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Abstract
Background: Prostate-specific antigen (PSA) testing remains the cornerstone of early prostate cancer detection. Society
guidelines for prostate cancer screening via PSA testing serve to standardize patient care and are often used by trainees,
junior staff, or generalist medical practitioners to guide medical decision-making. However, adherence to guidelines is a
time-consuming and challenging task, and rates of inappropriate PSA testing are high. Retrieval-augmented generation (RAG)
is a method to enhance the reliability of large language models (LLMs) by grounding responses in trusted external sources.
Objective: This study aimed to evaluate a RAG-enhanced LLM system, grounded in current European Association of
Urology and American Urological Association guidelines, to assess its effectiveness in providing guideline-concordant PSA
screening recommendations compared to junior clinicians.
Methods: A series of 44 fictional outpatient case scenarios was developed to represent a broad spectrum of clinical presenta-
tions. A RAG pipeline was developed, comprising a life expectancy estimation module based on the Charlson Comorbidity
Index, followed by LLM-generated recommendations constrained to retrieved excerpts from the European Association of
Urology and American Urological Association guidelines. Five junior clinicians were tasked to provide PSA testing recom-
mendations for the same scenarios in closed-book and open-book formats. Answers were compared for accuracy in a binomial
fashion. Fleiss κ was computed to assess interrater agreement among clinicians.
Results: The RAG-LLM tool provided guideline-concordant recommendations in 95.5% (210/220) of case scenarios,
compared to junior clinicians, who were correct in 62.3% (137/220) of scenarios in a closed-book format and 74.1% (163/220)
of scenarios in an open-book format. The difference was statistically significant for both closed-book (P<.001) and open-book
(P<.001) formats. Interrater agreement among clinicians was fair, with Fleiss κ of 0.294 and 0.321 for closed-book and
open-book formats, respectively.
Conclusions: Use of RAG techniques allows LLMs to integrate complex guidelines into day-to-day medical decision-making.
RAG-LLM tools in urology have the capability to enhance clinical decision-making by providing guideline-concordant
recommendations for PSA testing, potentially improving the consistency of health care delivery, reducing cognitive load on
clinicians, and reducing unnecessary investigations and costs. While this study used synthetic cases in a controlled simulation
environment, it establishes a foundation for future validation in real-world clinical settings.
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Introduction
Prostate cancer is the second most commonly diagnosed
cancer and the fifth leading cause of cancer-related death
among men globally [1]. Screening for prostate cancer is thus
a common issue in both primary and specialist care settings.
Prostate-specific antigen (PSA) testing is the most widely
used method for early detection, but remains a controversial
issue in urological literature, largely owing to the harms
associated with overdiagnosis and overtreatment [2,3].

Society guidelines for prostate cancer screening via PSA
testing serve to streamline and standardize patient care and
are often used by trainees, junior staff, or nonspecialist
medical practitioners to guide medical decision-making. Such
guidelines have been issued by various organizations such
as the European Association of Urology (EAU) [4] and
American Urological Association (AUA) [5], but discrepan-
cies between these guidelines, such as recommendations on
whether PSA screening should be offered, the appropriate
patient populations, and screening intervals, pose challenges
for clinical decision-making. These are further complicated
by the need to consider other patient factors, such as the need
to calculate estimated life expectancy (as many guidelines
do not recommend PSA screening in patients with a <10-
or <15-year life expectancy), and the need to consider the
patient’s own preferences. Shared decision-making forms
a key component in both the EAU and AUA guidelines,
particularly in older men or those with multiple medical
comorbidities.

The current EAU-European Association of Nuclear
Medicine-European Society for Radiotherapy and Oncol-
ogy-European Society of Urogenital Radiology-International
Society of Urological Pathology-International Society of
Geriatric Oncology and AUA and Society of Urologic
Oncology guidelines on prostate cancer and early detection
of prostate cancer stand at 239 and 47 pages, respectively.
Appropriate decision-making and adherence to guidelines
is therefore a time-consuming and challenging task for
nonspecialists in a primary care setting, as well as for
specialists in outpatient settings where time constraints are
common. Prior studies have shown a low rate of compliance
to organizational guidelines, such as a cohort study of 32,306
men showing that 40% of those aged >80 years received
inappropriate PSA screening [6].

