

Original Paper

Age-Specific Associations Between eHealth Literacy and Sleep Quality Among Adults: Cross-Sectional Study

Yujie Liu^{1*}, PhD; Wenjie Xue^{2*}, MPA; Yuhui Sheng^{3*}, BS; Suping Wang⁴, PhD; Ruijie Gong⁵, MS; Shangbin Liu¹, MS; Chen Xu¹, MS; Yong Cai^{1,6}, PhD

¹Public Health Research Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

²The Ninth People's Hospital, Huangpu Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China

³Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China

⁴Shanghai Jiao Tong University School of Medicine, Shanghai, China

⁵Shanghai Xuhui District Centre for Disease Control and Prevention, Shanghai, China

⁶Institute of Community Medicine, China Academy of Hospital Development, Shanghai Jiao Tong University, Shanghai, China

*these authors contributed equally

Corresponding Author:

Yong Cai, PhD

Public Health Research Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
1111 Xianxia Road

Shanghai 200335

China

Phone: 86 021-52039999

Email: caiyong202028@hotmail.com

Abstract

Background: Young and middle-aged adults are vulnerable to poor sleep quality. eHealth literacy, defined as the ability to effectively access and use digital health information, has been linked to improved health behaviors and may promote better sleep outcomes. However, its relationship with sleep quality remains unclear, especially across age groups. Age-related disparities in eHealth literacy may contribute to a digital health divide in sleep outcomes.

Objective: This study aimed to examine the relationship between eHealth literacy and sleep quality among adults aged 18 to 59 years in Shanghai, China, as well as explore age-stratified effects.

Methods: A cross-sectional study was conducted between October and December 2022 in 3 districts of Shanghai, with 7 community health service centers randomly selected. Participants were recruited through convenience sampling to complete an online survey. eHealth literacy was assessed using the eHealth Literacy Scale, and sleep quality was measured using the Pittsburgh Sleep Quality Index. Covariates included sociodemographic characteristics, health status, and health behaviors. Logistic regression models were applied to examine the relationship between eHealth literacy and sleep quality, with stratified analyses conducted by age (emerging adults [18-29 years], established adults [30-45 years], and middle-aged adults [46-59 years]).

Results: A total of 1810 participants completed the survey. The prevalence of poor sleep quality was 37.9% (686/1810). Participants with eHealth literacy scores in the 25th to 75th percentile range (odds ratio [OR] 1.594, 95% CI 1.216-2.089, $P<.001$) and below the 25th percentile (OR 1.584, 95% CI 1.149-2.182, $P=.005$) had a significantly higher likelihood of reporting poor sleep quality compared to those with scores above the 75th percentile. Age-stratified analysis indicated that this association was significant only among emerging adults (OR 2.491, 95% CI 1.133-5.479, $P=.02$ for scores between the 25th and 75th percentiles; OR 2.975, 95% CI 1.230-7.195, $P=.02$ for scores below the 25th percentile) and established adults (OR 1.439, 95% CI 1.001-2.067, $P=.049$ for scores between the 25th and 75th percentiles).

Conclusions: This study found that eHealth literacy was associated with sleep quality among younger participants but not middle-aged ones, highlighting the digital divide in sleep health. These findings suggest that enhancing eHealth literacy may serve as an effective strategy for improving sleep outcomes. However, to ensure equitable health outcomes, interventions should be tailored to address the age-specific needs and varying levels of digital access across different groups.

J Med Internet Res 2025;27:e75813; doi: [10.2196/75813](https://doi.org/10.2196/75813)

Keywords: eHealth literacy; sleep quality; digital health; emerging adults; established adults; middle-aged adults; health disparities

Introduction

Sleep is a fundamental physiological process essential for maintaining physical health, mental well-being, and overall quality of life. However, it remains an underrecognized priority in public health agendas, particularly in low- and middle-income countries [1]. According to the 2025 China National Health Sleep White Paper, sleep quality among residents remains suboptimal, with approximately 64% experiencing sleep disturbances once or twice per week. [2]. The prevalence and severity of sleep disturbances vary across age groups. Young and middle-aged adults, as a core segment of the workforce, are particularly vulnerable to sleep disturbances due to occupational stress, long working hours, and irregular schedules [3-5]. Chronic sleep disturbance impairs stress management and exacerbates emotional distress while also being associated with poorer health outcomes, placing a burden on health care systems and reducing workplace productivity [6,7].

