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Abstract

Background: Osteoporosis is a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk;
however, it frequently remains underdiagnosed due to limited health care resources and its asymptomatic progression. Deep
learning (DL) provides a promising solution for automated screening using computed tomography (CT) scans, enabling earlier
detection and improved management.

Objective: This systematic review and meta-analysis aimed to investigate the diagnostic performance of DL models in
diagnosing osteoporosis based on CT scans.

Methods: This study was conducted under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analy-
ses) guidelines using articles extracted from PubMed, Scopus, Web of Science (Core), and Embase (Ovid). Studies involving
adult participants who underwent CT and in which DL was applied for osteoporosis diagnosis were included. The QUADAS-2
(Quality Assessment of Diagnostic Accuracy Studies-2) tool was used to estimate the risk of bias in each study. The confusion
matrices from the included studies were extracted to summarize the diagnostic performance of DL models for osteoporosis.
Within a bivariate random-effects framework, sensitivity and specificity were jointly synthesized to yield the summary
estimates. Heterogeneity was quantified with Higgins I? statistics. Subgroup analyses were performed to explore potential
sources of heterogeneity among the included studies.

Results: This review included 24 studies, encompassing CT images from 29,808 participants. All studies used conventional
CT scans and used DL-based architectures. Fifteen, 6, and 3 studies were assessed as having a low, uncertain, and high
risk of bias, respectively. The meta-analysis included 20 studies. The pooled sensitivity and specificity were 0.88 (95%
CI 0.85-0.91; 1’=83.69%) and 0.94 (95% CI 0.91-0.96; 1°=95.07%) for osteoporosis diagnosis; 0.81 (95% CI 0.76-0.85;
1’=82.38%) and 0.92 (95% CI 0.90-0.94; 1°=79.05%) for osteopenia identification; and 0.95 (95% CI 0.92-0.97; 1°=98.28%)
and 0.93 (95% CI 0.91-0.95; I’=94.93%) for normal case identification. The area under the curve of the DL models for
identifying osteoporosis, osteopenia, and normal cases was 0.96 (95% CI 0.93-0.97), 0.94 (95% CI 0.92-0.96), and 0.98 (95%
CI 0.96-0.99), respectively. Subgroup analyses revealed that models based on DenseNet variants (P<.01), multislice input
(P<.01), 3D architecture (P<.01), and CT as the reference standard (P<.01) demonstrated superior diagnostic performance.

Conclusions: This study indicated that CT-based DL models achieve promising diagnostic performance for osteoporosis.
However, substantial heterogeneity among the included studies, limited external validation, and incomplete end-to-end
pipelines constrain the generalizability of the proposed models. Further research is warranted to support their clinical transla-
tion and standardized application.
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Introduction

Osteoporosis is a systemic skeletal disorder characterized
by low bone mass, deteriorated bone microarchitecture, and
increased bone fragility [1]. It affects individuals across
diverse ethnic backgrounds, with postmenopausal women
being particularly vulnerable. The global prevalence of
osteoporosis is estimated at 19.7%, increasing to over 25%
among individuals older than 60 years [2], and is expected
to increase further with the aging population. In addition,
a considerable proportion of individuals are diagnosed with
osteopenia, a condition considered a precursor to osteoporosis

[3].

Osteoporosis is frequently referred to as a “silent disease”
because of its lack of noticeable symptoms in the early
stages. However, patients may experience chronic pain and
functional impairment as the disease progresses. The most
prevalent and severe consequence of osteoporosis is fragility
fractures, which significantly reduce patients’ quality of life.
In particular, hip fractures are associated with increased
mortality. The incidence of osteoporosis-related fractures in
China is estimated to reach 4 million by 2030, resulting in
over $20 billion in health care costs [4]. Considering the
large, affected population, early diagnosis and treatment of
osteoporosis are crucial. Interventions such as calcium and
vitamin D supplementation and fall prevention strategies have
been shown to effectively reduce the risk of fractures [5].

The World Health Organization (WHO) recommends
that a T-score of <—2.5 measured using dual-energy X-ray
absorptiometry (DXA) is indicative of osteoporosis [1]. In
recent years, computed tomography (CT) has been recognized
as a method that provides more precise and detailed trabecu-
lar bone information, making quantitative CT (QCT) a widely
accepted diagnostic approach for osteoporosis [6]. However,
osteoporosis remains significantly underdiagnosed in clinical
practice despite the availability of well-defined diagnostic
criteria. This is partly due to limited health care resources,
with only 0.46 DXA machines available per million people
on average in China [6], and partly due to its asymptomatic
nature, with most patients being diagnosed only after a
fracture event [7]. Therefore, developing a more accessible
and widely applicable screening method for osteoporosis is
essential.

The automated analysis of medical images is being
actively developed and applied in clinical settings with the
rapid advancement of artificial intelligence, particularly deep
learning (DL) technologies. As a state-of-the-art approach,
DL can directly process raw medical images and lever-
age large-scale data for training, thereby reducing the
reliance on manual feature extraction required in traditional
machine learning methods. Moreover, DL has demonstrated
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superior performance in complex pattern recognition tasks,
where subtle imaging features are difficult to predefine [8].
Compared with dedicated osteoporosis screening devices, DL
enables the development of scalable screening approaches
using existing medical images. For instance, routine chest
and abdominal CT scans frequently contain sufficient bone
information. DL can emulate the principles of QCT by
leveraging vertebral imaging data to enable automated bone
mineral density (BMD) assessment, thereby expanding the
scope of opportunistic osteoporosis detection. Considering the
substantial overlap between patients undergoing CT scans
for other medical conditions and those at risk of osteoporo-
sis, this approach may represent a cost-effective strategy for
improving osteoporosis management.