One potential solution to this problem is to use artifi-
cial intelligence (AI) to parse guidelines and deliver an
appropriate recommendation. Large language models (LLMs)

are a form of AI that are trained on large amounts of
text data and hence have the capability to process unstruc-
tured text inputs and generate appropriate responses. They
can thus be applied in health care, such as in patient com-
munications, education, and clinical risk stratification [7].
However, general LLMs, such as the GPT models devel-
oped by OpenAI, are not specifically designed for health
care use and can produce inaccurate or misleading informa-
tion. They have a knowledge cutoff based on the recency
of the underlying training data, for example, January 2022
for the OpenAI GPT-4 models. To address these limitations,
retrieval-augmented generation (RAG) techniques have been
developed to enhance the accuracy of LLMs. RAG directs the
LLM to answer a given scenario by referencing an additional
database of curated information, such as a set of guidelines.
By grounding the responses using relevant information from
the database, LLMs can overcome their intrinsic knowledge
cutoff and produce responses with less hallucination [8-10].

Thus, the aim of this study was to evaluate the accuracy of
a RAG-enabled LLM that had been grounded in the EAU and
AUA guidelines pertaining to prostate cancer screening.

Methods
Ethical Considerations
This study was conducted in a simulated environment using
only fictional patient data. As the use of fictional data
does not fall under local Human Biomedical Research Act
regulations, ethics approval was not required.
Development of Case Scenarios
A series of 44 fictional case scenarios was developed to
reflect a range of clinical presentations at an outpatient
clinic setting. These free-text scenarios included fictional
patient biodata such as age, medical comorbidities, presence
or absence of urological symptoms (eg, hematuria or lower
urinary tract symptoms, if any), and prior PSA readings (if
applicable). These were written by a urology fellow with
8 years of clinical experience and supervised by 2 urology
consultants with >20 years of clinical experience each.
Development of the RAG-Enabled LLM
We developed an automated pipeline to process case
scenarios based on how a health care provider would provide
a PSA testing recommendation. The schematic diagram is
shown in Figure 1.
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Figure 1. Workflow schematic of the retrieval-augmented generation–enabled large language model pipeline for prostate-specific antigen (PSA)
testing recommendations. AUA: American Urological Association; CCI: Charlson Comorbidity Index; CHF: congestive heart failure; EAU:
European Association of Urology.

Key components of this pipeline included an LLM-based
calculator to extract relevant patient information (age and
comorbidities) from the case scenario, to calculate the
Charlson Comorbidity Index (CCI) and thereby estimate the
expected 10-year life expectancy. Patients who were not
expected to live at least 10 years were not recommended for
PSA screening [4,5], and the pipeline did not allow such case
scenarios to proceed. Likewise, scenarios where the patient
was aged >72 years were also not permitted to proceed.
We provide further technical details of the CCI calculator in
Multimedia Appendix 1 [3-5,11,12].

For patients with at least a 10-year life expectancy based
on CCI scores, a RAG-enabled LLM was used to provide
a recommendation based on the given case scenario. In
comparison with standard “off-the-shelf” LLMs that are not
trained on domain-specific medical information, RAG allows
the LLM to reference a fixed set of material, such as the
relevant EAU and AUA society guidelines in this study.
Language models augmented in this way with contextualized
information can overcome their intrinsic knowledge deficits

and reduce hallucination by constraining their responses to
the provided information.

Because the AUA and EAU guidelines occasionally
provide different and nonoverlapping recommendations,
separate answers were first generated from each set of
guidelines and then combined to produce the final recommen-
dations.