Sleep quality is influenced by multiple factors, including socioeconomic, physiological, psychological, and behavioral elements [8,9]. While these factors contribute to variations in sleep quality, increasing attention has been directed toward the role of eHealth literacy in health management. Defined as an individual's ability to access, understand, evaluate, and apply health information from digital sources to make informed health decisions [10], eHealth literacy has been shown to facilitate changes in health-related behaviors by bridging the gap between health information acquisition and actionable practices [11]. A systematic review further confirmed that eHealth literacy is associated with positive outcomes, including improved health behaviors, better psychological well-being, and increased use of health services [12]. These findings suggest that individuals with higher eHealth literacy are better equipped to adopt and maintain health-promoting behaviors that improve sleep outcomes.

While the significance of eHealth literacy in facilitating health-related behavior changes is recognized, its specific impact on sleep quality remains inadequately investigated. Some studies have suggested potential pathways through which eHealth literacy may influence sleep quality. For example, higher eHealth literacy has been associated with greater adherence to sleep hygiene practices [13], potentially by enhancing individuals' ability to identify and apply credible health information, thereby promoting better sleep quality. Another study indicated that higher eHealth literacy could reduce the risk of cyberchondria, which is subsequently associated with improved sleep quality [14]. However, evidence regarding the direct relationship between eHealth literacy and sleep quality is limited.

The association between eHealth literacy and sleep quality may vary by age. Previous research indicates that eHealth literacy is typically higher among younger populations [15, 16]. Younger adults tend to engage more with digital

health resources and may benefit significantly from them in managing sleep-related issues [17]. In contrast, middle-aged adults often face barriers in accessing and using such tools effectively despite a growing need for sleep management as sleep quality tends to decline with age [18,19]. This age-related disparity, coupled with unequal engagement with digital health resources, could contribute to widening gaps in sleep health—reflecting a digital health divide [20]. Therefore, understanding how eHealth literacy influences sleep quality across age groups is critical in addressing this divide.

This study aimed to examine the association between eHealth literacy and sleep quality across age groups among adults aged 18 to 59 years in Shanghai, China. By providing empirical evidence on age-specific associations, this study sought to inform tailored sleep interventions that incorporate eHealth literacy enhancement and address disparities arising from the digital health divide.

Methods

Participants and Procedure

This study was conducted between October and December 2022 in Shanghai. Three districts representing urban, periurban, and rural areas were randomly selected. Seven community health service centers from these districts that agreed to participate in the study were included. At each center, community residents were recruited using a convenience sampling approach. Before completing the survey, trained staff provided a detailed explanation of the study's purpose and requirements, emphasizing the anonymity of responses. Participants were required to sign an informed consent form before proceeding with the questionnaire.

The inclusion criteria were (1) residence in Shanghai, (2) age 18 to 59 years, and (3) provision of informed consent and agreement to participate in the survey. The exclusion criteria were (1) severe hearing or speech impairments and (2) inability to comprehend the survey due to mental or cognitive conditions. Anonymous questionnaires were completed through the online survey platform Wenjuanxing.

The sample size was calculated using the prevalence of poor sleep quality as the primary outcome. On the basis of previous literature, the prevalence of poor sleep quality was estimated to be approximately 35%, with an allowable error of 3.5%. Using the PASS software for cross-sectional survey sample size calculation (NCSS, LLC), the minimum required sample size was determined to be 740. Considering the design effect of 2 due to convenience sampling and an anticipated nonresponse rate of 15%, the adjusted minimum required sample size was 1742.

A total of 1872 eligible participants were invited, and 1810 valid questionnaires were collected, yielding an effective response rate of 96.7%. The final sample size met the minimum requirement for analysis.

Measurements

eHealth Literacy

The Chinese version of the eHealth Literacy Scale (eHEALS), a translation of the original scale developed by Norman and Skinner [21], was used to assess participants' eHealth literacy [22]. This scale consists of 8 items, each rated on a 5-point Likert scale ranging from 1 ("strongly disagree") to 5 ("strongly agree"), yielding a total score between 8 and 40. Higher average scores indicate better self-perceived skills, knowledge, and comfort regarding online health information. The eHEALS has good reliability and validity among Chinese adults [23,24]. In this study, the scale showed good internal consistency, with a Cronbach α of 0.98.