However, DL technologies for osteoporosis assessment
remain in the developmental and validation phases. Evidence
from existing studies must be synthesized to assess the
progress in this field and to identify the gaps between model
development and clinical application. Therefore, a system-
atic review and meta-analysis were conducted. This study
primarily aimed to evaluate the performance of DL technol-
ogy in diagnosing osteoporosis and osteopenia based on CT
scans and, secondarily, to determine the potential factors
affecting the capability of automated diagnosis.

Methods

Study Design and Registration

The review was conducted following the PRISMA (Prefer-
red Reporting Items for Systematic Reviews and Meta-Anal-
yses) guidelines and flowchart [9,10] and the PRISMA of
Diagnostic Test Accuracy (PRISMA-DTA) checklist [11].
The protocol for this systematic review was registered in the
Prospective Register of Systematic Reviews (PROSPERO;
CRD42024601713).

Search Strategy

A comprehensive and exhaustive search was conducted in
PubMed, Scopus, Web of Science (Core Collection), and
Embase (via Ovid) up to September 28, 2025, to determine
relevant articles that used DL techniques for diagnosing
osteoporosis based on CT images [12]. Further, the refer-
ence lists of the included articles were manually screened
to identify additional eligible studies. The following terms
were used for the PubMed search: “osteoporosis,” “compu-
ted tomography,” “deep learning,” and “neural networks,
computer.” Multimedia Appendix 1 provides the details of
the search strategy.
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Inclusion and Exclusion Criteria

The inclusion criteria for the studies were (1) full-text articles
in peer-reviewed journals; (2) studies involving adult patients
who underwent conventional CT scans for routine clinical
indications, including chest, abdomen, lumbar spine, or pelvic
CT, with or without contrast enhancement; (3) the use of DL
methods for osteoporosis detection (classification) or bone
density estimation (regression); (4) availability of test dataset
information, particularly studies that reported or enabled
reconstruction of a 2x2 or 3x3 confusion matrix based on
sensitivity, specificity, precision, and recall.

The exclusion criteria were (1) non-English or non-
peer-reviewed publications; (2) conference articles, preprints,
reviews, letters, guidelines, editorials, or errata; (3) studies
with fewer than 30 participants in either the training or test
dataset; (4) DL used only applied to image segmentation,
while traditional machine learning, radiomics, or HU-to-BMD
conversion formulas were used for osteoporosis detection or
bone density estimation; (5) studies used specific, nonconven-
tional CT scanning protocols to acquire the input images for
the DL model, such as QCT or dual-energy CT protocols
(while QCT can serve as the reference standard for osteoporo-
sis diagnosis, the input data for all included DL models were
derived from routine CT scans rather than dedicated QCT
images).

Review Process

Two reviewers (ZM and AW) independently performed
the initial screening of the titles and abstracts of the inclu-
ded articles to identify potential eligibility after removing
duplicates with EndNote (Clarivate). The full texts of the
remaining articles were then reviewed, and those not meeting
the inclusion criteria were excluded from the study. Any
discrepancies were resolved through discussion or adjudica-
ted by a third reviewer (LZ) when necessary. An email was
sent to the corresponding authors for the acquisition of the
necessary data for studies included in the systematic review
but lacking sufficient data for meta-analysis.

Quality Assessment

The risk of bias and applicability were assessed with the
QUADAS-2 (Quality Assessment of Diagnostic Accuracy
Studies-2), a tool designed to evaluate the quality of primary
diagnostic accuracy studies [13]. The QUADAS-2 criteria
were used to examine the risk of bias in 4 domains: Patient
Selection, evaluating whether the studies reported general
characteristics of the cohorts used for model development and
whether the selection of participants was appropriate; Index
Test, assessing whether the design and implementation of the
models contained any obvious flaws, whether an independent
test set was used, and whether the model outputs involved any
manual intervention; Reference Standard, examining whether
the diagnostic criteria for osteoporosis adhered to interna-
tionally recommended guidelines; and Flow and Timing,
considering whether the study procedures were appropriate
and whether there were excessive delays between the index
test and the reference standard. Each domain was assessed in
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terms of the risk of bias, and the first 3 were assessed in terms
of concerns regarding applicability.

Data Extraction

Data extraction was independently conducted by 2 review-
ers (AW and ZM) following the PRISMA-DTA guidelines
[11]. Discrepancies were resolved through discussion or
adjudication by a third reviewer (LZ). Variables from 4
key aspects were extracted and documented: (1) study
design, including the first author, publication year, country
of authors, number of participants, participant demographics,
testing strategy, and reference standard; (2) characteristics of
CT imaging, including the type of CT scans, CT vendor,
acquisition parameters, scan region, scan plane, and target
vertebrae; (3) details of DL algorithms, including name or
architecture of the proposed model, network dimensionality,
region of interest (ROI) acquisition method, Dice similar-
ity coefficient of automated segmentation, type of input
data, and whether end-to-end processing was performed; (4)
diagnostic performance metrics, including confusion matrix
(for articles using a 3x3 confusion matrix based on the
diagnostic classification criteria for osteoporosis, the matrix
was transformed into three 2x2 confusion matrices, each
corresponding to a comparison between one category and
other categories), sensitivity, specificity, area under the
receiver operator characteristic curve, and whether the BMD
values were predicted.

