’performance. The results indicated
that there were no significant differences in performance at
different temperatures, but further research is needed to validate
this outcome. Temperature is a frequently modified
hyperparameter that controls the randomness of the model’s
predictions [66]. Some researchers believe that temperature
features will play a crucial role in the application of generative
AI in medical services, potentially enabling more accurate,
empathetic, or creative interactions between AI and health care
stakeholders [67]. Currently, there is limited research on the
hyperparameters used for LLMs simulating virtual patients.
Besides temperature, other parameters, such as the 2 “repetition
penalties,” which reduce token repetition and may make
responses more diverse, remain unexplored in the context of
LLM-based virtual patients. Whether these parameters contribute
to more realistic simulations of virtual patients is yet to be
determined. Additionally, researchers must address issues related
to backend model updates and random factors in the sampling
process to ensure the reliability of results [68].

Application of LLM-Based Virtual Patients
The design features of virtual patients, such as interactivity,
play an important role in enhancing clinical reasoning skills
[69]. Compared to less interactive approaches, highly interactive
virtual patients allow educators to better assess students’clinical
reasoning skills by directly observing their abilities [70].
Leveraging advanced technological ecosystems, such as social
robots, MR, VR, and auxiliary tools, LLM-based virtual patients
can achieve higher levels of interactivity (eg, speech, movement,
and eye contact), creating more authentic simulated encounters
with potential to enhance learning [71,72]. However, only a
minority of studies addressed this dimension.

Despite the potential for realistic simulated interactions, several
technical barriers hinder the use of LLM-based virtual patients
at a high level. First, LLMs face challenges in emotional
understanding and perception. Although LLMs possess subtle
capabilities in understanding and managing emotions, they are
inefficient in using emotions to facilitate thinking [73]. This
results in issues like unrealistic emotional expression and
incongruent emotional responses in LLM-based virtual patients.
Moreover, training LLMs with multimodal datasets—especially
those incorporating speech and video data—can improve the
model’s understanding of a patient’s emotional and contextual
state, enhancing the naturalness and accuracy of dialogues.
However, incorporating these data modalities raises significant
privacy concerns, as speech and video data not only threaten
patient privacy but also the privacy of clinicians [74], limiting
the use of multimodal datasets. Additionally, the embodiment

of virtual patients presents challenges. To achieve realistic
interactions and an immersive experience, LLM-based virtual
patients typically rely on social robots, VR, and similar
hardware. Currently, most robots are designed to express basic
emotions and lack sufficient smooth and accurate facial
movements, such as eye movements, blinking, eyebrow
movements, and particularly lip movements [75,76], hindering
more realistic simulation of patient reactions and symptom
presentation. VR hardware also faces challenges, including high
demands for computational resources and persistent issues with
rendering delays [77], which can significantly impact the
performance of virtual patients, causing interactions to be
sluggish and unnatural, potentially lowering training and
learning outcomes.

At present, the application of LLM-based virtual patients
primarily focuses on the users, such as medical students and
interns, while the core figures driving medical education—such
as teachers—have received less attention. Research by
Montenegro-Rueda et al [78] shows that integrating ChatGPT
into the educational environment can positively impact the
teaching process, but its successful implementation depends on
the proficiency of the educators, making adequate teacher
training key to effective use. Advanced technologies may
enhance learning outcomes, but without well-designed curricula
or teaching strategies, specific learning results cannot be
guaranteed [25]. Lövquist et al [79] argue that establishing and
maintaining close relationships between educators, clinicians,
and developers are crucial for the development of effective,
reliable, and useful VR-based medical training and assessment
systems. Similarly, for the development of LLM-based virtual
patient medical training and assessment systems, educators’
involvement is essential. Identifying teaching strategies, such
as how educators demonstrate the use of virtual patients, explain
the medical simulation setup, and provide feedback, plays a
significant role in shaping students’ learning outcomes,
academic performance, and overall development [80].
Furthermore, this involvement fosters positive teacher-student
relationships, which can be reflected in students’ focus and
interest in the course content [81]. From the student perspective,
experiencing teacher support helps them feel a sense of
belonging in the classroom, which enhances their emotional
learning, such as their attitude toward the content, thus
strengthening their effective learning [81-83]. Additionally,
teaching design, often overlooked, is a key factor in optimizing
the use of technology and determining its effectiveness. While
LLM-based virtual patients indeed have unique and optimal
characteristics for medical communication training, their use
must be guided by carefully designed teaching interventions to
ensure effectiveness. For instance, designing collaborative pair
activities or group discussions after interactions with virtual
patients can bring added benefits, including increased
interactivity, better use of the virtual patient platform, and
improved clinical reasoning training [43,84].

