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Abstract

Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal
moments, demonstrating potential for improving lifestyle behaviors in weight management.

Objective: This study provides an overview of how JITAIs have been used or developed for weight management in adults with
excess body weight.

Methods: This scoping review followed Arksey and O’Malley’s 5-step framework and the PRISMA-ScR (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist to ensure methodological rigor. Eight
electronic databases (PubMed, Cochrane Library, Embase, CINAHL, PsycINFO, IEEE Xplore, Scopus, and Web of Science)
were searched from journal inception to November 13, 2024, along with gray literature and hand-searched references. Two
independent reviewers conducted data extraction for all included studies. Descriptive statistics were used to summarize study
characteristics, followed by a nonlinear, inductive qualitative content analysis of the extracted data to identify and synthesize
recurring concepts and characteristics of JITAI-based weight management interventions.

Results: Thirty-five studies on JITAIs for weight management were included, focusing on dietary behavior (25/35, 71.4%),
physical activity (20/35, 57.1%), and self-weighing (17/35, 48.6%). Types of support included prompts (n=33), feedback (n=24),
recommendations of coping strategies (n=7), and educational information (n=5). A total of 31.4% of studies used machine learning
for decision-making, while the rest used rule-based algorithms. Retention rates varied from 74% to 100%, and compliance from
15.1% to 94.6%. Greater user engagement was associated with improved weight loss outcomes. Across interventions, significant
improvements were observed in weight, waist circumference, BMI, and blood pressure, alongside increased physical activity,
healthier dietary behaviors, and reductions in sedentary time.

Conclusions: While JITAIs show potential for improving lifestyle habits by providing the right intervention at the right time
and in the right setting, most studies lacked theoretical grounding and were not conceptualized as JITAIs. Furthermore, terminology
and reporting were inconsistent, which hindered evaluation and comparison across studies. Nevertheless, most studies incorporated
varied distal and proximal outcomes, behavioral theories, intervention delivery methods, and data acquisition methods, and
demonstrated positive outcomes in weight, physical activity, and dietary behaviors. This review demonstrates JITAIs’ potential
in weight management but highlights the field’s early stage of development. Future research should focus on improving reporting
standards, optimizing JITAI components such as the integration of behavioral theories and machine learning, and enhancing user
engagement and long-term effectiveness by incorporating passive sensing, personalization, and adaptive feedback mechanisms.
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Introduction

Overweight and obesity have reached epidemic levels that
burden the public health care system by increasing the risk of
complications such as diabetes mellitus, cardiovascular disease,
hypertension, stroke, and some cancers [1]. According to the
World Health Organization (WHO), the global prevalence of
adult overweightness and obesity increased from 25% to 43%
between 1990 and 2022 [2]. Its estimated economic burden in
2019 stood at US $1.33 trillion in high-income countries and
US $3.19 billion in low-income countries [3]. The major
challenge with weight management lies in the complex interplay
of genetic, epigenetic, physiological, environmental, behavioral,
and sociocultural factors [4]. Weight management approaches,
such as bariatric surgery and pharmacological interventions,
offer promising results; yet, sustainable and widely accessible
weight management continues to rely fundamentally on lifestyle
interventions [5]. Innovative solutions targeting lifestyle
interventions are essential to improve weight loss and public
health outcomes.

Just-in-time adaptive interventions (JITAIs) are an innovative
digital behavior change intervention (DBCI) design that
leverages real-time user data to deliver personalized support at
moments of heightened vulnerability or receptivity, thereby
enhancing behavior change [6-10]. Nahum-Shani et al [6,7], a
pioneer in coining JITAI, identified 6 core design elements
namely (1) proximal outcomes: short-term goals (eg, behavior
change), (2) distal outcomes: long-term goals (eg, weight
management), (3) decision rule: determining which intervention
to deliver, (4) decision points: specific times when rules are
applied, (5) intervention options: array of potential supports,
and (6) tailoring variables: user data on internal states (eg, mood
and motivation) and context (eg, schedule and environment).
These elements work in concert to create a dynamic, responsive
intervention system tailored to individual needs and
circumstances.

The core mechanism of JITAIs is based on “if-then” decision
points, in which the intervention is delivered only once specific
criteria have been met. Nahum-Shani and Murphy [11] identified
3 elements of this decision point: the tailoring variables, the
thresholds applied to the tailoring variable, and the intervention
options. For example, a JITAI that tackles overeating can be
operationalized based on the “if-then” decision point. An
individual may log their calorie intake at every meal and set
their recommended daily calorie limit to the recommended
amount. If the individual’s calorie count, the tailoring variable,
exceeds this threshold. In that case, they will then receive a
notification from an application to monitor their dietary habits,
with the notification serving as the intervention option.

A tailoring variable refers to the factor an intervention seeks to
target, with data collected using repeated sampling methods (ie,
active, passive, or both) to obtain temporally dense data on

personal characteristics [9]. Active assessment often includes
self-reports, including ecological momentary assessments
(EMAs) and other user-initiated reports that rely on the JITAI
framework [6] to provide adaptive support. Passive assessment,
conversely, involves data collection through sensors (eg,
smartwatches and smartphones) and digital sources (eg, digital
calendars and web browsing history) with minimal user
involvement [6,8,9].

The subsequent threshold of the tailoring variable then
determines whether the intervention is necessary, informed by
existing literature and adjusted to participant-specific contexts.
An effective threshold should identify states of vulnerability
(eg, high-risk moments for lapse), states of opportunity (eg,
opportunities to persuade the user to walk during commuting),
and user receptivity [7], which the JITAI could address in real
time.

Finally, JITAIs deliver tailored interventions, adjusting the
content, dose, and timing based on the user’s social context to
increase the likelihood of adaptation of the JITAI intervention
[7]. This dynamic design makes JITAIs well-suited to address
the multifaceted and fluid nature of weight management,
potentially overcoming the limitations of traditional weight
management programs. JITAIs have demonstrated versatility
beyond weight management, being applied to various health
behavioral issues such as alcoholism, smoking cessation, mental
illness, and physical inactivity [8].

While JITAIs hold strong potential for weight management
[10], their development is still in its infancy. Studies lack
consistency and standardization in the application of the 6 core
components of JITAIs [8]. Moreover, research design aligning
with JITAIs’ definitions has used various terms, such as
“dynamic tailoring,” “dynamically and individually tailored
ecological momentary interventions (EMIs),” “intelligent
real-time therapy,” and “adaptive context-aware interventions”
[6,12,13].

To the best of our knowledge, few reviews on JITAIs exist, and
none focus specifically on their applicability to weight
management or dietary behavior. The limited relevant reviews
include a systematic review by Hardeman et al [14] on JITAIs
for physical activity, a meta-analysis by Wang and Miller [12]
covering JITAIs targeting various behavioral issues, and 2
scoping reviews evaluating intervention reporting quality and
automation standards in JITAIs studies [15,16]. However, these
studies scarcely addressed or did not mention weight
management and the potential role of JITAIs. Given the scarcity
and heterogeneity of weight management JITAI studies, as well
as the complexity of JITAI designs, a scoping review was
conducted to contextualize existing knowledge, provide insights
into complex and heterogeneous literature, identify gaps, and
advance the field [17,18]. This paper aims to provide an
overview of how JITAIs could be used for weight management
among adults with excess body weight.
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Methods

Guidance Framework
This scoping review was conducted following Arksey and
O’Malley’s 5-step framework: (1) identifying the research
question, (2) identifying relevant studies, (3) study selection,
(4) charting the data, and (5) collating, summarizing, and
reporting the results [19]. The PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) checklist [20] was used to
ensure methodological rigor (Table S1 in Multimedia Appendix
1).