We provide further technical details of the RAG-enabled
LLM in Multimedia Appendix 1 [3-5,11,12]. These include
explanations of modern RAG techniques applied to optimize
performance, such as context filtering to improve retrieval
of relevant information and advanced prompting methods
(chain-of-thought reasoning [13], constraining responses to
retrieved information, providing example output structures,
and using an expert clinician persona). The full RAG prompt
can be found in Multimedia Appendix 1 [3-5,11,12].
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Relevant Software
The RAG prototype was developed with Python (version
3.10; Python Software Foundation). Vector databases were
constructed using Unstructured API for ingestion of PDF
documents, OpenAI API for generation of text embeddings,
and Qdrant as the vector database. For LLM calls, we used
both OpenAI and Anthropic APIs for different components
in our pipeline. We used both LlamaIndex and Langchain
for orchestration, with LlamaIndex handling retrieval of
augmented generation components, whereas Langchain was
used for structured data extraction and connecting pipeline
components.
Answer Generation and Grading
Five junior clinicians were tasked to provide recommenda-
tions on PSA testing for each of the case scenarios. They
included a first-year medical officer, a second-year family
medicine resident, 2 second-year urology residents, and a
third-year urology resident. Each clinician completed the
task in a “closed-book” format, followed by an “open-book”
format in which they were permitted to reference relevant
material of their choice (eg, guidelines or textbooks). The
time taken to complete the task in each format was recorded.

The RAG-LLM tool was likewise provided with the same
set of fictional case scenarios and instructed to provide
recommendations on PSA testing. We conducted 5 runs to
assess the consistency of the LLM output. Answers were
graded by the study team in a binomial format (correct or
incorrect). Answers were marked as correct if they were
concordant with either the EAU or AUA guidelines.
Statistical Analysis
SPSS (version 26.0; IBM Corp) was used for the statistical
analysis of quantitative data. Answers from the RAG-LLM
tool and human comparators were compared using Student
2-tailed t test. Interrater agreement was calculated using
Fleiss κ.

Results
The RAG-LLM tool provided guideline-concordant recom-
mendations in 95.5% (210/220) of case scenarios, compared

to junior clinicians, who were correct in 62.3% (137/220)
of scenarios in a closed-book format and 74.1% (163/220)
of scenarios in an open-book format. The difference was
statistically significant for both closed-book (P<.001) and
open-book (P<.001) formats.

Cases were divided into screening (20/44, 45.5%) and
follow-up (24/44, 54.5%) categories. The RAG-LLM tool
provided an incorrect recommendation in 1 screening case: in
all 5 instances, it failed to recommend a PSA test for a patient
for whom screening was recommended. In comparison, junior
clinicians missed 16/100 (16%) tests in the closed-book
format and 11/100 (11%) in the open-book format. They also
offered 14/100 (14%) unnecessary PSA tests in the closed-
book format and 10/100 (10%) in the open-book format. For
follow-up cases, the RAG-LLM tool provided an incorrect
recommendation in 1 case: in all 5 instances, it incorrectly
recommended a repeat PSA test for a patient with a normal
PSA reading. In comparison, junior clinicians ordered 29/120
(24.2%) unnecessary tests in the closed-book format and
23/120 (19.2%) in the open-book format, and missed 24/120
(20%) tests and 13/120 (10.8%) tests in the closed-book and
open-book formats, respectively. Overall, the RAG-LLM tool
recommended 71 (5 vs 76, 93.4%) fewer unnecessary PSA
tests than junior clinicians and missed 59 (5 vs 64, 92.2%)
fewer PSA tests that should have been offered.

Results were further analyzed by the following categories
of cases: (1) PSA screening recommended; (2) PSA screening
not recommended; (3) follow-up of a normal PSA reading;
(4) management or follow-up of an elevated PSA reading;
and (5) others, including likely spuriously elevated PSA
readings from concurrent urinary tract infections, elevated
PSA readings in patients with significant comorbidity in
whom further or repeat testing would be unlikely to be
beneficial, and normal PSA readings in patients with an
abnormal digital rectal examination. Results are detailed in
Table 1.