Communication is a complex phenomenon that involves not
only verbal language but also various nonverbal channels and
responses [85]. Nonverbal communication includes conveying
information through body signals, such as eye contact, facial
expressions, gestures, and acoustic cues (paralanguage) [86].
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However, the reviewed studies mostly focused on verbal
communication, with limited attention to nonverbal behaviors.
These nonverbal elements often carry as much, if not more,
information than verbal communication itself. For instance, in
interactions with patients, doctors primarily rely on facial
expressions, body language, vocal tone, and other subtle cues
to interpret meaning and make clinical decisions [87]. Some
studies have shown that medical students’communication skills,
particularly in nonverbal communication and empathy toward
patients, are insufficient [88-90], highlighting the need to focus
on improving learners’ nonverbal communication skills. To
train nonverbal communication skills using LLM-based virtual
patients, more advanced LLMs, such as multimodal LLMs,
must be used, in combination with more advanced technological
ecosystems. However, limited by technological and
cost-effectiveness issues, especially technical limitations like
system failures, language processing challenges, and system
overloads [91], as well as the inability of virtual patients to fully
simulate real patient responses, achieving the goal of training
nonverbal communication skills remains challenging.

To enhance the realism of LLM-based virtual patients,
fine-tuning LLMs with training data relevant to target outcomes
is necessary. Bui et al [92] fine-tuned 3 open-source models
using existing datasets, data scraped from Vietnamese medical
online forums, and data extracted from Vietnamese medical
textbooks. The results showed that the fine-tuned models
performed better than their base versions on evaluation metrics
such as BertScore, Rouge-L, and the “LLM as Judge” method,
confirming the effectiveness of the fine-tuning process.
Currently, only a few studies mention fine-tuning, and no
detailed investigations have been conducted. Future research
should explore whether fine-tuning LLM-based virtual patients
using different specific types of data, such as medical dialogues,
can optimize their performance. Previous studies have fine-tuned
LLMs using doctor-patient dialogue datasets, showing
significant improvements in the model’s ability to understand
patient needs and provide targeted suggestions [93].
Furthermore, only a few studies have explicitly addressed
prompt engineering in the design of LLM-based virtual patient
prompts. By optimizing the input structure, prompt engineering
plays a crucial role in refining AI and LLM outputs [94].
Modifying and optimizing prompts to make them more specific
lead to more accurate and focused LLM outputs [95], thus
improving the performance of LLM-based virtual patients and
enabling more realistic and accurate simulated education.

Evaluation of LLM-Based Virtual Patients
The design and evaluation of the 23 studies on the practical
application of LLM-based virtual patients are heterogeneous
and often inconsistent, making it difficult to accurately assess
the task performance and application effectiveness of
LLM-based virtual patients and masking the potential of
LLM-based virtual patients in medical education. Particularly
in terms of evaluation, only a few studies used validated tools
to assess LLM-based virtual patients, indicating a lack of
standardization in the evaluation process. Furthermore,
evaluations have largely focused on subjective
indicators—users’ experiences—which means that the
heterogeneity of these outcome measures may prevent

cross-study comparisons. While these studies show enthusiasm
for the use of LLM-based virtual patients in medical training,
whether they can be further applied to medical education needs
careful consideration. Due to the lack of standardization,
LLM-driven virtual standardized patient training is unlikely to
be used as part of summative clinical examinations or
assessments of learner communication skills. The limitations
of current evaluation standards highlight the need for broader
evaluations of simulation robustness.