The meta-analysis involved both internal and external test
results from all eligible studies. Each test result was consid-
ered an independent observation for studies reporting multiple
test results based on different DL models, datasets, labeling,
or data input strategies. A temporal test was considered an
internal test because the samples were obtained from the same
center and the same CT scanner [14]. Six studies assessed
the diagnostic performance of multiple existing models. To
prevent these studies from disproportionately affecting the
pooled results, only the test results of ResNet and DenseNet
for osteoporosis diagnosis were recorded in the literature
[15-17], whereas the best-performing 2D or 3D ResNet and
DenseNet models were documented in the literature [18], as
these architectures are among the most commonly used and
effective in medical image detection and classification, owing
to their efficient training mechanisms and strong feature
representation [19]. Two studies reported model performance
on subdistrict datasets from the same center. The relevant
results were not included as these do not qualify as standard
internal or external tests [20,21].

Statistical Analysis

The MIDAS and METAN modules in Stata (version 17.0;
StataCorp) software were used for statistical analyses [22].
These 2 modules can generate pooled results based on the
confusion matrix reported in each included study and perform
further statistical analyses. Forest plots were generated
to visualize the pooled sensitivity and specificity of DL
models in osteoporosis diagnosis. Considering the hetero-
geneity in study design, model architecture, and reference
standards among the included studies, a bivariate random-
effects model was used. The overall diagnostic accuracy was
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assessed through summary receiver operator characteristic
curve analysis. Heterogeneity between studies was assessed
using the Q test and Higgins I? statistics, with the following
classification thresholds: 0%-40%, 30%-60%, 50%-90%, and
75%-100% indicating negligible, moderate, substantial, and
considerable heterogeneity, respectively.

Subsequently, further analyses were conducted to evaluate
the diagnostic performance of DL models specifically for
osteoporosis. A Fagan nomogram was applied to estimate
posttest probabilities, facilitating clinical interpretation of
model performance. The likelihood ratio (LR) dot plots were
stratified into 4 quadrants according to predefined evidence
strength thresholds, guiding the decision-making process for
model exclusion or confirmation. The Deeks funnel plot
symmetry test was used to assess publication bias. Subgroup
analyses were conducted to investigate potential sources of
heterogeneity across studies. A P<.05 indicated statistical
significance.

Ethical Considerations

Ethical approval and informed consent were not required
from the participants considering the nature of the systematic
review and meta-analysis.

Wang et al

Results

Study Overview

The literature search was performed according to the protocol
outlined in the PRISMA flowchart (Figure 1). The ini-
tial search across various databases yielded 1983 studies,
including 655, 293, 553, and 482 from PubMed, Embase,
Scopus, and Web of Science, respectively. After removing
969 duplicates, 71 nonjournal articles, and 24 non-English
publications, 919 publications remained for screening. Of
these, 832 were excluded based on titles and abstracts due
to lack of relevance. Further, 87 studies were reviewed
for full text, of which 24 were included in the systematic
review [14-18,20,21,23-39], and 20 were ultimately incor-
porated in the quantitative meta-analysis [14-16,18,23,25-
29]. The other remaining 4 studies were excluded from
the meta-analysis because the reported test set sample size
and diagnostic parameters were insufficient to reconstruct a
complete confusion matrix [24,33,34,39]. Attempts to contact
the corresponding authors of the studies did not obtain the
necessary data.

Figure 1. Flowchart depicting the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) search strategy. DL: deep

learning.
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The studies included populations from China [14,16-18,20,21,
23-26,28,29,32,33,37-39], Japan [27,30], Korea [31,34], the
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United States [35], Poland [15], and Cyprus [36] geographi-
cally. The 24 studies included in the systematic review were

J Med Internet Res2025 | vol. 27 1 e77155 | p. 4
(page number not for citation purposes)


https://www.jmir.org/2025/1/e77155

JOURNAL OF MEDICAL INTERNET RESEARCH

published between 2020 and 2025, involving a total of 29,808
participants. Further, 20 studies used single-center data [14-
16,18,20,21,23,24,26-29,31-36,38,39], whereas 4 studies used
multicenter data [17,25,30,35]. The development, validation,
and testing of the DL models included 34,908 samples. In
5 included studies, each participant contributed more than 1
sample, including CT scans from different dates, slices, or
vertebral levels [15,31,32,35,36], leading to a total sample
size larger than the number of patients. Significant variation

Wang et al

in sample sizes was observed, with test sets ranging from 45
[30] to 2867 [23]. The classification forms for osteoporosis
diagnosis were summarized into three types: (1) osteoporo-
sis versus osteopenia versus normal cases [14,16,20,21,23-27,
29,30,32,33,37-39], (2) osteoporosis versus nonosteoporosis
cases [15,17,18,28,34], and (3) low bone mass versus normal
cases [31,35,36]. Table 1 shows the detailed information of
the included studies.