Table 1. Accuracy and error breakdown of prostate-specific antigen (PSA) testing recommendations by retrieval-augmented generation–large
language model (RAG-LLM) and junior clinicians.
Group and categorya Unnecessary tests, n (%) Missed tests, n (%) Total errors, n (%) P value

Short interval Did not require Subtotal Long interval Failed to offer Subtotal
Overall (n=220)
  LLM 5 (2.3) 0 (0) 5 (2.3) 0 (0) 5 (2.3) 5 (2.3) 10 (4.5) —b

  Human, closed-
book

11 (5.0) 32 (14.5) 43 (19.5) 26 (11.8) 14 (6.4) 40 (18.2) 83 (37.7) <.001

  Human, open-
book

10 (4.5) 23 (10.5) 33 (15.0) 14 (6.4) 10 (4.5) 24 (10.9) 57 (25.9) <.001

Category 1: PSA screening recommended (n=55)
  LLM 0 (0) 0 (0) 0 (0) 0 (0) 5 (9.1) 5 (9.1) 5 (9.1) —
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Group and categorya Unnecessary tests, n (%) Missed tests, n (%) Total errors, n (%) P value

Short interval Did not require Subtotal Long interval Failed to offer Subtotal
  Human, closed-

book
0 (0) 0 (0) 0 (0) 3 (0) 10 (18.2) 13 (23.6) 13 (23.6) .04

  Human, open-
book

0 (0) 0 (0) 0 (0) 1 (1.8) 10 (18.2) 11 (20) 11 (20) .11

Category 2: PSA screening not recommended (n=45)
  LLM 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) —
  Human, closed-

book
0 (0) 14 (31.1) 14 (31.1) 3 (6.7) 0 (0) 3 (6.7) 17 (37.8) <.001

  Human, open-
book

0 (0) 10 (22.2) 10 (22.2) 0 (0) 0 (0) 0 (0) 10 (22.2) .001

Category 3: normal PSA follow-up (n=45)
  LLM 5 (11.1) 0 (0) 5 (11.1) 0 (0) 0 (0) 0 (0) 5 (11.1) —
  Human, closed-

book
8 (17.8) 8 (17.8) 16 (35.6) 0 (0) 3 (6.7) 3 (6.7) 19 (42.2) .001

  Human, open-
book

7 (15.6) 7 (15.6) 14 (31.1) 1 (2.2) 0 (0) 1 (2.2) 15 (33.3) .01

Category 4: elevated PSA (n=40)
  LLM 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) —
  Human, closed-

book
0 (0) 0 (0) 0 (0) 20 (50) 1 (2.5) 21 (52.5) 21 (52.5) <.001

  Human, open-
book

1 (2.5) 0 (0) 1 (2.5) 12 (30) 0 (0) 12 (30) 13 (28.9) <.001

Category 5: others (n=35)
  LLM 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) —
  Human, closed-

book
3 (8.6) 10 (28.6) 13 (37.1) 0 (0) 0 (0) 0 (0) 13 (37.1) <.001

  Human, open-
book

2 (5.7) 6 (17.1) 8 (22.9) 0 (0) 0 (0) 0 (0) 8 (22.9) .002

aThe denominators used for all percentage calculations represent the number of cases in each category multiplied by 5, as each of the 44 case
scenarios was independently evaluated by 5 junior clinicians. Accordingly, the overall total is shown as n=220, and the denominators for each
category (eg, n=55 for category 1, n=45 for category 2, etc) follow the same calculation method.
bNot available.

Average time taken by clinicians to provide a recommenda-
tion was 23 seconds in the closed-book format and 28 seconds
in an open-book format. In comparison, the RAG-LLM
tool averaged 9.7 seconds per recommendation. Interrater
agreements among clinicians for closed-book and open-book
responses were Fleiss κ=0.294 (95% CI 0.291‐0.297; P<.001)
and Fleiss κ=0.321 (95% CI 0.318‐0.324; P<.001), respec-
tively, indicating fair agreement. In comparison, Fleiss κ for
RAG-LLM tool responses was 1.000 (95% CI 0.998‐1.000;
P<.001), indicating very good agreement.