Identifying the Research Questions
The review aimed to address the following questions:

1. What conceptual designs do current weight management
JITAIs adopt?

2. What are the features of current weight management
JITAIs?

3. What is the effectiveness of current weight management
JITAIs in improving user-related outcomes?

Identifying Relevant Studies
The International Prospective Register of Systematic Reviews
(PROSPERO) database was first searched to ensure no duplicate
reviews had been published. A 3-step comprehensive search
strategy was developed in consultation with an academic
librarian and conducted by XMT. First, a preliminary search
was conducted on PubMed using the search string (“just-in-time
adaptive interventions” AND “weight management”) to identify
potential keywords. Second, 8 electronic databases (PubMed,
Cochrane Library, Embase, CINAHL, PsycINFO, IEEE Xplore,
Scopus, and Web of Science) were searched from journal
inception until November 13, 2024. The final keywords used
were “just-in-time adaptive intervention*,” “just-in-time,”
“ecological momentary intervention*,” “context-aware*,”
“adaptive NEAR/4 intervention*,” “digital behavio*r change,”
“dynamic* NEAR/4 tailor*,” “real-time NEAR/4 tailoring,”
“real-time therap*,” “tailor* NEAR/4 feedback,” “adapt*
NEAR/4 feedback,” “real-time NEAR/4 feedback,”
“microrandomi*,” “overweight,” “obes*,” “weight loss,”
“weight management,” “weight reduction,” “body weight,”
“BMI,” and “body mass.” The comprehensive search strategy
for all databases is provided in Table S2 in Multimedia
Appendix 2. To reduce publication bias and increase
comprehensiveness, 2 gray literature databases (Science.gov
and ProQuest Dissertations and Theses Global) and the first
200 results retrieved from Google Scholar [21] were also
searched. In addition, 3 trial registries (ClinicalTrials.gov,
ISRCTN registry, and WHO International Clinical Trials
Registry Platform) were searched for ongoing studies. Finally,
backward citation searching of all related reviews, frameworks,
and papers included in the title and abstract screening was also
conducted.

Study Selection
All studies were imported into EndNote (version 21; The
EndNote Team), where duplicates were removed using the

EndNote automation tool [22]. Eligibility criteria were
developed according to the population-concept-context
framework (Table S3 in Multimedia Appendix 2 [20]). Papers
were included if they described JITAIs for weight loss in adults
(aged ≥18 years) with excess body weight (BMI ≥25). All
English-language study designs and publication types
(developmental papers, conceptual papers, feasibility studies,
secondary analyses, theses, conference proceedings, and journal
papers) were included to broaden the scope of the search,
excluding reviews and frameworks. Studies that did not use the
term “JITAI” were determined to be JITAIs if they met specific
criteria, including automated devices, real-time monitoring,
automatic data processing, adaptive provision of support
(content, dose, and timing), and system-delivered intervention
delivery. Studies were excluded if they lacked sufficient
information to determine whether they were JITAIs or lacked
descriptions of their functions, mechanisms, or application in
weight management. Study screening was conducted by XMT,
and citations were managed using EndNote (version 21)
software [22].

Study screening and selection were conducted by a single
reviewer (XMT) due to resource limitations. While independent
screening by 2 reviewers is recommended to minimize bias and
enhance comprehensiveness, a single-reviewer approach was
implemented due to practical and logistical constraints inherent
to the project timeline. To ensure methodological rigor, explicit
inclusion and exclusion criteria were developed a priori and
reviewed by a second reviewer (HSJC). These criteria were
applied systematically across all databases, guided by a
standardized screening protocol. All decisions were
comprehensively documented to ensure transparency,
consistency, and reproducibility of the selection process.

Charting the Data
Data extraction using Google Sheets was first pilot tested by
XMT on 5 randomly selected papers and reviewed with HSJC
to ensure consistency and clarity of data fields. The data
extraction fields were iteratively refined through discussion
until consensus was reached between the 2 reviewers (XMT
and HSJC). The final data extraction framework included author,
year, country, publication type, study design, duration of
intervention, sample size, intervention used, compliance rate,
mode of delivery, proximal outcome, behavioral theory used,
wearables, algorithm used, intervention description, and data
acquisition. Two reviewers (XMT and JYJK) independently
conducted data extraction for all included studies. Discrepancies
were discussed and resolved by a third reviewer (HSJC).

Collating, Summarizing, and Reporting the Results
Following the Joanna Briggs Institute scoping review guidance
[23], both quantitative and qualitative methods were used to
collate and summarize the data. Descriptive statistics were
performed by XMT using Microsoft Excel [24] to summarize
study characteristics in terms of frequencies, percentages, and
ranges, and were reviewed by JYJK to ensure accuracy and
consistency. A nonlinear, inductive qualitative content analysis
was then conducted to identify and synthesize recurring
concepts, characteristics, and components of JITAI-based weight
management interventions. This approach was chosen due to
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the limited evidence on this topic and its suitability for clarifying
the key characteristics and components of weight management
JITAIs [18]. The qualitative content analysis followed 6 iterative
stages: (1) immersion in data, (2) inductive extraction and
analysis, (3) open coding, (4) developing the coding framework,
(5) extraction and organization, and (6) categorization [23].
Stages 1 and 2 (immersion and inductive analysis) were
conducted independently by XMT and JYJK to ensure an
unbiased interpretation of the data. Open coding was then
performed collaboratively through iterative discussions between
XMT and JYJK to develop the preliminary coding framework,
with discrepancies resolved by HSJC. The finalized coding
framework was subsequently applied across all included studies,
during which extracted data were organized and categorized
through an iterative comparison process to refine the concepts,
characteristics, and components of weight management JITAIs.
No critical appraisal of methodological quality was conducted,
consistent with the Joanna Briggs Institute scoping review

guidance [18], as the objective of this review was to provide an
overview of existing evidence regardless of methodological
quality [20].

Results

Database Search
The database and register search yielded 3625 records. After
removing 1816 duplicates with the EndNote automation tool
[22], 1809 records underwent title and abstract screening. This
process resulted in 131 reports, with full-text extraction available
for 108 reports. In addition, 3 records from Google Scholar and
15 from citation searching were also retrieved. A total of 35 full
texts were ultimately included in this review, along with 5
relevant ongoing trials identified. The PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
flow diagram with reasons for exclusions is provided in Figure
1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram. ISRCTN: International Standard Randomized
Controlled Trial Number; JITAI: Just-In-Time Adaptive Intervention; WHO ICTRP: World Health Organization International Clinical Trials Registry
Platform.

Characteristics of Included Studies and Participants
The 35 papers comprised peer-reviewed journal papers (n=25),
theses (n=3), and conference proceedings (n=7). Study designs
varied, including developmental studies (n=5), mixed method
studies (n=2), experimental studies (n=20), secondary analyses
(n=7), and a qualitative study (n=1). The majority of the reports

originated from the United States (n=29), with others from the
Netherlands (n=3), the United Kingdom (n=1), Turkey (n=1),
and India (n=1). Intervention durations ranged from 14 days
[25] to 12 months [26-31]. Table 1 provides a summary of study
characteristics, and Table 2 provides the individual study
characteristics.
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Table 1. Summary of study characteristics (N=35).