Currently, several effective and reliable evaluation methods or
frameworks could be considered for future research. To assess
user experience, tools like the Subjective Assessment of Speech
System Interfaces (SASSI) questionnaire [96] and Witmer’s
Presence Questionnaire [97] could be used. The SASSI
questionnaire is an effective, reliable, and sensitive measure of
users’ subjective experience with speech recognition systems,
including dimensions such as system response accuracy,
likability, cognitive demand, annoyance, habitability, and speed.
It includes 39 Likert items, scored from 1=strongly disagree to
7=strongly agree. Using this questionnaire to assess the usability
of LLM-based virtual patients in voice interaction could provide
insights into speech recognition accuracy, interaction
smoothness, and users’ experiences. However, the SASSI has
been used only in limited speech recognition systems. Witmer’s
Presence Questionnaire, consisting of 22 self-report items, each
with a 7-point Likert scale, assesses the sense of immersion in
virtual environments, with higher scores indicating stronger
immersion.

From an educational training perspective, models like
Kirkpatrick’s 4-level training evaluation model and Kolb’s
experiential learning theory could be introduced. Kirkpatrick’s
model, introduced in 1959, is one of the most widely used and
well-known frameworks for evaluating training and development
programs. It has 4 levels: reaction, learning, behavior, and
results. Due to its robustness, adaptability, and applicability,
using this model could lead to more effective evaluation of
training outcomes [98]. Since only 5 (17.9%) studies measured
learning outcomes, applying this model to assess the training
effectiveness of LLM-based virtual patients in medical training
could enable researchers to provide a more comprehensive
demonstration of virtual patient systems’ impact on medical
education, showcasing learners’performance after virtual patient
training and analyzing improvements in knowledge mastery,
skill application, and CDM, rather than merely focusing on
learners’ immediate reactions or academic performance. Kolb’s
experiential learning theory emphasizes the process of learning
through experience as an integrated cycle of 4 stages: concrete
experience, reflective observation, abstract conceptualization,
and active experimentation. Each stage is interrelated, guiding
learners from direct experience to critical reflection, conceptual
understanding, and the application of new knowledge [99].
Using this framework to guide the evaluation of LLM-based
virtual patient systems could not only provide students with an
immersive learning experience but also help medical students
combine theory with practice through continuous feedback,
reflection, and experimentation. Additionally, frameworks for
automated interaction assessment and AI-structured clinical
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examinations to assess LLM performance in clinical tasks could
also be adapted [100,101].

Only 5 studies involved the measurement of objective skills,
making it unclear how effective LLM-based virtual patients are
in training users’ skills. This not only reflects the intent of
clinical educators but also highlights the characteristics of the
simulated training environment, which often faces time
constraints and limited resources, making long-term
sustainability difficult [102]. Overall, the current evaluation
practices for LLM-based virtual patients in communication
training lack rigor. More controlled approaches are needed to
improve scalability and scientific rigor, such as using validated
tools and systematically examining changes in student behavior
or clinical outcomes, rather than simply focusing on students’
attitudes or performance in the simulated environment.
Additionally, researchers could reduce the limitations associated
with self-reported data by collecting psychophysiological data
from digital sensors (eg, electroencephalography, extreme
energy ratio, and heart rate) during students’ interactions with
virtual patients and providing real-time feedback [103]. In
conclusion, the insufficient standardized assessment of learning
outcomes means we must remain cautious in judging the
practical value of LLM-based virtual patients, though all 23
studies show positive user attitudes toward LLM-based virtual
patients. While this attitude does not equate to scientifically
validated educational effectiveness, it can help enhance learners’
motivation, undeniably indicating the promising potential of
LLM-based virtual patients in medical training.