Discussion
Principal Findings
To our knowledge, this is the first study in the field of
urology demonstrating the efficacy of a RAG-LLM tool for
clinical decision support. Augmenting LLMs with contextual-
ized information has been shown in other health care domains
to reduce instances of hallucination and increase accuracy
[14,15]. In this study, guideline-concordant recommendations

were made in >95% of scenarios by the RAG-LLM, as
compared to the 60%-75% concordance by junior clinicians.

Examining responses that were not guideline concord-
ant, we found that the errors made by the RAG-LLM
arose from (1) the rule-based nature of the CCI calculator,
which precluded a patient aged 72 years from PSA screen-
ing despite strong risk factors for prostate cancer and (2)
erroneous interpretation of a normal PSA result as “moder-
ately elevated,” triggering a reactive repeat PSA test, which
in actuality was unnecessary. In contrast, the junior clinicians
made errors across a broad range of categories, irrespective of
seniority or training status.

Analysis of the incorrect recommendation given by the
RAG-LLM was undertaken by examining the retrieved
guideline chunks and the LLM output for each guideline,
followed by the final recommendation. The scenario was that
of a 55-year-old man who had been on follow-up for erectile
dysfunction, with a PSA screening result of 2.8 ng/mL.
The retrieved chunks for both AUA and EAU guidelines
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contained the information required to answer the clinical
scenario.

With regard to the AUA guidelines, the RAG-LLM
chain-of-thought process correctly identified an appropriate
interval of “regular PSA screening every 2 to 4 years for
people aged 50 to 69 years,” but wrongly reasoned that a PSA
level of 2.8 ng/mL was elevated and thus recommended a
repeat PSA test. As no text in the retrieved chunks suggested
the classification of a PSA of 2.8 ng/mL as elevated, we
classified this error as a hallucination. Conversely, for the
EAU guidelines, contained within the same chunk were the
phrases “the most commonly applied threshold for PSA is ≥
3.0 ng/ml” and “In case of a moderately elevated PSA (up
to 10 ng/mL), a repeated test after a few weeks should be
considered to confirm the increase.” The RAG-LLM failed to
synthesize these 2 pieces of information—specifically, that a
“moderately elevated” PSA would range between 3 and 10
ng/mL—and interpreted the PSA of 2.8 ng/mL as moderately
elevated. While it recognized the threshold by giving an
output stating “given the patient’s age (55 years) and PSA
level (2.8 ng/mL), he falls into a category where follow-up
intervals of two years may be considered,” it proceeded to
reason that “the reference context also suggests that in cases
of moderately elevated PSA, a repeated test after a few weeks
should be considered,” thus recommending an unnecessary
confirmatory repeat PSA test.

In case scenarios where EAU and AUA guidelines
provided differing recommendations for PSA testing
intervals, the RAG-LLM tool provided both recommenda-
tions. In comparison, junior clinicians generally selected a
single guideline document as a reference. While not incorrect,
their responses were thus qualitatively less comprehensive
and thorough than those generated by the LLM tool.

Our study demonstrates that RAG-LLM tools have the
potential to augment clinical decision-making by providing
guideline-concordant recommendations in real time. While
such a clinical task may be relatively simple for an expe-
rienced specialist, generalists or junior clinicians may not
necessarily have similar familiarity and experience with
specialist care. Such clinical decision support tools may prove
useful in primary care settings or in care settings where it
is practically challenging for a senior clinician to supervise
every clinical decision due to time constraints and high
patient volume. Patient-specific, guideline-based tools can
potentially relieve cognitive burden, shorten learning curves,
and improve decision-making time, thus improving overall
consistency and efficiency of clinic consultations [16]. Use of
RAG-LLM tools as a method to improve guideline adherence
can also be a strategy to minimize unnecessary investigations
and specialist consultation, thereby reducing costs to patients
and public health care systems. In the primary care setting,
increased adherence to guidelines has been shown to improve
the quality and appropriateness of specialist referrals [17].