Value, n (%)Study characteristic

Publication type

25 (71.4)Journal paper

7 (20)Conference proceeding

3 (8.5)Thesis

Study design

5 (14.3)Developmental study

2 (5.7)Mixed method study

20 (57.1)Experimental study

7 (20)Secondary analysis

1 (2.9)Qualitative study

Country of origin

29 (85.7)United States

3 (8.6)The Netherlands

1 (2.9)United Kingdom

1 (2.9)Turkey

1 (2.9)India

Health behavior as proximal outcomes

25 (71.4)Dietary behavior

13 (37.1)Dietary structure

4 (11.4)Eating rate

8 (22.9)Dietary lapses

20 (57.1)Physical activity

19 (54.3)Increase in physical activity

3 (8.57)Decrease in sedentary behavior

17 (48.6)Self-weighing

Behavioral theory adoption

14 (40)Reported adoption of at least 1 behavioral theory

9 (25.7)Social cognitive theory

7 (20)Kanfer’s theory of self-regulation

2 (5.7)Fogg behavior model

2 (5.7)Transtheoretical model

1 (2.9)Health action process approach

21 (60)None reported

Type of support

17 (48.6)Prompt and feedback

4 (11.4)Prompt only

2 (5.71)Feedback only

7 (20)Prompt and recommendation of a coping strategy

5 (14.3)Prompt, feedback, and educational information

Intervention delivery

24 (68.6)Application message

7 (20)Text message
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Value, n (%)Study characteristic

3 (8.57)Audio feedback

1 (2.9)Mobile phone haptic vibration

1 (2.9)Augmented fork vibrotactile feedback

Employment of wearables

16 (45.7)At least 1 wearable used

19 (54.3)None used

Data acquisition

9 (25.7)Both active and passive assessments

12 (34.3)Passive assessment only

14 (40)Active assessment only

Active assessments: tailoring variables measured

8 (22.9)Ecological momentary assessment

15 (42.9)Self-reported questionnaires

15 (42.9)Self-reported weight measurements

Passive assessments: sensors and tailoring variables measured

19 (54.3)Accelerometer

18 (51.4)Physical activity

1 (2.9)Eating rate

10 (28.6)Time

4 (11.4)Location sensor

2 (5.7)Galvanic sensor

2 (5.7)Thermal flow sensor

2 (5.7)Skin temperature sensor

2 (5.7)Air temperature sensor

2 (5.7)Image capturing monitor (captures dietary structure)

3 (8.6)Previous user responses

2 (5.7)Digital weighing device

2 (5.7)Weather

2 (5.7)Personal calendar

1 (2.9)Sound sensor (dietary structure and detection of eating episodes)

Decision-making algorithm used

24 (68.6)Rule-based algorithm

11 (31.4)Machine learning
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Table 2. Individual study characteristics (n=35).

Key outcomesComplianceIntervention usedStudy design; duration; nCountry; publication
type

Author; Year

Model accuracy: 0.67-
0.72; specificity: 0.68-

EMAb survey response:
94.6%; retention: 100%
(with compensation)

DietAlert and

WWa
Pilot trial; 6 weeks; n=12United States; thesis

dissertation
Goldstein, 2016 [32]

0.72; sensitivity: 0.45-
0.70; higher data volume
↑ model outcomes, espe-
cially sensitivity.

N/AN/ADietAlert and WWDevelopmental; N/Ac; N/AUnited States; jour-
nal paper

Goldstein et al, 2017
[10]

Negative predictive value
80%; 70.15% alerts

EMA survey response:
85.1%; retention:
97.7%

OnTrack (formerly
DietAlert) and
WW

Pilot; 8 weeks; n=43United States; jour-
nal paper

Forman et al, 2019a
[33]

opened; 3.13% weight
loss; app easy to use, had
minimal issues, moderately
useful and enjoyable; un-
planned lapses ↓ over
time.

Specificity 83.8%; Sensitiv-
ity 69.2%; 46.9% alerts

EMA survey response:
62.9%; retention:
88.4%

OnTrack (formerly
DietAlert) and
WW

RCTd; 10 weeks; n=181United States; jour-
nal paper

Forman et al, 2019b
[34]

opened; 2.1% weight loss
when moderated by diet
type; high satisfaction re-
ported; 72.8% risk alerts
received as helpful or accu-
rate; dietary lapses ↓ over
time.

Accuracy 79.7% (8 ques-
tions) vs 79.9% (17 ques-

EMA survey response:
65.4% (8 questions) and

OnTrack (formerly
DietAlert) and
WW

Randomized trial; 10 weeks;
n=121

United States; jour-
nal paper

Goldstein et al, 2020
(Primary) [35]

tions); specificity 84.4%
(8 questions) vs 81.7% (17

60.5% (17 questions);
retention: 84.3%

questions); sensitivity
71.6% (8 questions) vs
77.7% (17 questions);
46.9% alerts opened; 3.4%
weight loss; 72.84% risk
alerts received as helpful
or accurate.

0.49% weight loss; 50.3%
accessed intervention li-

EMA survey response:
63.1%

OnTrack (formerly
DietAlert) and
WW

Secondary analysis of ran-
domized trial; 10 weeks;
n=121

United States; jour-
nal paper

Goldstein et al,
2021a (Secondary)
[36] brary per week; lapse fre-

quency not statistically
significantly associated
with percentage weight
loss.

Lapses occurrence: multi-
ple 28.5% (LASSO accura-

EMA survey response:
62.9%

OnTrack (formerly
DietAlert) and
WW

Secondary analysis of ran-
domized trial; 10 weeks;
n=121

United States; jour-
nal paper

Goldstein et al,
2021b (Secondary)
[37] cy 69.8%), planned 22.9%

(67.2%), off-plan 16.4%
(67.9%), larger portion
12.5% (67.7%), unknown
points 10.8% (70.6%), un-
intended time 8.1% (69%);
↓unplanned lapses (larger
portion, unintended time,
multiple) ↑ weight loss;
3.7% weight loss observa-
tion.
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Key outcomesComplianceIntervention usedStudy design; duration; nCountry; publication
type

Author; Year

All groups lost weight and

↓SBPh; no between-group
differences for weight loss,

SBP, DBPi, and self-effica-
cy; DBP ↓ in SM and
SM+FB+F2F; ↑ self-effica-
cy only in SM.

SMe: 53.5%; SM and

FBf: 55.9%; SM, FB,

and F2Fg: 65.3% adher-
ent to self-monitoring;
retention was 74%
(with compensation).

SMARTER and
LoseIt!

Pilot randomized trial; 12
weeks; n=39

United States; jour-
nal paper

Burke et al, 2017
[29]

N/AN/ASMARTER and
Fitbit

Developmental; N/Ac; N/AUnited States; jour-
nal paper

Burke et al, 2020
[27]

Both groups lost weight, ↓
BMI, and WCj; no be-
tween-group differences.

Around 54.8% of feed-
back messages were
opened; retention was
86%.

SMARTER, Fitbit,
and 1-to-1 90-
minute dietary
counselling

RCT; 6 months; n=502United States; jour-
nal paper

Burke et al, 2022
[28]

Both groups lost signifi-
cant weight (–2.16 kg); no
between-group weight loss
difference; % days adher-
ent to the calorie goal was
higher and declined more
slowly in SM and FB; ↑
feedback messages
opened→↑ adherence to
calorie goal and weight
loss.

Around 42.2% of feed-
back messages were
opened; retention was
78.5%.

SMARTER, Fitbit,
and 1-to-1 90-
minute dietary
counselling

RCT; 12 months; n=502United States; jour-
nal paper

Burke et al, 2022
(Primary) [26]

Minimal diet quality im-
provement overall; weight
loss ≥5% linked to higher

HEI-2015k [38] scores at
6 months, but not sustained
at 12 months.

Not statedSMARTER, Fitbit,
and 1-to-1 90-
minute dietary
counselling

Secondary analysis of RCT;
12 months; n=502

United States; jour-
nal paper

Cheng et al, 2023
(Secondary) [30]

Greater PA adherence was
linked to male sex, more
feedback message engage-
ment, higher baseline self-
efficacy, week-1 adher-
ence, greater weight loss
at week 4 and 12 months,
and fewer mental health

issues; MLm models (ran-
dom forest regression, re-
gression tree model, and

LASSOn model) identified
week-1 PA attainment as
the strongest predictor.