Privacy and security, key aspects often not addressed or
discussed in the studies, are important considerations in
LLM-based virtual patient research. Most of the studies used
cloud-based LLMs, but cloud-based LLMs typically require
users to upload explicit requests during inference, which
inevitably raises concerns about data security and user privacy
[104-107]. Specifically, the process of guiding LLMs to simulate
patients through prompts inevitably includes patient-related
information. The popular privacy protection method for LLMs
is to encrypt user medical requests to prevent LLM service
providers’ servers from accessing private user data. Common
methods, such as solid-state encryption technology [108],
significantly mitigate the risk of LLM operators or potential
attackers leaking or misusing patient data for commercial or
other purposes [109]. While these privacy protection methods
are effective, challenges remain for medical LLMs, such as
resource consumption and potential impacts on model accuracy
and reliability [110]. A new method, adaptive compressed-based
privacy-preserving LLM, has been proposed, which avoids the
aforementioned issues while demonstrating strong privacy
protection capabilities and high response accuracy [110]. Local
deployment of LLMs is also a reliable method for addressing
data leakage and privacy concerns. This approach ensures that
user data stay within the organization, significantly enhancing
data security and privacy protection [111]. Researchers have
proposed an innovative compact LLM framework for local
deployment of electronic health record data, which not only
addresses privacy concerns in medical environments but also
overcomes challenges related to limited computational resources
[112]. Furthermore, from a patient data perspective, using

synthetic patient data can help resolve privacy issues [113].
Synthetic data do not pose the same privacy concerns as real
patient data because they are not linked to any specific
individual [114].

The Ethics of Using LLM-Based Virtual Patients
The use of LLM-based virtual patients in medical education
involves several ethical dimensions, including data ownership
and consent for use, data representativeness and bias, and
privacy [115]. These dimensions reflect the relationships,
responsibilities, and moral obligations between virtual patients
as a technological tool and actual patients, health care
professionals, and educators.

Data Ownership and Consent for Use
Using LLM-based virtual patients with patient data raises core
questions about ownership, consent, and anonymization. When
fine-tuning models or supplying prompts, patients may need
explicit consent or at minimum clear notice that their data are
used. Safeguarding informed consent and data rights is central
to the ethics of virtual patient simulations.

Data Representativeness and Bias
LLMs may present potential algorithmic biases that lead to
discriminatory behaviors and stereotypes, potentially resulting
in unfair treatment of certain groups [116-119]. If these biases
are not identified and corrected in a timely manner, virtual
patients may contribute to incorrect diagnoses or treatment plans
in certain populations, thus exacerbating inequalities in health
care services. It is imperative that researchers and developers
of LLM-based virtual patients proactively address these biases
to prevent harmful consequences and ensure equitable health
care training environments.

Privacy
The application of LLM-based virtual patients may involve the
processing of real patient-related data. Even when using
synthetic or virtual patient data, it is crucial to ensure that the
data are deidentified, anonymized, and fully protected to prevent
potential personal information leaks. Adequate safeguards must
be implemented to protect patient privacy and ensure that virtual
patient data are handled ethically and securely.

Situation of LLM-Based Virtual Patients
Integrating AI into medical education is crucial for equipping
health care professionals with the key skills needed to provide
optimal patient care in the future [120], and the use of
LLM-based virtual patients undoubtedly aligns with this trend.
Compared to most existing virtual patients, LLM-based virtual
patients demonstrate unscripted, responsive dialogues that
exhibit realism and flexibility. This realism is advantageous for
training, assessment, and research on shared decision-making
[121-124] and other management reasoning processes [125-127].
LLMs can simulate a diverse range of patients. For rare diseases,
medical students often find it difficult to encounter real patients
experiencing these conditions during clinical rotations.
LLM-based virtual patients offer high cost-efficiency, such as
reducing the resources required for interaction with real patients
and specialized facilities. Through this LLM-based approach,
thousands of preference-sensitive virtual patients can be created
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with greater efficiency and even higher realism than current
labor-intensive methods. Each virtual patient can be “created”
as a single document page, with different variants added by
changing just a few sentences [51]. Furthermore, the application
of LLM-based virtual patients can help mitigate educational
inequities. AI-driven simulations can be accessed by an

unlimited number of students across different geographic
locations. The system enables anyone to train at any time,
unrestricted by time or spatial limitations, thereby democratizing
access to high-quality educational experiences. The advantages
of LLM-based virtual patients are shown in Figure 2.

Figure 2. Advantages of using large language model–based virtual patients in medical education and training.