Table 1. Characteristics of the included studies in the systematic review and meta-analysis.

Study Data source

Population
characteristics

Diagnostic
classification

Wu et al® [23]  Single-center

Wang et al Single-center
[24]

Tong “et al Single-center
[14]

Peng Zet al Multicenter
[25]

Pan %et al [26] Single-center

Zhang %etal  Single-center
[16]
Fang et al® Single-center
[18]
Yoshida et al*  Single-center
[27]

Niu %et al [28] Single-center

Adult, excluded:
previous spinal
surgery and spinal
tumors

Adult, excluded:
fractures, metal
implants, severe
degenerative

changes, deformities,

and spinal tumors

Adult, excluded:
metal implants,
spinal tumors, and

abnormal vertebral

morphology

Adult, excluded:
previous spinal
surgery, fractures,
and tumors

Adult, excluded:
metal implants,

severe degenerative
changes, fractures,

and deformity

C

Adult, excluded:
severe scoliosis,
fractures, and
implants

Adult, excluded:
fractures, severe
scoliosis, severe
spondylosis, prior

spinal surgery, and

enhanced CT®
Adult, excluded:

metal or bone cement
implant, secondary

osteoporosis,
Schmorl’s nodes,

severe scoliosis, and

vascular
calcification.

Osteoporosis vs
osteopenia vs
normal cases

Osteoporosis vs
osteopenia vs
normal cases

Osteoporosis vs
osteopenia vs
normal cases

Osteoporosis vs
osteopenia vs
normal cases

Osteoporosis vs
osteopenia vs
normal cases

Osteoporosis vs
osteopenia vs
normal cases

Osteoporosis vs
nonosteoporosis
cases

Osteoporosis vs
osteopenia vs
normal cases

Osteoporosis vs
Nonosteoporosis
cases

Age
(years), Test
mean strategy
(SD) or  Participants,n and
median (%, female) or sample Reference  Deep learning
(IQR) % size (n) standard model networks
54 IQR 7713 (46.50)  Internal: QCTb DenseNet-121
47-61) 975;
external:
4401
65 (IQR 2274 (4440) Internal:  QCT ResNet-18
57-70) 267,
temporal:
347
62.89 687 (47.20) Internal: QCT ResNet
(SD 101
11.55)
— 1219 (59.80)  Internal: QCT DenseNet
176;
external:
340
51 (SD 1048 (42.30)  Internal: QCT ResNet-101
14.5) 418
— — Internal: QCT Joint framework
418
— 488 (71.80) Internal:  DXAd Multiple
96 algorithms
— 402 (77.40) Internal: DXA ResNet-50
52
66.03 — Internal: ~ QCT DenseNet
(SD9.71) 100
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Age
(years), Test
mean strategy
(SD) or  Participants,n and
Population Diagnostic median (%, female) or sample Reference  Deep learning
Study Data source characteristics classification (IQR) % size (n) standard model networks
Dzierzak and  Single-center — Osteoporosis vs ~ — 100 (59) Internal: HuUf VGGE-16
Omiotek? [15] Nonosteoporosis 100
cases
Fang et al® Single-center  Adult, excluded: Osteoporosis vs  53.8 45.60% Internal: ~ QCT DenseNet-121
[29] secondary osteopenia vs 398;
osteoporosis and normal cases external:
hyperparathyroidism; 294
fractures and
implants
Yasaka et al*  Multicenter Adult, excluded: Osteoporosis vs ~ — 278 (50.80) Internal: DXA CNNh
[30] previous spinal osteopenia vs 45;
surgery, severe normal cases external:
scoliosis, fractures, 50
and deformity
Kang et al Single-center  Adult, the date gap ~ Low bone mass — — Internal:  DXA Residual CNN
[31] between CT® witha  vs normal cases 457
complete L1 axial cut
and DXA scan was
<1 month
Lietal®[32] Single-center Patients with cough  Osteoporosis vs — — 801 (48.80) Internal: QCT ResNet
and epigastric pain as osteopenia vs 404
the main symptoms, normal cases
excluded:
malformations,
fractures, and
abnormal bone
metabolism
Tang et al Single-center  Adult, excluded: Osteoporosis vs ~ — 82% Internal: ~ DXA BMDC-Net
[33] metastases and osteopenia vs 63
compression normal cases
fractures
Ohetal [34] Single-center Adult who Osteoporosis vs ~ 58.86 286 (54.40) Internal:  DXA DenseNet-169
underwent routine nonosteoporosis  (SD 98
cancer screening, cases 12.56)
excluded: implants,
and z score >3.3 or
<-33
Tariq et al Multicenter Adult, excluded: Low bone mass 66.9 (SD 65.30% Internal: DXA DenseNet-121
[35] implants and vs normal cases 9.2) 1205
anatomical variations
Kiigiikciloglu ~ Single-center ~ Adult, excluded: Low bone mass — 100 (67) Internal: ~ DXA CNN
det al [36] severe scoliosis or vs normal cases 68
deformity,
spondylarthrosis,
inflammatory
diseases, tumors, and
previous spinal
surgery
Zhou %et al Single-center  Adult, excluded: Osteoporosis vs ~ 47.7 46.1% Internal: QCT Resnet-101
[37] prior spinal surgery, osteopenia vs 137
vertebral fracture, normal cases
and tumors
Kuo %et al Single-center  Adult, excluded: Osteoporosis vs =~ — 507 (66.1) Internal: ~ DXA ViT-CNN
[38] prior spinal surgery, osteopenia vs 186