Around 66.5% met the

PAl goal at week 1;
median adherence was
higher in SM and FB
(165.2%) vs SM
(106.3%) at 12 months,
but no within-group
differences; adherence
was nonlinear and non-
significant in both
groups.

SMARTER, Fitbit,
and 1-to-1 90-
minute dietary
counselling

Secondary analysis of RCT;
12 months; n=502

United States; jour-
nal paper

Bizhanova et al,
2022 (Secondary)
[39]

Successful weight loss
group: SMARTER helpful,
organized, effective with
consistent use; Unsuccess-
ful weight loss group:
weight gain or no weight
loss experienced, feedback
discouraging, harsh or out
of context; Overall: both
diet and PA are key in
weight loss; most mes-
sages are inaccessible due
to a 1-hour window, tim-
ing, and personalization
needed for such applica-
tions.

N/AN/AQualitative study; 6 focus
groups; n=23

United States; jour-
nal paper

Kariuki et al, 2024
[40]
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Key outcomesComplianceIntervention usedStudy design; duration; nCountry; publication
type

Author; Year

↓ sedentary time, ↑ light,

and MVPAo in all condi-
tions; 3-minute breaks
gave the largest effects
(–5.9% sedentary time,
+3.9% light PA); 90%
found real-time feedback
motivating and found
smartphone prompts help-
ful in reducing sedentary
time; 6-minute PA breaks
were most preferred.

Not stated; 85.7% reten-
tion (with compensa-
tion).

B-MOBILEQuasi study; 4 weeks; n=35United States; jour-
nal paper

Bond et al, 2014
(Primary) [41]

High engagement across
all conditions; 3-minute
prompts produced the most
prompts/day (7), walking
breaks/day (6.5), and
shortest latency (23 min-
utes); walking minutes
significantly different in 3-
minutes (37.2) and 6-min-
utes (38.7) condition vs
12-minutes (32.5 minutes);
3-minute condition yielded
similar total walking time
as 6-minute as participants
often exceeded required
duration of prompt.

Adherence: 3 minutes
(89.4%), 6 minutes
(86.7%), and 12 min-
utes (77%).

B-MOBILESecondary analysis of quasi-
study; 4 weeks; n=35

United States; jour-
nal paper

Thomas and Bond,
2015 (Secondary)
[42]

Sending 1 prompt ↑ steps
vs no prompt; evening
prompts ↓ steps vs morn-
ing; 2 prompts/day ineffec-
tive.

92.9% retentionAncora HealthMicrorandomized trial; 14
days; n=13

The Netherlands;
thesis dissertation

Westenenk, 2023
[25]

Modest weight loss, no
group differences; higher
SMS text messaging adher-
ence → greater weight
loss; ↑ steps linked with ↑
weight loss at 12 months;
moderately strong satisfac-
tion with program; ↑ satis-
faction with pedometer
component → ↑ weight
loss at 6 months; 85%
would pay US
$4.99/month.

Increased adherence to
knowledge testing, de-
creased adherence to
first and follow-up
weight and step queries
over time, and 76% re-
tention (with compensa-
tion).

Text4DietRCT; 12 months; n=170United States; jour-
nal paper

Shapiro et al, 2012
[31]

90% lost weight;
telemedicine > texting
(–7.6% vs –4.1%); ↓ inter-
leukin-2 (IL-2) postinter-
vention.

100% retentionText4DietRandomized trial; 6 months;
n=20

United States; jour-
nal paper

Haggerty et al, 2016
[43]

App rated effective and
useful; 84.6% satisfied;
60% would continue using
the app.

Not statedLet’s ExerciseRCT; 4 weeks; n=33India; conference
paper

Gupta and Sood,
2015 [44]

Intervention lost –3.16%
weight vs –1.01% control;
satisfaction high (92%
would recommend).

Two-thirds of messages
were responded to by
participants at the end
of 4 months, and reten-
tion was 83.3%.

mDIETRCT; 4 months; n=65United States; jour-
nal paper

Patrick et al, 2009
(Primary) [45]
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Key outcomesComplianceIntervention usedStudy design; duration; nCountry; publication
type

Author; Year

Intervention improved
weight change, fruit and
vegetable intake, and eat-
ing behavior; fruit and
vegetable intake and eating
behavior were inversely
associated with weight loss
and were mediators of
weight loss.

Not statedmDIETSecondary analysis of RCT;
4 months; n=65

United States; jour-
nal paper

Norman et al, 2012
(Secondary) [46]

Message viewing declined
weekly (–0.15/day) and
with weight gain (+1 lb =
–0.08) or longer lapses in
weighing (–0.063/day).
Viewing also fell with ac-
tivity tracking lapses
(–0.03/day). Likelihood of
message viewing increased
with more previous mes-
sages viewed (+0.07 per
1%) and more days meet-
ing diet goals (+0.14/day).

Two-thirds of messages
were viewed by partici-
pants, and retention was
98.1%.

NudgeMicrorandomized trial; 12
weeks; n=53

United States; jour-
nal paper

Valle, et al, 2020
(Primary) [47]

Each unmet goal decreased
the odds of viewing mes-
sages by 34.8%. Odds of
viewing also declined daily
(OR=0.977). Baseline de-
pressive symptoms did not
moderate these effects.

Not statedNudgeSecondary analysis of micro-
randomized trial; 12 weeks;
n=53

United States; Jour-
nal Paper

Hurley et al., 2024
(Secondary) [48]

Around 80% of users
across the 3 evaluation
phases (user study, forma-
tive evaluation, and sum-
mative evaluation) showed
strong interest in the app.

Not statedStep Up LifeDevelopmental; not stated;
user study (n=4), formative
evaluation (n=2), summative
evaluation (n=2)

United States; confer-
ence paper

Rajanna et al, 2014
[49]

N/AN/AImpulsePalDevelopmental; N/A; N/AUnited Kingdom;
journal paper

Van Beurden et al,
2021 [50]

Context-based notifica-
tions led to shorter click
response time (12.33 vs
18.42 minutes), higher
click rate (19.05% vs
13.96%), and higher com-
pletion rate (21.77% vs
17.32%). The average
overall log rate was higher
in the context-based condi-
tion (58.87% vs 55.54%)
but was not significant.

Completed 57.14% of
daily logs, 15.09% of
notification clicks, and
18% of notifications;
100% retention (with
compensation).

GatorTrack and
FatSecret

United States; confer-
ence paper

Chen et al, 2024
[51]

↑ PA (2.8 metabolic
equivalent task h/wk), ↓
weight (–1.6 kg, 2%), ↓
BMI (–0.6 kg/m2), ↓ WC
(–1.4 cm), and ↓ A1c
(–0.1%); high acceptability
(78%).

86% retentionSweetchQuasi-experimental (1-
group pretest-posttest); 3
months; n=55

United States, jour-
nal paper

Everett et al, 2018
[52]

Focuses on ethical reflec-
tion rather than efficacy.

N/AFit4Life (fictional)Randomized trial (conceptu-
al); 9 weeks; n=26

United States; confer-
ence paper

Purpura et al, 2011
[53]
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Key outcomesComplianceIntervention usedStudy design; duration; nCountry; publication
type

Author; Year

ML clustered 6 eater types;
study II showed the feasi-
bility of adaptive feedback
based on these 6 eater
types.

Study I: 80%-81% of
assessments done, study
II: 70.5% of assess-
ments done, and ~9.9
hours of application us-
age.