Sleep Quality

The Pittsburgh Sleep Quality Index (PSQI) was used to measure participants' sleep quality over the previous month [25]. The scale consists of 19 items evaluating 7 components: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleep medication, and daytime dysfunction. The sum of the component scores yields a total score ranging from 0 to 21, with higher scores indicating poorer sleep quality. According to the recommended cutoff in the original study describing the PSQI, a total score of 5 or lower indicates good sleep quality, whereas a score above 5 indicates poor sleep quality [25]. The PSQI has demonstrated good psychometric robustness and factorial structure among Chinese adults [26,27].

Covariates

The selection of covariates was guided by the biopsychosocial theoretical framework [28], which conceptualizes sleep quality as an outcome shaped by biological, psychological, and social determinants. Therefore, covariates were categorized into 3 domains as follows.

Biological Factors

Biological factors included sex (male or female), age, and weight status. Weight status was derived from self-reported height and weight, with BMI calculated as weight (kg) divided by height squared (m^2). Overweight or obesity was defined based on the BMI classification criteria recommended by the Working Group on Obesity in China [29].

Psychological Factors

Psychological factors included depressive and anxiety symptoms. Depressive symptoms were assessed using the Patient Health Questionnaire-9, with total scores ranging from 0 to 27. Scores of ≥ 5 , 10, and 15 represent mild, moderate, and severe depressive symptoms, respectively [30]. In this study, the Patient Health Questionnaire-9 demonstrated good internal consistency (Cronbach $\alpha=0.964$).

Anxiety symptoms were measured using the Generalized Anxiety Disorder-7 scale, with total scores ranging from 0 to 21. Scores of ≥ 5 , 10, and 15 represent mild, moderate,

and severe anxiety symptoms, respectively [31]. In this study, the Generalized Anxiety Disorder-7 exhibited good internal consistency (Cronbach $\alpha=0.978$).

Social Factors

Social factors included educational attainment (junior high school or lower, senior high school, or college or higher), employment status (employed or unemployed), family monthly income (<¥5000 [US \$707.30], ¥5001-¥9999 [US \$707.44-\$1414.45], ¥10,000-¥19,999 [US \$1414.59-\$2829.04], or \geq ¥20,000 [US \$2829.18]), marital status (either married or single, divorced, or widowed), and residential area (urban, periurban, or rural).

Statistical Analysis

Participants were first categorized into 3 age groups: emerging adults (18-29 years) [32], established adults (30-45 years) [33], and middle-aged adults (46-59 years). Descriptive statistics were used to summarize their background variables, eHealth literacy, and sleep quality by age group. Given the skewed distribution of eHEALS scores, eHealth literacy was categorized into 3 groups based on IQRs: 25th percentile or below (lowest quartile), 25th to 75th percentile (middle quartiles), and 75th percentile or above (highest quartile). Differences in eHealth literacy and sleep quality among the 3 age groups were examined using chi-square tests.

To examine the association between eHealth literacy and sleep quality, multivariable logistic regression analyses were conducted in a stepwise manner. Model 1 adjusted for biological factors, including sex, age, and BMI. Model 2 incorporated additional adjustments for psychological factors, including depressive and anxiety symptoms. Model 3 further adjusted for social factors, including educational attainment, household monthly income, employment status, marital status, and residential area, to evaluate whether these factors influenced the association between eHealth literacy and sleep quality.

Finally, age-stratified analyses were performed to explore whether the association between eHealth literacy and sleep quality varied across age groups. In sensitivity analyses, we further included potential confounding variables, including chronic disease status and health behaviors (smoking and alcohol consumption), to assess the robustness of the findings.

Ethical Considerations

The study protocol was approved by the ethics committee of the Xuhui District Center for Disease Control and Prevention (XHLL202205). Written informed consent was obtained from all participants. Participant privacy and confidentiality were strictly protected. All data were anonymized and securely stored, with access limited to the research team.