Although LLM-based virtual patients offer numerous
advantages, they should be seen as a useful and cost-effective
supplementary tool rather than a replacement for real-life
interactions. Their greatest limitation lies in their inability to
handle nonverbal communication, which is crucial for
developing important skills such as empathy communication.
Research has shown that while medical students interact with
virtual patients with empathy, these interactions, both
quantitatively and qualitatively, are insufficient to replace
real-life interactions, such as with standardized patients [128].

In conclusion, while the application of LLM-based virtual
patients holds great promise, integrating them into medical
education is inevitable. However, educators must remain vigilant
and consider both the positive and negative impacts that this
integration may bring [129].

Future Development Directions
The rapid development of LLMs has led to the emergence of
many high-performance models. Researching the performance
of other models in patient simulation can better address the
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diverse needs of medical training, technological iterations, and
security issues. Using representative and diverse samples, such
as those from different geographic regions, cultures, and
backgrounds, will help ensure the broad applicability and
accuracy of the results. Additionally, creating diverse scenarios
and establishing standardized evaluation methods to study and
assess LLM-based virtual patients are equally important.

The realism of LLM-based virtual patients remains a key area
for improvement. Compared to using a single model,
collaborative multimodel systems have demonstrated superior
performance [130]. Exploring the potential of multiple LLMs
working together to reduce errors and enhance realism in
simulated patients holds promise. When combined with more
advanced technological ecosystems, such as social robots,
augmented reality, VR, or MR, these systems can facilitate
multisensory interactions, offering significant benefits for
medical skills training. Furthermore, further exploration of
prompt engineering related to simulating virtual patients can
play a critical role in improving the realism of LLM-based
virtual patients’ performance.

Currently, the research on LLM-based virtual patients has
overlooked safety concerns, particularly data privacy and
protection. Using secure local LLMs can reduce data privacy
risks, although it requires additional computational resources.
Methods for privacy protection still need to be explored and
developed in future research.

Finally, ensuring the scientific rigor of LLM-based virtual
patient design remains an area of further study. Early
interprofessional education training has the potential to enhance
leadership, collaboration, and communication among health
care teams, ultimately improving patient safety [131].
Incorporating the knowledge and experience of multidisciplinary
medical experts (such as clinicians, pharmacists, and
rehabilitation specialists) to optimize LLM-based virtual patients
will allow for more comprehensive and scientific applications,
achieving the goal of interprofessional education training for
users. Moreover, collaboration among interdisciplinary teams
should also be explored. Integrating expertise from medical
professionals, data scientists, AI researchers, psychologists, and
other fields in the design and development of LLM-based virtual
patients will significantly enhance their scientific foundation.
The 4 future research directions are illustrated in Figure 3.

Figure 3. Future development directions in LLM-based virtual patient research. LLM: large language model.

Strengths and Limitations
To the best of our knowledge, this is the first comprehensive
review focused on LLMs simulating virtual patients. We have

summarized the entire process of using LLM-simulated patients
for medical training, covering aspects from experimental design
to outcome evaluation. This review highlights the development,
design, and application processes, providing valuable references
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for the higher-quality, more effective, and scientific application
of LLM-based virtual patients in medical education.

However, this study has several limitations. First, our review
was limited to English-language literature, potentially
overlooking high-quality research published in other languages.
Second, the inclusion of studies relied on the subjective
judgment of the researchers, which may introduce selection
bias. Additionally, as research on LLM-based virtual patients
is still in its early stages, the limited number of relevant studies
may affect the comprehensiveness and representativeness of
the analysis.

Conclusions
This scoping review adopts a rigorous methodology to
summarize and discuss the current state of applications of

LLM-based virtual patients in medical education. The findings
indicate that research on LLM-based virtual patients has
gradually increased over the past 2 years. They provide learners
with opportunities to repeatedly practice communication skills
and receive timely, appropriate feedback, offering significant
economic benefits. As a result, they hold promising prospects
in delivering effective medical skills training. However, further
improvements are needed in areas such as research design,
model implementation, humanization, privacy and security, and
evaluation criteria. Additionally, it is important to clarify that
LLM-based virtual patients should serve as a valuable
supplement to traditional simulation-based education rather
than a replacement. Future research is essential to further
investigate their reliability, authenticity, safety, and scientific
rigor.
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