ThinkSlimMixed method (study I: de-
velopmental and 2 weeks;
study II: RCT and 8 weeks);
n=100

The Netherlands;
journal paper

Spanakis et al, 2017
[54]

Inactivity decreased during
“message-on” periods
(24.6% vs 30.4%), and
step count increased (6199
vs 5615 steps). Most partic-
ipants expressed high ac-
ceptance and willingness
to use the app in the future.

90% retentionFitbit One and An-
droid smartphone
app

Pilot, randomized crossover
study; 8 weeks; n=30

United States; confer-
ence paper

Finkelstein et al,
2015 [55]

Eating rate slowed (−1.8
bites/min), the success ra-
tio of >10 seconds between
bites increased by 22.5%,
and BMI decreased by 0.5-
0.8; the dashboard added
no benefit. Vibrotactile
feedback had a small to
moderate effect on bite
rate and a moderate to
large effect on the success
ratio, and both effects re-
mained significant for 8
weeks.

86.5% retention (with
compensation).

In the group using the
online dashboard, only
55.3% used the dash-
board.

10sForkRCT; 15 weeks; n=141The Netherlands;
journal paper

Hermsen et al, 2019
[56]

N/AN/AAndroid app and
wrist-worn sensor

Developmental; N/A; N/ATurkey; conference
paper

Mendi et al, 2013
[57]

Participants preferred non-
numeric messages (non-
significant), although nu-
meric messages were still
positively received. There
was a statistical signifi-
cance between message
type and comprehension
error rates.

Not statedSMS JITAIpMixed method (pilot quanti-
tative study and qualitative
study); not stated; n=29

United States; confer-
ence paper

Moses et al, 2023
[58]
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Key outcomesComplianceIntervention usedStudy design; duration; nCountry; publication
type

Author; Year

More than 43% of seg-
ments were detected as
eating activities, with the
best accuracy of 74.3%.

Not statedADM-IPAqQuasi (1-group posttest); not
stated; lab testing (n=28)
and field testing (n=4)

United States; thesis
dissertation

Gao, 2021 [59]

aWW: Weight Watchers.
bEMA: ecological momentary assessment.
cN/A: Not applicable.
dRCT: randomized controlled trial.
eSM: self-monitoring.
fFB: feedback.
gF2F: face-to-face.
hSBP: systolic blood pressure.
iDBP: diastolic blood pressure.
jWC: waist circumference.
kHEI-2015: Healthy Eating Index 2015.
lPA: physical activity.
mML: machine learning.
nLASSO: least absolute shrinkage and selection operator.
oMVPA: moderate to vigorous physical activity.
pJITAI: just-in-time adaptive intervention.
qADM-IPA: Automated Diet Monitoring Intelligent Personal Assistant.

The review identified 19 distinct JITAI interventions from the
35 included papers: the SMARTER Trial [26-30,39,40],
B-MOBILE [41,42], DietAlert [10,32-37], Let’s Exercise [44],
mDIET [45,46], Text4Diet [31,43], Nudge [47,48], Step Up
Life [49], ImpulsePal [50], GatorTrack [51], Sweetch [52],
Fit4Life [53], ThinkSlim [54], Ancora Health [25], 10sFork

[56], Automated Diet Monitoring Intelligent Personal Assistant
(ADM-IPA) [59], and 3 were unnamed [55,57,58]. Table 3
provides a summary of the intervention features.

Only 5 of the interventions, comprising 13 studies, explicitly
used the intervention design terminology “JITAI”
[10,25,32-37,41,42,47,48,58].
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Table 3. Summary of intervention features (n=19).

AlgorithmTheoryProximal outcomeInterventionDeliveryName of interven-
tion

MLb; 2-week group data
were used to train the

Not statedDietary lapsesApp messages: coping
strategies and prompts;
event- and time-based EMA

Active (event- and

time-based EMAa

prompts + user-initi-
ated EMA)

DietAlert [10,32-37]

model, enabling individual
adaptation in real timesent 6×/day on lapse trig-

gers, risk alerts, and access
to on-demand education li-
brary

Rule-basedKanfer’s self-regulation
theory and social cogni-
tive theory

Diet, PA, and

weight SMd
App messages: prompt and
feedback; 3 tailored PA/diet
messages daily; weight
feedback every 6-8 days;
monthly rotation

Active (FitBit self-
reporting diet and
weight); passive

(FitBit PAc)

SMARTER

[26-30,39,40]

Rule-basedNot statedIncreased PA and
decreased seden-
tary time

App messages: prompts for
3-, 6-, or 12-minute PA
breaks after 30-120 minutes
of sedentary behavior

Passive (smartphone
and SenseWear Mini
armband)

B-MOBILE [41,42]

Rule-basedHealth action process
approach

Step countApp messages: prompt and
feedback; step-goal feed-
back tailored to achieve-

Passive (smartphone
or wearable)

Ancora Health

[25]

ment, phase of change (inten-
der or actor), and time of
day

Rule-basedSocial cognitive theoryStep count and
weight self-moni-
toring

Text (SMS text messaging

or MMSe): prompts, feed-
back, and educational infor-

Active (self-reported
weight and step
count; knowledge-
based questions)

Text4Diet (modified
version of mDIET)

[31,43]
mation; 4×/day for 12
months

Rule-basedNot statedPAApp messages: prompts and
feedback; motivational or

Passive (smartphone
sensors: location,
weather, and time)

Let’s Exercise

[44]
context-based PA messages
(round-robin selection)

Rule-basedNot statedWeight self-moni-
toring

Text (SMS text messaging
or MMS): prompts, feed-
back, and educational infor-

Active (self-reported
weight, knowledge-
based, eating-behav-
ior questions)

mDIET

[45,46]

mation; >3000 unique mes-
sages (half interactive) and
weekly weight-change
graphs

Rule-based microrandom-
ization

Not statedWeight self-moni-
toring, diet, and
PA

App messages: prompts and
feedback; daily prompts
(max 1 per behavior/day) for
self-monitoring, encourage-
ment, and feedback

Active (weight and
diet); passive (PA
via activity tracker)

Nudge

[47,48]

MLFogg Behavior ModelPAMobile phone haptic vibra-
tions: prompt and feedback
on exercise suggestions

Passive (smartphone
accelerometer, age,
location, time,
weather, and calen-
dar)

Step Up Life [49]

Rule-basedNot statedResisting tempta-
tions and cravings

App messages: prompts at
high-risk locations, when
cravings occur, or during
inactivity

Active (emergency
button—to be
pressed when strong
cravings are experi-
enced); passive (loca-
tion)

ImpulsePal [50]

Rule-basedFogg Behavior ModelDiet, PA, and
weight self-moni-
toring

App messages: prompts;
daily or weekly notifications
based on self-monitoring
data and PA transition

Active (diet, PA,
weight logs, self-rat-
ings of weight-relat-
ed variables); pas-
sive (PA transitions)

GatorTrack + FitBit

[51]
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AlgorithmTheoryProximal outcomeInterventionDeliveryName of interven-
tion

MLTranstheoretical modePA, weight self-
monitoring, and di-
et

App messages: feedback;
personalized push notifica-
tions for PA, weight, and
diet goals

Passive (calendar,
location, digital phe-
notype, and weight
scale)

Sweetch [52]

Rule-basedNot statedBMI, diet, and PAAudio feedback: prompts
and feedback; audio guid-
ance on diet and PA, social-
support prompts, social me-
dia updates

Passive (data
recorder, earpiece,
Thinsert, heart rate
monitor, and
metabolic lancet)

Fit4Life (conceptu-
al) [53]

MLNot statedUnhealthy eating
events

App messages: prompts and
feedback; adaptive feedback
via app notifications

Active (EMA—ran-
dom vs event sam-
pling)

ThinkSlim

[54]