Results

Descriptive Characteristics of the Sample

Table 1 presents the sample characteristics. Of the 1810 participants, 673 (37.2%) were male, and 1137 (62.8%) were female, with a mean age of 40.0 (SD 10.1) years. Of these, 15.7% (285/1810) were emerging adults (18-29 years), 53.3% (965/1810) were established adults (30-45 years), and 30.9% (560/1810) were middle-aged adults

(45-59 years). Most had a college degree or higher (n=1351, 74.6%), were employed (n=1533, 84.7%), and were married (n=1429, 79%). Approximately half (n=927, 51.2%) reported a monthly household income of $\geq\$10,000$ (US \$1414.59). Regarding residence, 20.7% (375/1810) lived in urban areas, 30.4% (550/1810) lived in periurban areas, and 48.9% (885/1810) lived in rural areas. A total of 21.2% (384/1810) had moderate to severe depressive symptoms, and 15% (271/1810) had moderate to severe anxiety symptoms.

Table 1. Sample characteristics by age group (N=1810).

	Total, n (%)	Emerging adults (n=285), n (%)	Established adults (n=965), n (%)	Middle-aged adults (n=560), n (%)
Sex				
Male	673 (37.2)	132 (46.3)	345 (35.8)	196 (35.0)
Female	1137 (62.8)	153 (53.7)	620 (64.2)	364 (65.0)
Weight status				
Normal weight or underweight	1159 (64.0)	191 (67.0)	637 (66.0)	331 (59.1)
Overweight	514 (28.4)	65 (22.8)	254 (26.3)	195 (34.8)
Obesity	137 (7.6)	29 (10.2)	74 (7.7)	34 (6.1)
Depressive symptoms				
None	776 (42.9)	113 (39.6)	399 (41.3)	264 (47.1)
Mild	650 (35.9)	91 (31.9)	349 (36.2)	210 (37.5)
Moderate	135 (7.5)	18 (6.3)	79 (8.2)	38 (6.8)
Severe	249 (13.8)	63 (22.1)	138 (14.3)	48 (8.6)
Anxiety symptoms				
None	971 (53.6)	133 (46.7)	500 (51.8)	338 (60.4)
Mild	568 (31.4)	91 (31.9)	310 (32.1)	167 (29.8)
Moderate	190 (10.5)	43 (15.1)	110 (11.4)	37 (6.6)
Severe	81 (4.5)	18 (6.3)	45 (4.7)	18 (3.2)
Educational attainment				
Junior high school or lower	176 (9.7)	11 (3.9)	39 (4.0)	126 (22.5)
Senior high school	283 (15.6)	17 (6.0)	105 (10.9)	161 (28.8)
College or higher	1351 (74.6)	257 (90.2)	821 (85.1)	273 (48.8)
Employment status				
Employed	1533 (84.7)	248 (87.0)	924 (95.8)	361 (64.5)
Unemployed	277 (15.3)	37 (13.0)	41 (4.2)	199 (35.5)
Family monthly income				
<¥5000 (US \$707.30)	349 (19.3)	53 (18.6)	152 (15.8)	144 (25.7)
¥5001-¥9999 (US \$707.44- \$1414.45)	534 (29.5)	96 (33.7)	285 (29.5)	153 (27.3)
¥10,000-¥19,999 (US \$1414.59- \$2829.04)	543 (30.0)	85 (29.8)	302 (31.3)	156 (27.9)
\geq 20,000 (US \$2829.18)	384 (21.2)	51 (17.9)	226 (23.4)	107 (19.1)
Marital status				
Married	1429 (79.0)	82 (28.8)	834 (86.4)	513 (91.6)
Single, divorced, or widowed	381 (21.0)	203 (71.2)	131 (13.6)	47 (8.4)
Residential area				
Urban	375 (20.7)	43 (15.1)	197 (20.4)	135 (24.1)
Periurban	550 (30.4)	96 (33.7)	289 (29.9)	165 (29.5)

	Total, n (%)	Emerging adults (n=285), n (%)	Established adults (n=965), n (%)	Middle-aged adults (n=560), n (%)
Rural	885 (48.9)	146 (51.2)	479 (49.6)	260 (46.4)
eHealth literacy score				
Below the 25th percentile	440 (24.3)	79 (27.7)	221 (22.9)	140 (25.0)
Between the 25th and 75th percentiles	909 (50.2)	117 (41.1)	472 (48.9)	320 (57.1)
Above the 75th percentile	461 (25.5)	89 (31.2)	272 (28.2)	100 (17.9)
Sleep quality				
Good	1124 (62.1)	190 (66.7)	617 (63.9)	317 (56.6)
Poor	686 (37.9)	95 (33.3)	348 (36.1)	243 (43.4)