vertebral fracture,
and tumors

normal cases
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Age
(years), Test
mean strategy
(SD) or  Participants,n and
Population Diagnostic median (%, female) or sample Reference  Deep learning
Study Data source characteristics classification (IQR) % size (n) standard model networks
Li%tal [20]  Single-center Adult, excluded: Osteoporosis vs ~ 55.11 51.8% Internal: QCT DenseNet and
history of previous osteopenia vs (SD 245 ResNet
spinal surgery, severe normal cases 13.72) external:
compression 258
fractures, and tumors
Li%tal [21]  Single-center Adult, excluded: Osteoporosis vs ~ 54.07 987 (59.9) Internal: QCT DenseNet and
prior spinal surgery, osteopenia vs (SD 9.90) 112 ResNet
vertebral fractures, normal cases external:
tumors, implants, and 137
BMI >35 kg/m?
Zhang et al Single-center — Osteoporosis vs  — — Internal: ~ QCT DeepmdQCT
[39] osteopenia vs 575
normal cases
Huang %etal ~ Multicenter Inclusion criteria: Osteoporosis vs ~ — 1126 (68.7) External: DXA Multiple
[17] age =50 years, with  nonosteoporosis 545 algorithms
complete medical cases

records

Studies included in meta-analysis (the confusion matrix was either directly provided in the literature or could be reconstructed based on the reported
sample size and diagnostic performance metrics, such as sensitivity and specificity).

PQCT: quantitative computed tomography.
“Not available.

9DXA: dual-energy X-ray absorptiometry.
°CT: computed tomography.

fHU: Hounsfield unit.

8VGG: Visual Geometry Group.

NCNN: convolutional neural network.

Characteristics of CT Images

The types of CT scans used in this systematic review
consisted of routine CT [15,16,18,20,24-27,29-33], low-dose
CT [14,20,21,23,25,28,37,38], and contrast-enhanced CT [34,
35]. The scan regions included chest CT [14,16-18,20,21,23-
26,28,31-33,37,38], abdominal CT [25,28-32,34,35], lumbar
spine CT [15,20,21,25,29,31,36], and pelvic CT [35]. All
used CT images included a complete display of the target
vertebral body for osteoporosis diagnosis. Seven studies used
sagittal images [20,21,23-25,27,36], 19 used axial images
[14-18,20,21,26,28-39], and 3 incorporated coronal images
[20,21,35]. Table S1 in Multimedia Appendix 2 provides
detailed information on the CT scans.

DL Model Characteristics

The most commonly used DL architectures in the included
studies were ResNet variants [14,16-18,20,21,24,26,27,32,37]
and DenseNet variants [17,20,21,23,25,28,29,33-35]. Seven
studies used a 3D architecture to predict osteoporosis [14,18,
20,21,23,28,31]. Automated segmentation was adopted in 18
studies for ROI localization, in contrast to manual segmenta-
tion in 5 studies [15,17,18,27,30]. An end-to-end approach
was theoretically feasible in 12 studies among the 24 enrolled
studies [14,20,21,23-25,28,29,32,34,35,38]. Osteoporosis was
diagnosed directly in 11 studies [14-18,24,26,33,35,36,38]
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and through BMD-based prediction in 13 studies [20,21,23,
2527-32,.34,37,39]. Table S2 in Multimedia Appendix 3
documents further details regarding the DL models.

Methodological Quality

Figure 2A provides an overview of the quality assessments
of the included studies using the QUADAS-2 tool. Figure
2B provides the results of the nuanced analysis. For the risk
of bias, 3 studies had a high risk of bias [15,16,39], 6 had
an unclear risk of bias [18,27,30,34-36], and 15 had a low
risk of bias [14,17,20,21,23-26,28,29,31-33,37,38]. Regarding
the applicability, 4 studies had an unclear risk of concern [15,
16,36,39]. Regarding the patient selection, 3 of the inclu-
ded studies did not report details of patient selection [15,16,
39], and 1 was based on a potentially inappropriate patient
population [36], causing a high and unclear bias, respectively.
Regarding the index test, all studies enrolled demonstrated a
low risk of bias. Regarding the reference standard, both DXA
and QCT are recognized tools for osteoporosis assessment
[40]. One study adopted HU values as the reference stand-
ard, contributing to a high risk of bias [15]. Regarding the
flow and timing, 6 studies exhibited an unclear risk of bias
due to either an excessive time interval between the index
test and the reference standard (>3 months) [27,30,34-36] or
insufficient information related to the image input [18].
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Figure 2. Quality assessment by QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2). (A) The proportion of risk of bias and
applicability concerns, and (B) summary of the risk of bias for each study. Green, yellow, and red circles indicate low, unclear, and high risk of bias,

respectively.
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Diagnostic Performance of the DL
Models