Rule-basedNot statedSedentary timeText (SMS text messaging):
prompts, feedback, and edu-
cational information; tai-
lored weekly exercise educa-
tion links and daily step re-
ports

Passive (step count)Android app and
Fitbit One [57]

Rule-basedNot statedBite rate, success
ratio (>10 sec-
onds), and BMI

Vibrotactile feedback fork:
feedback; the fork vibrates
if bites are <10 seconds
apart, and the online dash-
board

Passive (fork sensors
or actuators that pro-
vide real-time vibro-
tactile feedback on
eating rate)

10sFork

[56]

Rule-basedNot statedEating rateAudio feedback and SMS
text messages: prompts and
feedback; real-time bite
count and rate feedback,
alerts if >5 bites/min

Passive (bites taken
from wrist ac-
celerometer)

Android app +
Wrist-Worn Sensor
[58]

Rule-basedNot statedAmount of food
intake and speed

Text (SMS text messaging):
prompts and feedback; ener-
gy intake and eating rate

Passive (image-cap-
turing sensors)

JITAIf SMS text
messages [60]

MLFogg Behavior Model
and the transtheoretical
model

Unhealthy eating
frequency, timing,
and portion size

Audio feedback: prompts
and feedback; automated
eating detection (overeating,
snacking, skipping meals,
and irregular timing) with
corrective prompts

Passive (chewing
and swallowing
sounds captured by
Bluetooth headsets)

Automated Diet
Monitoring Intelli-
gent Personal Assis-
tant (ADM-IPA)
[59]

aEMA: ecological momentary assessment.
bML: machine learning.
cPA: physical activity.
dSM: self-monitoring.
eMMS: multimedia messaging service.
fJITAI: just-in-time adaptive intervention.

JITAI Conceptual Design
A more detailed description of the JITAI conceptual components
is provided in Tables S4 and S5 in Multimedia Appendix 2.

Behavioral Theory Adoption
Only 14 studies reported adopting a theoretical base in designing
their JITAIs. The most used theory was Social Cognitive Theory
(n=9) [26-31,39,40,43], followed by Kanfer’s Theory of
Self-Regulation (n=7) [26-30,39,40], Fogg Behavior Model
(n=2) [49,51,59], Transtheoretical Model (n=2) [52,59], and
Health Action Process Approach (n=1; Tables 1 and 3) [25].
Although Kanfer’s Theory of Self-Regulation was used in 7
different studies [26-30,39,40], they were all derived from the

development and evaluation of the SMARTER application,
compared to other theories, which were applied across multiple,
distinct interventions.

Distal and Proximal Outcomes
All studies shared weight loss as the distal outcome. Weight
loss measures included weight (n=8) [31,43,45-48,50,52],
percent weight loss (n=12) [10,26-30,33-37,39,40,43,52], BMI
(n=8) [10,33-37,52,56], and waist circumference (n=1) [52].
Proximal outcomes varied across dietary behavior (n=25),
physical activity (n=20), and self-weighing (n=17). Dietary
behaviors were further subcategorized into (1) dietary structure
(eg, measurement of caloric intake and food types; n=13)
[26-30,39,40,47,48,51-54], (2) eating rate (n=4) [56-59], and
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(3) dietary lapses (n=8) [10,32-37,50]. Physical activity was
divided into (1) increases in physical activity (n=19)
[25-31,39-44,47-49,51-53] and (2) decreases in sedentary
behavior (n=3) [41,42,55]. Self-weighing was used to increase
users’ weight consciousness (Tables 1 and 3)
[26-31,39,40,43,45-48,51-53,56].

JITAI Features
Across studies, JITAIs shared common design components,
including data acquisition, algorithm-driven tailoring processes,
and tailored intervention delivery. Figure 2 provides a visual
summary of the JITAI features discussed in this review.

Figure 2. Overview of just-in-time adaptive intervention (JITAI) features. API: Application Programming Interface; EMA: Ecological Momentary
Assessment; JITAI: Just-in-time Adaptive Intervention.

Data Acquisition
To measure tailoring variables, 14 studies used active
assessments only [10,31-37,43,45,46,54], 12 studies used
passive assessments only [25,41,42,44,49,52,53,55-59], and 9
studies used both (Tables 1 and 3) [3,26-30,39,40,47,48,50,51].

Active assessments included EMA methods such as
user-initiated, time-based, and event-based EMA (n=8)
[10,32-37,54]. Other studies incorporating active assessments
also used self-reported weight measurements, and questionnaires
focused on dietary intake, dietary lapses, physical activity, and
location (n=15) [26-31,39,40,43,45-48,50,51]. Passive
assessments primarily used accelerometers (n=19)
[25-30,39-42,44,47-49,51-53,55,57] to measure physical activity
(n=18) [25-30,39-42,44,47-49,51-53,55] and eating rate (n=1)
[57]. Other sensors used were location sensors (n=4)
[44,49,50,52], galvanic sensors (n=2) [41,42], thermal flow
sensors (n=2) [41,42], skin temperature sensors (n=2) [41,42],
air temperature sensors (n=2) [41,42], image capturing monitors
(n=2) [53,58], sound sensors (n=1) [59], and digital weighing
devices (n=2) [52,53], Time (n=10) [10,33-37,44-46,49],
weather (n=2) [44,49], and personal calendars (n=2) [49,52]
were also passively sampled to contextualize user behavior and
enhance intervention relevance (Tables 1 and 3).

Tailoring Process
The JITAI systems used either basic “if-then” rule-based
algorithms (n=24) [25-31,39-48,50,51,53,55-58] or machine
learning algorithms (n=11; Tables 1 and 3)
[10,32-37,49,52,54,59]. Among the 5 interventions using
machine learning, Step Up Life [49] and ThinkSlim [54] used
decision tree–based models, DietAlert [10,32-37] used ensemble
methods that combined multiple models to enhance predictive
accuracy, Sweetch [52] used an adaptive reinforcement learning
approach to optimize message compliance for individual users
in specific contexts, and ADM-IPA [59] implemented a deep
belief network to classify dietary intake. These systems
leveraged machine learning to recognize activity patterns, user
routines, and contextual information, thereby enhancing
personalization and improving predictive accuracy, allowing
for adaptation to individual needs in real time. Two interventions
reported model performance: DietAlert demonstrated accuracies
ranging from 0.67 to 0.80, with specificity between 0.68 and
0.84 and sensitivity between 0.45 and 0.77 [32-35], while
ADM-IPA reported a best accuracy of 0.74 [59] (Table 2). In
contrast, the remaining 14 interventions
[25-31,39-48,50,51,53,55-58] used “if-then” rule-based
algorithms, in which predefined conditions triggered specific
feedback or interventions (Table 2). These algorithms relied
strictly on fixed rules and did not consider user behavior.
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Intervention Delivery
Intervention delivery methods varied across the included studies.
Application messages were most common (n=24)
[10,25-30,32-37,39-42,44,47,48,50-52,54] followed by text
messages (n=7) [31,43,45,46,55,57,58], audio feedback with
or without an earpiece (n=3) [53,57,59], mobile phone haptic
vibrations (n=1) [49], and vibrotactile feedback via an
augmented fork (n=1) [56]. Smartphones were the primary
device in all studies except one [56], with 16 out of 35 studies
(46%) also using at least one wearable device, such as
smartwatches, in addition to the primary device (Tables 1 and
3) [25-30,39-42,47,48,53,55,57,59].