The median score on the eHEALS was 32 (IQR 28-40). The prevalence of poor sleep quality was 37.9% (686/1810). Chi-square analysis revealed significant associations between age group and both eHealth literacy ($\chi^2_4=32.0$; $P<.001$) and sleep quality ($\chi^2_2=11.1$; $P=.004$). Compared to younger adults, a lower proportion of middle-aged adults had eHealth literacy scores above the 75th percentile. Additionally, the proportion of middle-aged adults reporting poor sleep quality was higher than that of younger adults.

Association Between eHealth Literacy and Poor Sleep Quality: Multimodel Regression

The association between eHealth literacy and poor sleep quality was examined using multimodel logistic regression (Table 2). In model 1, after adjusting for biological factors,

participants with eHealth literacy scores between the 25th and 75th percentiles (odds ratio [OR] 1.876, 95% CI 1.463-2.406, $P<.001$) and those with scores below the 25th percentile (OR 2.289, 95% CI 1.726-3.037, $P<.001$) had a significantly higher likelihood of reporting poor sleep quality compared to those with scores above the 75th percentile. After further adjusting for psychological factors in model 2, this association remained statistically significant (OR 1.574, 95% CI 1.204-2.058, $P<.001$ for scores between the 25th and 75th percentiles; OR 1.526, 95% CI 1.115-2.088, $P=.008$ for scores below the 25th percentile). The association persisted even after additional adjustment for social factors in model 3 (OR 1.594, 95% CI 1.216-2.089, $P<.001$ for scores between the 25th and 75th percentiles; OR 1.584, 95% CI 1.149-2.182, $P=.005$ for scores below the 25th percentile).

Table 2. Association between eHealth literacy and poor sleep quality using multivariable logistic regression (N=1810).

	Model 1 ^a		Model 2 ^b		Model 3 ^c	
	OR ^d (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value
eHealth literacy						
Below the 25th percentile	Reference	— ^e	Reference	—	Reference	—
Between the 25th and 75th percentiles	1.876 (1.463-2.406)	<.001	1.574 (1.204-2.058)	<.001	1.594 (1.216-2.089)	<.001
Above the 75th percentile	2.289 (1.726-3.037)	<.001	1.526 (1.115-2.088)	.008	1.584 (1.149-2.182)	.005
Sex						
Male	Reference	—	Reference	—	Reference	—
Female	1.050 (0.852-1.294)	.65	1.089 (0.878-1.351)	.44	1.068 (0.856-1.332)	.56
Age	1.012 (1.002-1.022)	.02	1.020 (1.010-1.031)	<.001	1.030 (1.016-1.044)	<.001
Weight status						
Normal weight or underweight	Reference	—	Reference	—	Reference	—
Overweight	0.875 (0.698-1.097)	.25	0.848 (0.671-1.071)	.17	0.852 (0.673-1.079)	.18
Obesity	0.998 (0.684-1.454)	.99	1.061 (0.718-1.567)	.77	1.099 (0.740-1.632)	.64
Depressive symptoms						
None	—	—	Reference	—	Reference	—
Mild	—	—	2.276 (1.699-3.050)	<.001	2.297 (1.711-3.085)	<.001
Moderate	—	—	3.499 (2.199-5.566)	<.001	3.402 (2.132-5.429)	<.001
Severe	—	—	2.082 (1.156-3.749)	.02	2.092 (1.156-3.784)	.02
Anxiety symptoms						