Among the 20 studies included in the meta-analysis, 15
reported diagnostic performance based on multiple model
architectures, input data, or test sets [15-18,20,21,25,26,29-
31,35-38]. According to the principles described in the
“Methods” section, 2-6 test results from each of these
studies were treated as independent observations. Osteopo-
rosis diagnosis involved 39 models. The pooled sensitivity
and specificity of osteoporosis diagnosis were 0.88 (95%
CI 0.85-0.91; 1’=83.69%) and 0.94 (95% CI 0.91-0.96;
12=95.07%), respectively (Figure 3). Osteopenia identification
involved 19 models, with pooled sensitivity and specificity
of 0.81 (95% CI 0.76-0.85; 1°=82.38%) and 0.92 (95% CI

https://www jmir.org/2025/1/e77155

0.90-0.94; 1’=79.05%), respectively (Figure 4). Thirty models
were included for the identification of normal cases. The
pooled sensitivity and specificity for identifying normal cases
were 0.95 (95% CI 0.92-0.97; 1’=98.28%) and 0.93 (95%
CI 0.91-0.95; 1°=94.93%), respectively (Figure 5). Consider-
ing the substantial heterogeneity across studies, leave-one-out
analyses were performed to assess the influence of individual
studies on the pooled results. The findings are provided in
Figures S1, S2, and S3 in Multimedia Appendices 4-6. The
summary receiver operator characteristic curves indicate that
the area under the receiver operator characteristic curve of
the DL models for identifying osteoporosis, osteopenia, and
normal cases was 0.96 (95% CI 0.93-0.97), 0.94 (95% CI
0.92-0.96), and 0.98 (95% CI 0.96-0.99), respectively (Figure
6).
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Figure 3. Forest plots in the sensitivity and specificity of deep learning (DL) models in diagnosing osteoporosis.
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Figure 4. Forest plots in the sensitivity and specificity of deep learning (DL) models in diagnosing osteopenia.
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Figure 5. Forest plots in the sensitivity and specificity of deep learning (DL) models in identifying normal cases.
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Figure 6. The summary receiver operating characteristic (SROC) curves for deep learning (DL) models in the diagnosis of bone status categories. (A)
Osteoporosis, (B) osteopenia, and (C) normal cases. AUC: area under the receiver operator characteristic curve; SENS: sensitivity; SPEC: specificity.
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According to the prevalence of osteoporosis [2] and the
distribution of patients in the included studies, the pretest
probability in the Fagan nomogram was set at 20%. At
this point, a positive test result of the DL model raises
the post-test probability of osteoporosis to 80%, whereas a

negative result reduces it to 3% (Figure 7). It should be noted
that post-test probabilities depend on the assumed pretest
probability. Accordingly, the model’s utility may differ across
populations with different baseline prevalence.
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Figure 7. Fagan nomogram of deep learning (DL) models for diagnosing osteoporosis.
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Figure 8 provides the LR scatter plots for osteoporosis value of DL models in confirming osteoporosis. However,
diagnosis. Most data points are located in the upper left several points fall in the lower right quadrant, demonstrating
and upper right quadrants, with the summary LR plot of DL  limited diagnostic use for certain models.

models positioned in the upper right quadrant, indicating the
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Figure 8. Likelihood ratio (LR) dot plot of deep learning (DL) models. LLQ: lower left quadrant; LRN: negative likelihood ratio; LRP: positive
likelihood ratio; LUQ: upper left quadrant; RLQ: lower right quadrant; RUQ: upper right quadrant.
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Publication Bias

The funnel plots and symmetry test were used to evaluate
publication bias, indicating whether the results might be
skewed due to selective reporting of positive or significant
findings (Figure S4 in Multimedia Appendix 7). The funnel
plots indicated no publication bias, and the asymmetry test
was not significant (P=.87).

Subgroup Analysis

Subgroup analyses were conducted to explore whether
specific study characteristics influenced the pooled diagnostic
performance and to identify sources of heterogeneity. The

Table 2. Results of subgroup analyses.

included covariates were validation strategy (internal test
vs external test), backbone network architecture (ResNet vs
DenseNet), scan plane (axial vs sagittal or coronal), image
window setting (bone window vs soft tissue window), input
data format (single-slice vs multislice), reference standard
(CT vs DXA), and model dimensionality (2D vs 3D). The
results are provided in Table 2. Models based on DenseNet
variants, sagittal and coronal scans, multislice input, CT as
the reference standard, and 3D architecture demonstrated
superior diagnostic performance. Table S3 in Multimedia
Appendix 8 provides detailed sensitivities and specificities for
the heterogeneous subgroups.

Subgroup Joint model (P value) 122 (%) LRTP (32)°
Validation strategy 08 61 5.15
Backbone network architecture <0014 96 46.90
Scan plane <0014 95 41.19
Image window setting 63 0 0.93

Input data format <0014 89 18.65
Reference standard <0014 94 35.71
Model dimensionality <0014 87 15.19

4[2: T-squared.
YL RT: likelihood ratio test.