The included JITAIs offered a range of types of support,
including prompts, feedback messages, recommendations for
coping strategies, and educational information. Most studies
used a combination of prompts and feedback (n=17)
[25-30,39,40,44,47-49,53,54,57-59]. Four studies used prompts
exclusively [41,42,50,51], 2 studies relied solely on feedback
[52,56], and 7 studies integrated prompts with recommendations
for coping strategies [10,32-37]. Finally, 5 studies combined
prompts, feedback, and educational information (Tables 1 and
3) [31,43,45,46,55]. Prompts were used in various ways,
including reminders for physical activity or self-monitoring of
weight or exercise [25,27,41,55], and served as alerts to notify
users when their dietary behavior was approaching undesirable
thresholds [43,50,54,56]. Feedback messages were designed to
inform users about their achievements and areas needing
improvement. For instance, messages might offer positive
reinforcement for successfully limiting calorie intake while
encouraging further reduction in sugar consumption [27].
Feedback could also include actionable suggestions tailored to
the user in a real-time context, such as recommending physical
activities based on location and time of day [44,52].
Recommendations for coping strategies included techniques
such as cognitive restructuring and problem-solving [33,34].
Educational information was presented as factual content to
users [31,43].

User-Related Outcomes

User Experience
Retention rates were high across studies, ranging from 74%
[29] to 100% [32,43,51]. Although 100% retention was most
frequently reported in studies that provided participant
compensation [32,51], one noncompensated study also achieved
100% retention [43]. Among noncompensated studies, retention
ranged from 74% [29] to 100% ([43] Table 2). Definitions of
compliance varied across studies but were most commonly
based on whether participants viewed, opened, or responded to
prompts or feedback. For example, the DietAlert studies defined
compliance as EMA survey responses, which ranged from
62.9% to 94.6% [32-37]. In contrast, the SMARTER trial
measured compliance using the proportion of feedback messages
opened, which ranged from 42.2% to 65.3% [26,28,29,39].
Across all interventions, the reported compliance rate ranged
f r o m  1 5 . 1 %  t o  9 4 . 6 %  ( T a b l e  2 )
[26,28,29,31-37,39,42,45,47,51,54]. Participants rated
interventions as effective, useful, and motivating, with high
satisfaction scores ranging from 84.6% to 90% and a strong

willingness to recommend their use (Table 2)
[31,33,34,41,44,45,49]. Five studies found that greater user
engagement was associated with better weight loss outcomes
[26,30,31,34,40]. Twenty-three studies incorporated elements
t o  i n c r e a s e  u s e r  e n g a g e m e n t
[10,25-31,33-37,39-42,45,46,49,50,52,55], such as creating
diverse intervention options and addressing user availability.
Preliminary feedback indicated that users preferred interventions
with lower demands (eg, prompting a 3-minute break more
frequently vs a 12-minute break less frequently [41,42]), milder
feedback [40,48], and greater context-sensitivity [40] (Table
2).

Intervention Outcomes
Significant weight loss was reported across multiple
interventions [26,28-31,33-37,39,40,43,45-47,52], ranging from
0.5% [36] to 3.7% [37]. Reductions in BMI, waist
circumference, and blood pressure were also reported
[28,29,52,56]. Improvements in physical activity were
consistently observed across studies, including greater adherence
to physical activity [39,52], decreased sedentary time [41], and
increases in step count or walking minutes [25,31,42,55].
Dietary behaviors also improved, with decreases in dietary
lapses [33,37], increased adherence to calorie goals [26],
improvements in overall diet quality, such as higher fruit and
vegetable intake [30,46], and slower eating rates [56] (Table
2).

Discussion

Principal Findings
This review synthesizes the limited yet diverse literature on
JITAIs for weight management, clarifying their conceptual
framework and highlighting dynamic approaches for future
JITAI development. Key elements examined included behavioral
theory adoption, distal and proximal outcomes, data acquisition,
tailoring processes, intervention delivery methods, user
experiences, and intervention outcomes. Based on these findings,
we emphasize the significant potential of JITAIs for weight loss
and aim to inform future researchers about the conceptual
underpinnings, features, and effectiveness of implementing
JITAIs for weight management.

JITAI Conceptual Design and Outcomes

Behavioral Theories
Consistent with previous JITAI reviews, this review identified
a lack of behavioral theories incorporated in weight management
JITAIs, potentially stemming from application developers’
limited familiarity with health behavioral theories [8,14].
Multidisciplinary collaborations between engineers, behavioral
scientists, and clinicians could bridge this gap [61]. In the
absence of dynamic theories, the lack of even static ones is a
major shortcoming, as they are essential for comprehending the
intricacies of real-world behavior and the dynamics of
behavioral change [62]. Theory plays a critical role in the design,
implementation, and evaluation of behavior change interventions
[63], and DBCIs that integrate theories have shown better
outcomes than those that do not [8,62,64]. Theories are valuable
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in informing the selection of tailoring variables, decision rules,
decision points, and intervention options [6,65].

Distal and Proximal Outcomes
Weight loss was the distal outcome for all studies, given that it
was the inclusion criterion. The most common health behavior
proximal outcome was dietary behavior. This is likely because
dietary behavioral change has been found to have a more
significant and consistent effect on weight loss outcomes than
physical activity change, although the combination of both is
more effective than either alone [66-68].

Other proximal outcomes included physical activity and
self-weighing, which reflect the pathways through which weight
management JITAIs can exert their effects. Notably, studies
that used JITAI approaches to target both physical activity and
dietary lapses simultaneously yielded more conclusive results
regarding their effectiveness in promoting weight management
behaviors [69]. Moreover, diet-focused JITAIs appear to be
more successful when paired with other strategies, such as food
logging and self-weighing [34]. Collectively, these findings
highlight that while diet remains a primary factor in weight loss,
a more integrated approach that incorporates physical activity,
self-monitoring behaviors, and supportive strategies may
maximize the effectiveness and sustainability of JITAIs.

JITAI Features

Data Acquisition
Physical activity and eating rate were mostly measured with
passive assessments, but for dietary structure assessment, most
studies relied on EMAs. This suggests that passive food intake
monitoring technology may not be as accessible as those for
physical activity or eating rate [70]. However, a limitation of
relying on EMAs over passive assessments is that they may
increase cognitive burden and reduce engagement, especially
if presented too frequently, as users grow weary of responding
[6,10,12]. Possible alternatives for dietary structure assessment
with lower user burden include the employment of image
processing technology in active assessment, where users simply
need to upload photos of their meals, or passive assessment
with automatic image recognition through continuous video
monitoring [58,70].

Tailoring Process
Most studies opted for rule-based algorithms as opposed to
machine learning. Machine learning can optimize the strengths
of JITAIs, enhancing predictive functions and increasing the
accuracy of tailoring processes. In addition, the increased
information relevance can increase perceived usefulness and
user engagement [71]. Machine learning can also support the
cost-effective upscaling of JITAI deployment [52]. However,
integrating machine learning can be resource-intensive due to
computational demands (eg, handling missing data, optimizing
parameters, and model testing) and may not always be necessary
or effective [10]. For example, machine learning has been
effective in predicting lapses at a group level, but its strength
falters at an individual level [72,73]. Machine learning also
loses its significance if a causal relationship between 2 variables
has already been established in the literature [10].

Furthermore, the no free lunch theorem posits that no algorithm
is universally optimal for all problems, meaning machine
learning is not a 1-size-fits-all solution, but rather a collection
of approaches that can be tailored or personalized at the
individual level to improve upon prespecified algorithms [74].
Therefore, while machine learning has significant potential to
enhance JITAI effectiveness, developers should only use it when
practical and likely to improve user experience. Developers
should prioritize designing theory-based JITAIs based on
feasibility and user needs.

Intervention Delivery
The types of support identified in the included studies were
prompts, feedback, recommendations for coping strategies, and
educational information. There were differing user preferences
regarding the intervention options, with some users preferring
more concise instructions [58] and others preferring more
detailed ones to guide them [40]. A major challenge in designing
effective intervention options is the need to consider variables
including boredom, habituation, cognitive overload, and
contextual restraints [6].