	Model 1 ^a		Model 2 ^b		Model 3 ^c	
	OR ^d (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value
None	—	—	Reference	—	Reference	—
Mild	—	—	1.236 (0.923-1.654)	.16	1.243 (0.927-1.667)	.15
Moderate	—	—	1.620 (0.912-2.876)	.10	1.641 (0.920-2.924)	.09
Severe	—	—	1.632 (0.795-3.348)	.18	1.741 (0.844-3.594)	.13
Educational attainment						
Junior high school or lower	—	—	—	—	Reference	—
Senior high school	—	—	—	—	0.654 (0.432-0.990)	.045
College or higher	—	—	—	—	1.104 (0.742-1.642)	.63
Employment status						
Employed	—	—	—	—	Reference	—
Unemployed	—	—	—	—	1.211 (0.892-1.645)	.22
Family monthly income						
<¥5000 (US \$707.30)	—	—	—	—	Reference	—
¥5001-¥9999 (US \$707.44-\$1414.45)	—	—	—	—	1.010 (0.741-1.375)	.95
¥10,000-19,999 (US \$1414.59-\$2829.04)	—	—	—	—	1.004 (0.728-1.386)	.98
≥¥20,000 (US \$2829.18)	—	—	—	—	1.132 (0.794-1.614)	.49
Marital status						
Married	—	—	—	—	Reference	—
Single, divorced, or widowed	—	—	—	—	1.423 (1.073-1.889)	.01
Residential area						
Urban	—	—	—	—	Reference	—
Periurban	—	—	—	—	0.824 (0.620-1.097)	.19
Rural	—	—	—	—	0.871 (0.664-1.143)	.32

^aAdjusting for sex and age.^bAdjusting for sex, age, depressive symptoms, and anxiety symptoms.^cAdjusting for sex, age, depressive symptoms, anxiety symptoms, educational attainment, employment status, family monthly income, marital status, and residential area.^dOR: odds ratio.^eNot applicable.

In the fully adjusted model (model 3), several covariates were also associated with poor sleep quality. Specifically, age (OR 1.030, 95% CI 1.016-1.044), depressive symptoms (OR 2.297, 95% CI 1.711-3.085 for mild; OR 3.402, 95% CI 2.132-5.429 for moderate; OR 2.092, 95% CI 1.156-3.784 for severe), educational attainment (OR 0.654, 95% CI 0.432-0.990 for senior high school), and marital status (OR 1.423, 95% CI 1.073-1.889 for single, divorced, or widowed) were associated with poor sleep quality.

Age-Stratified Analysis of the Association Between eHealth Literacy and Poor Sleep Quality

Table 3 presents the age-stratified analysis of the association between eHealth literacy and sleep quality across the 3 age

groups. Among emerging adults, participants with eHealth literacy scores between the 25th and 75th percentiles (OR 2.491, 95% CI 1.133-5.479, $P=.02$) and those with scores below the 25th percentile (OR 2.975, 95% CI 1.230-7.195, $P=.02$) had significantly higher odds of reporting poor sleep quality compared with those with scores above the 75th percentile.

Table 3. Association between eHealth literacy and poor sleep quality using multivariable logistic regression stratified by age.