€All covariates in the subgroup analyses were binary. Therefore, the degrees of freedom for the LRT test were 2.

dStatistically significant.
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Discussion

Principal Findings

The rapid development of artificial intelligence, particu-
larly DL, holds the potential to bring significant improve-
ment to health care. DL facilitates opportunistic screening
from routine CT scans in osteoporosis diagnosis, enabling
early detection and intervention for asymptomatic patients
while providing a cost-effective alternative for bone health
assessment. However, translating these advancements into
clinical practice remains challenging, particularly in terms of
generalizability and clinical validation. Therefore, this study
aimed to evaluate the diagnostic performance of DL models
in osteoporosis detection, emphasizing both progress and
limitations. The pooled sensitivity for diagnosing osteoporo-
sis, osteopenia, and normal cases was 0.88, 0.81, and 0.95,
respectively, whereas the pooled specificity was 0.94, 0.92,
and 0.93, respectively. To our knowledge, this is the first
meta-analysis focusing on the use of DL for osteoporosis
detection. However, considerable heterogeneity across studies
remains, and individual covariates evaluated in the subgroup
analysis could not fully account for the observed heterogene-
ity. In addition, the meta-analysis excluded 4 studies due to
insufficient data. Therefore, the results should be interpreted
with caution. The pooled estimates should not be interpre-
ted as a single, generalizable performance metric for all DL
models, but rather as an overall summary of performance
across diverse models, datasets, and clinical settings.

Among studies indexed with “Deep Learning” as a
keyword, this systematic review and meta-analysis only
included research using DL technology as a classifier.
Beyond classification, DL has been used in other components
of the automated diagnostic pipeline. A common approach
involves using a DL-based localization module to deter-
mine ROI, followed by HU- or radiomics-based diagnosing
methods [41-45]. HU-based diagnosis estimates BMD using
CT density values [46,47]. However, its reliance on a single
parameter limits adaptability. Radiomics-based approaches
that extract predefined imaging features for prediction face
challenges in both feature selection and generalizability.
Recent studies indicate that DL-based models may outper-
form HU- and radiomics-based methods, which may be
associated with their capability of automatically learning
complex imaging features and leveraging larger datasets [14,
18,30]. In addition, DL enables direct feature extraction from
raw imaging data, thereby eliminating the reliance on manual
feature selection. Compared to previous meta-analyses on
HU-based (pooled sensitivity: 63% and specificity: 91%)
and radiomics-based (pooled sensitivity: 87% and specific-
ity: 87%) diagnostic methods [48,49], our results indicate
a potentially superior performance of DL-based models.
However, further direct comparative studies are required to
validate this advantage.

Subgroup analysis in terms of model construction revealed
that models based on DenseNet demonstrated slightly better
performance in osteoporosis diagnosis than those using
ResNet. This may be due to DenseNet’s dense connectivity,

https://www.jmir.org/2025/1/e77155

Wang et al

which improves feature reuse and facilitates stable gradi-
ent propagation, enhancing fine-grained image analysis.
Studies on viral pneumonia and Alzheimer disease diagno-
sis reported similar results [50,51], indicating that DenseNet
may be better suited for tasks requiring detailed texture and
structural assessment. In addition, the use of deep architec-
tures such as ResNet-50 carries an inherent risk of overfit-
ting and suboptimal training performance when applied to
small datasets [24]. However, although the 2 architectures
showed statistically distinguishable performance, the absolute
differences in pooled sensitivity and specificity were minimal,
suggesting that the observed significance may not reflect
a clinically meaningful superiority. This discrepancy may
be attributed to the use of various optimization strategies
in most included studies. Future research should conduct
more rigorous comparative analyses to identify the optimal
model architecture and training strategies for large-scale
clinical deployment. Furthermore, it is not surprising that
models using multislice input and 3D architecture demonstra-
ted improved diagnostic performance, as these approaches
can leverage more comprehensive CT imaging information.
Models using sagittal or coronal scans showed superior
performance compared with those based on axial scans,
possibly because the former provide bone quality informa-
tion from multiple vertebrae simultaneously. However, the
reliability of this finding may be constrained, as studies in the
sagittal or coronal subgroup were very limited (n=4).

The results of this study showed no significant differ-
ence between the internal and external test performance of
DL models. However, this may be attributed to the limited
number of eligible external test datasets (n=10), potentially
affecting the stability of the pooled estimates. Considering
that osteoporosis diagnosis and BMD estimation primarily
depend on trabecular bone texture, it is reasonable to assume
that factors, such as CT image contrast and clarity, could
affect the diagnostic results. Several studies [24,27,39] have
demonstrated variations in the performance of DL models
when tested on CT images acquired from different vendors
and tube voltage settings, which is consistent with our
hypothesis.

Models using CT as the reference standard exhibited
superior diagnostic performance compared with those using
DXA. This is not unexpected, as the outputs tend to be
more consistent when the index test and reference standard
were derived from the same imaging modality. Although
DXA remains the globally recognized gold standard for
osteoporosis diagnosis [1], it has known limitations in clinical
practice, including the risk of both false negatives and false
positives. Lin et al [52] reported that the detection rate of
osteoporosis was lower with DXA (73.2%) than with QCT
(84.4%) among patients with vertebral fractures—clinically
confirmed osteoporosis cases. This discrepancy is caused by
DXA being susceptible to osteophytes, degenerative changes,
and vascular calcifications [53]. When the reference standard
itself is prone to measurement errors, the performance of
DL models trained on such data is inherently constrained.
Therefore, establishing a more accurate reference standard for
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osteoporosis diagnosis remains a crucial challenge for future
research.