From a technical standpoint, RAG-LLM tools are
preferable to “off-the-shelf” LLMs. The use of LLMs in
clinical medicine engenders concerns of hallucination and
resulting inaccurate recommendations, with implications for

patient care and safety. Incorporating RAG systems in LLM
tools reduces the frequency of hallucinations [18] and is more
economical than fine-tuning or pretraining a model from the
ground up.
Limitations
We acknowledge some important limitations to this study,
which fall into the clinical and technical domains. First,
from a clinical perspective, this study used fictional case
scenarios, rather than real clinical cases. While this may
limit generalizability and external validation, it is arguably
better to perform LLM evaluation on a well-curated set of
varied case scenarios, rather than a sample from a general
population that would be less likely to feature uncommon
or complex cases [19]. This is analogous to the assessment
of junior clinicians, where ability would be assessed using
a purposefully designed set of cases, rather than a general
sample of common cases [20,21]. Future direction includes
testing model robustness against retrospective and prospective
real-world clinical cases.

A second clinical limitation is the use of the CCI as a
tool to estimate 10-year life expectancy. Although the CCI is
recommended in the EAU guidelines as a means of estimat-
ing life expectancy, it was created in 1987 and has certain
limitations in modern practice, such as an incomplete list
of comorbidities, assumptions that the effect of comorbidi-
ties is additive, and potentially lengthier disease prognoses
with modern medical management [22,23]. While comorbid-
ity burden and a patient’s remaining healthy lifespan are
key determinants of benefit from any form of screening
test, current scoring tools may not adequately capture the
nuances of clinical practice and patient assessment and indeed
rely on cohort measures of central tendency to estimate life
expectancy. We thus envision that such clinical decision
support tools would assist clinicians as copilots, maintain-
ing a human-in-the-loop approach rather than functioning as
autonomous decision-makers. Additionally, the tool design is
modular and separates CCI determination and case analysis
into sequential steps, allowing substitution of an alternative
comorbidity calculator or omission of this step altogether at
the clinician’s discretion.

Third, from a technical perspective, although supplement-
ing LLMs with RAG has been shown to reduce rates of AI
hallucinations [18,24], these models are not entirely immune
to hallucination. Our RAG-LLM tool provided incorrect
recommendations in 1 scenario due to hallucination or faulty
reasoning, but erred in a conservative direction, avoiding
harms arising from a missed prostate cancer diagnosis. The
source of error suggests that current textual documents may
require a degree of unwritten human inference, which is not
an intrinsic ability that LLMs possess. Identification of these
problematic areas in text data and explicit definition of terms
may improve reasoning and performance of LLM-based tools.
The “black box” nature of many AI or AI-assisted tools [25,
26] may present difficulties in pinpointing errors in internal
reasoning processes, but use of techniques such as prompt
engineering and self-reflective RAG models may help to
enhance the accuracy of these models [27]. Variability in
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performance across different LLMs also needs to be taken
into account and balanced against the cost of each model.
Future Directions
Despite these limitations, RAG-LLM tools retain potential
for multiple applications in health care. On the basis of
the same system for clinical decision support for guideline-
based recommendations, it can also be used retrospectively as
an auditing tool to identify areas of guideline discordance
in clinical practice [28]. Furthermore, the RAG approach
allows future guideline documents to be incorporated much
more easily than a fine-tuning or pretraining approach,
keeping the tool up-to-date and preventing obsolescence [29].
Prospective real-world model validation based on clinical

data, multimodel evaluation, implementation of explainability
methods, and expansion of such RAG-LLM pipelines beyond
PSA testing to other areas in urology are potential areas for
further research.
Conclusions
In this simulation-based comparative evaluation, we
developed a RAG-LLM tool to provide clinical decision
support on PSA testing. The tool demonstrated high accuracy,
outperforming junior clinicians in making efficient and
guideline-concordant decisions. The use of such tools can
help increase guideline adherence, improve patient care, and
optimize the use of health care resources.
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