Given the numerous potential intervention options and delivery
methods, as well as the ambiguous efficacy of each component,
researchers could consider using microrandomized trials. Unlike
traditional randomized controlled trials, participants are not
assigned to groups. Instead, each JITAI intervention, and how
the participant interacts with it, would be considered a trial.
Components of the intervention, such as content, timings, and
frequencies, would be randomized based on the study. Data on
proximal outcomes, or immediate reactions to the intervention,
would be collected and analyzed using regression models at the
decision-point level. Information gathered would then be linked
to distal outcomes, analyzed at a participant level instead [75].

Microrandomized trials allow researchers to account for the
element of time in their study, while also collecting a large
number of data points both between and within participants. In
addition, insights can be gained from qualitative research, and
reinforcement learning could be used to learn user preferences
[75].

User-Related Outcomes

User Experience
Ultimately, one of the greatest challenges JITAIs face is
optimizing user engagement [10], as evidenced by the highly
variable compliance rates found in the included studies, which
are attributed to the continuous requirement for lengthy user
inputs. Intrinsically, the JITAI design integrates elements
accounting for states of receptivity (eg, availability, whether
the user is driving, or sleeping), which should increase user
engagement [6]. However, many of the studies did not include,
or included insufficient, elements to address this. This includes
both studies that termed themselves JITAIs and those that did
not. We were unable to evaluate sustained engagement due to
a lack of evidence, similar to findings from another review on
JITAIs for physical activity [14]. This is likely because JITAIs
are still in development, and intervention durations were
relatively short. In addition, previous literature indicated that
JITAIs often have short lifespans [50].
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One way to improve user experience and engagement is by
focusing on promoting long-term weight loss by enhancing
self-efficacy and providing coping strategies, rather than relying
solely on short-term prompt effects [76,77]. Similarly,
incorporating passive sensing, especially for dietary habits,
could reduce user burden and has been shown to reduce attrition
rates [78]. User engagement can also be further improved by
developing user-centered design elements, such as interfaces
or interventions that have been personalized based on the social
context of the users [79]. By integrating such features, JITAIs
are likely to be perceived as more useful, engaging, and
ultimately more effective in sustaining behavior change.

Intervention Outcomes
Across interventions, JITAIs demonstrated significant impacts
on distal and proximal outcomes, such as weight loss, reductions
in BMI, waist circumference, and blood pressure, as well as
improvements in physical activity and dietary behavior. These
outcomes reflect the ability and effectiveness of JITAIs to
deliver adaptive, personalized, and timely support that targets
the behavioral and contextual factors most relevant to each
individual. By leveraging personalized data, JITAIs can improve
weight management strategies by reducing sedentary time
[41,42,55], encouraging adherence to calorie goals [26], and
providing prompts that mitigate dietary lapses [10,32-37]. The
dynamic and individualized features of JITAIs further help to
sustain engagement and adherence, which are crucial for
long-term behavior change [34,36,39,42,51]. Hence, these
findings highlight the role of JITAIs in translating behavioral
theory into practice, producing measurable improvements in
lifestyle habits and health outcomes.

Strengths and Weaknesses
Building on these findings, the studies included demonstrated
several strengths. Many interventions leveraged active data from
wearables and mobile devices to enable real-time, adaptive, and
context-sensitive delivery of feedback. Over one quarter of the
studies included incorporated both passive and active data
[26-30,39,40,47,48,50,51], combining the advantages of passive
sensing, such as capturing contextual or emotional states not
detected by devices, with the strengths of active input, thereby
reducing notification fatigue and increasing user engagement
[44,50,52]. Personalization was also another key strength, with
tailoring variables such as activity levels, location, weather, and
personal calendars enhancing relevance and user engagement.
Nearly half of the interventions [25-37,39-46,49,51,52,59] were
grounded in behavioral theories, strengthening their conceptual
rigor and enhancing the precision of the intervention to meet
user needs and contexts. In addition, several studies used
machine learning to analyze complex data streams and optimize
decision rules [10,32-37,49,52,54,59], elucidating the growing
role of artificial intelligence in enhancing intervention
adaptivity. Collectively, these strengths highlight the promise
of JITAIs to bridge theory and practice while providing scalable
and personalized digital health solutions.

However, a few weaknesses remain. Most studies did not
explicitly identify their designs as JITAIs, resulting in
heterogeneous information types, with many lacking detailed
descriptions of design components such as outcomes, decision

rules, and decision points. This aligns with previous reports on
the lack of JITAI terminology [8] and incomplete reporting in
JITAI studies [16]. Given that JITAI is a relatively novel term,
this was anticipated. However, the absence of comprehensive
information hindered the in-depth evaluation of core
components.

Furthermore, inconsistent terminology, incomplete reporting,
a lack of empirical evidence, and the absence of established
treatment protocols have impeded JITAI development [14].
Existing behavioral theories are static and may not adequately
support JITAI advancement [6,8,60]. Although detailed
frameworks have been published to guide JITAI design [7,80],
their adoption appears to be limited due to complexity. A
recently developed JITAI reporting checklist aims to provide
more streamlined guidance [15], but its usefulness remains to
be fully assessed.

Moreover, this review identified only one qualitative study [40],
as most research focused primarily on development rather than
evaluation. The limited use of qualitative methods limits insights
into user perspectives and sentiment, which are critical for
informing JITAI design and optimizing the effectiveness of
DBCIs in enhancing health outcomes [81].

Limitations
This review was limited to English-language studies, potentially
excluding relevant research, particularly from technologically
advanced regions such as China, thus affecting
comprehensiveness and generalizability. The inclusion of studies
not explicitly labeled as JITAIs introduced the possibility of
error, despite adherence to established definitions of JITAIs.
Due to resource constraints, a second reviewer was not involved
in the screening process, increasing the risk of bias. Most
included studies were developmental in nature, preventing
assessment of weight loss outcomes. Finally, the review lacks
software engineering perspectives on JITAIs, an area outside
the authors’expertise. Nonetheless, the review provides valuable
insights into the potential of JITAIs as a public health tool for
weight management.

Implications
This review offers guidance for developers creating weight
management JITAIs, encouraging the usage of terminology and
design to support JITAI development and advance research.
Future research should explore the optimization of JITAI
components, such as through microrandomized trials, integration
of behavioral theories, and machine learning. The review
findings also reinforce the importance of user engagement;
researchers are urged to optimize user engagement by
understanding user needs, perceived usefulness, and states of
receptivity. Although we conducted a preliminary mapping of
intervention outcomes, sample sizes in most studies were small
and highly variable (n=8502). Future research should therefore
use larger and more consistent samples to provide more robust
evidence and better evaluate the long-term effectiveness of
JITAIs in weight management.

Nonetheless, weight management JITAIs have the potential to
become a scalable and cost-effective approach to managing
excessive body weight [82]. They can assist health care
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providers in supporting patients and extend care to individuals
with limited access to traditional health care services, both
locally and globally.

Conclusion
This review highlights the role of JITAIs for weight loss and
outlines key features for future developers, including behavioral
theories, distal and proximal outcomes, data acquisition,
tailoring processes, intervention delivery methods, user

experience, and intervention outcomes. However, the field is
still in its early stages, with inconsistent reporting on key design
components and small sample sizes for rigorous evaluation of
weight loss outcomes. Key challenges include optimizing user
engagement, integrating behavioral theories, and achieving
long-term effectiveness. As the field matures, JITAIs could
become scalable and cost-effective tools for supporting diverse
populations in achieving sustainable weight loss.
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