Regarding the diagnostic workflow of DL models,
existing studies generally adopt 2 approaches: prediction
of BMD values followed by diagnosis, or direct classifica-
tion. Although these 2 approaches theoretically should not
cause differences in diagnostic accuracy, the former may
provide practical advantages in clinical applications. First,
BMD predictions provide clinicians and patients with a more
precise assessment of osteoporosis severity. Second, Peng et
al [25] indicated that a primary source of misclassification in
DL-based diagnosis involved cases where BMD values are
close to classification boundaries. By outputting continuous
BMD values instead of discrete diagnostic categories, this
approach helps mitigate the effect of misclassification on
clinical decision-making.

Future Directions

Based on the above results and discussion, DL models face
practical and ethical challenges in real-world applications
beyond diagnostic performance, which should be further
addressed in future research and clinical implementation.

First, the considerable heterogeneity observed across the
included studies suggests that the performance of current
DL models may be influenced by multiple factors, including
model architecture and CT acquisition parameters. There-
fore, particular caution is warranted when considering their
deployment across different scanners and institutions. An
alternative strategy for clinical implementation may involve
tailoring automated diagnostic models to specific CT vendors
and scanner types to ensure diagnostic performance. Future
studies on model development should also comprehensively
and transparently report details of model design and study
data, and conduct more rigorous and extensive cross-institu-
tional and prospective validation to enhance model robustness
and generalizability.

DL models encounter practical and ethical challenges
in real-world applications beyond diagnostic performance.
Only a small proportion of the DL models included in this
review were capable of end-to-end processing, as mentioned
in the “Results” section. Moreover, Fang et al [29] acknowl-
edged that 14%-34.5% of cases had invalid CT segmentation
results. Similar problems in localization and segmentation
further complicate the feasibility of end-to-end automation.
These limitations hinder the feasibility of complete automa-
tion, requiring human oversight for reviewing and adjusting
CT images as warranted. Balancing sensitivity and specif-
icity remains another critical consideration for DL model
application. The LR scatter plot indicates that the current DL
models predominantly exhibit strong confirmatory capability,
posing concerns about their suitability as screening tools.
Future research should focus on optimizing the sensitivity of
DL models to minimize missed diagnoses while maintaining
diagnostic specificity as much as possible.

From an ethical perspective, current DL models primarily
serve as diagnostic aids, with physicians integrating DL-gen-
erated outputs into their clinical judgment and assuming
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responsibility for the final diagnosis. However, there is
currently no radiological diagnostic standard for osteoporosis
that human physicians can directly reference. This indicates
that the outputs of DL models may directly constitute the final
radiological interpretation, posing ethical concerns regarding
accountability and trustworthiness in clinical applications.
Therefore, replacing existing osteoporosis diagnostic methods
with DL models is not a rational approach in the short term.
When DL indicates a risk of osteoporosis, it is necessary to
recommend established diagnostic examinations such as DXA
and arrange appropriate longitudinal follow-up and treatment.
Leveraging the large volume of routine CT examinations
for preliminary osteoporosis screening, followed by stand-
ardized diagnostic confirmation and appropriate treatment,
may improve the overall cost-effectiveness of osteoporosis
management.

Limitations

This study has several limitations. First, although this
study used a comprehensive search strategy as thoroughly
as possible, the exclusion of non-English and non—peer-
reviewed publications may still have resulted in the omis-
sion of certain valuable studies. Second, the included
studies involved relatively small sample sizes, which may
have limited the training effectiveness of DL models.
Third, several included studies lacked sufficient reporting
of key metrics, making the confusion matrix reconstruction
impossible, which could introduce discrepancies between
the pooled results and the actual performance. Fourth, the
published papers did not always provide complete details of
the proposed models, and some of the studies were assessed
to have a risk of bias, which limited the interpretability and
reproducibility of the results. The complexity of model design
and CT parameters also limited our ability to perform further
meta-regression analyses. Fifth, multiple test results from
individual studies were treated as independent observations
in this meta-analysis. Although this approach enabled a more
comprehensive inclusion of model performances, it may have
introduced potential bias by disproportionately weighting
certain study designs. Focusing primarily on the diagnostic
performance of ResNet and DenseNet may also represent a
source of bias in this study. Finally, no independent validation
studies of these models from other institutions were identified
in the literature, emphasizing the need for further verification
of their generalizability.

Conclusion

This systematic review and meta-analysis revealed that
DL models exhibit promising sensitivity and specificity
for osteoporosis diagnosis based on CT images. However,
this study also highlights several limitations of existing
DL models. First, the included studies showed substantial
heterogeneity and lacked robust external validation, which
restricts model generalizability; therefore, the pooled results
should not be interpreted as a single and universal estimate.
Second, some DL models have not achieved a fully end-to-
end diagnostic pipeline. Third, the balance between sensi-
tivity and specificity requires further optimization to better
align with clinical screening requirements. Despite these
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limitations, DL techniques hold considerable potential for

integration into clinical practice, enabling broader osteoporo-

sis screening and improving cost-effectiveness.
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