	Emerging adults (n=285)		Established adults (n=965)		Middle-aged adults (n=560)	
	OR ^a (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value
eHealth literacy						
Above the 75th percentile	Reference	— ^b	Reference	—	Reference	—
Between the 25th and 75th percentiles	2.491 (1.133-5.479)	.02	1.439 (1.001-2.067)	.049	1.651 (0.985-2.770)	.06
Below the 25th percentile	2.975 (1.230-7.195)	.02	1.303 (0.834-2.036)	.24	1.639 (0.901-2.980)	.11
Sex						
Male	Reference	—	Reference	—	Reference	—
Female	0.565 (0.303-1.053)	.07	1.150 (0.844-1.569)	.38	1.198 (0.793-1.810)	.39
Age	1.087 (0.970-1.218)	.15	1.011 (0.979-1.045)	.51	1.021 (0.968-1.080)	.45
Weight status						
Normal weight or underweight	Reference	—	Reference	—	Reference	—
Overweight	1.047 (0.500-2.193)	.90	0.760 (0.541-1.069)	.12	0.924 (0.629-1.360)	.69
Obesity	1.354 (0.482-3.801)	.57	1.040 (0.604-1.789)	.89	1.186 (0.551-2.550)	.66
Depressive symptoms						
None	Reference	—	Reference	—	Reference	—
Mild	4.148 (1.501-11.467)	.006	2.386 (1.570-3.627)	<.001	1.933 (1.202-3.110)	.007
Moderate	6.356 (1.573-25.685)	.009	3.407 (1.796-6.463)	<.001	3.102 (1.324-7.270)	.009
Severe	4.389 (1.019-18.904)	.047	1.594 (0.690-3.681)	.28	2.773 (0.834-9.210)	.10
Anxiety symptoms						
None	Reference	—	Reference	—	Reference	—
Mild	1.361 (0.539-3.438)	.51	1.219 (0.807-1.842)	.35	1.263 (0.774-2.060)	.35
Moderate	1.023 (0.235-4.447)	.98	2.361 (1.058-5.271)	.04	0.996 (0.323-3.070)	.99
Severe	3.747 (0.674-20.832)	.13	2.408 (0.874-6.637)	.09	0.567 (0.122-2.630)	.47
Educational attainment						
Junior high school or lower	Reference	—	Reference	—	Reference	—
Senior high school	0.095 (0.007-1.282)	.08	0.730 (0.307-1.736)	.48	0.696 (0.420-1.150)	.16
College or higher	1.277 (0.279-5.848)	.75	1.580 (0.715-3.491)	.26	0.801 (0.468-1.370)	.42
Employment status						
Employed	Reference	—	Reference	—	Reference	—
Unemployed	1.605 (0.600-4.294)	.35	1.152 (0.578-2.299)	.69	1.081 (0.679-1.720)	.74
Family monthly income						
<¥5000 (US \$707.30)	Reference	—	Reference	—	Reference	—
¥5001-¥9999 (US \$707.44-\$1414.45)	0.557 (0.240-1.289)	.17	0.997 (0.627-1.584)	.99	1.101 (0.660-1.840)	.71
¥10,000-¥19,999 (US \$1414.59-\$2829.04)	0.530 (0.216-1.299)	.17	0.904 (0.560-1.460)	.68	1.296 (0.762-2.200)	.34
≥¥20,000 (US \$2829.18)	0.729 (0.266-1.998)	.54	1.100 (0.657-1.841)	.72	1.336 (0.729-2.450)	.35
Marital status						
Married	Reference	—	Reference	—	Reference	—
Single, divorced, or widowed	0.964 (0.469-1.978)	.92	1.736 (1.150-2.621)	.009	1.354 (0.711-2.580)	.36
Residential area						
Urban	Reference	—	Reference	—	Reference	—
Periurban	0.682 (0.294-1.584)	.37	0.816 (0.546-1.219)	.32	0.856 (0.527-1.390)	.53
Rural	0.547 (0.242-1.235)	.15	0.868 (0.588-1.281)	.48	0.897 (0.564-1.430)	.65

^aOR: odds ratio.

^bNot applicable.

Among established adults, participants with scores below the 25th percentile showed no statistically significant association (OR 1.303, 95% CI 0.834-2.036, $P=.24$), whereas the group between the 25th and 75th percentiles showed a positive association (OR 1.439, 95% CI 1.001-2.067, $P=.049$). However, this association was not statistically significant among middle-aged adults (OR 1.651, 95% CI 0.985-2.770, $P=.06$ for scores between the 25th and 75th percentiles; OR 1.639, 95% CI 0.901-2.980, $P=.11$ for scores below the 25th percentile).

Sensitivity Analysis

Sensitivity analyses adjusting additionally for smoking, alcohol consumption, and chronic disease status are presented in [Multimedia Appendix 1](#). Among emerging adults, lower eHealth literacy remained significantly associated with higher odds of poor sleep quality (OR 2.330, 95% CI 1.045-5.197, $P=.04$ for scores between the 25th and 75th percentiles; OR 2.564, 95% CI 1.017-6.464, $P=.046$ for scores below the 25th percentile). Among established adults, lower eHealth literacy did not show a statistically significant association after additional adjustment (OR 1.377, 95% CI 0.953-1.991, $P=.09$ for scores between the 25th and 75th percentiles; OR 0.776, 95% CI 0.776-1.930, $P=.39$ for scores below the 25th percentile). Among middle-aged adults, results also remained nonsignificant (OR 1.539, 95% CI 0.910-2.600, $P=.11$ for scores between the 25th and 75th percentiles; OR 1.476, 95% CI 0.802-2.710, $P=.21$ for scores below the 25th percentile).

Discussion

Principal Findings

This study investigated the association between eHealth literacy and sleep quality among adults aged 18 to 59 years in Shanghai, China. Overall, lower eHealth literacy scores were associated with a higher likelihood of poor sleep quality even after adjusting for biological, psychological, and social factors. The stratified analysis revealed that this association was significant among younger adults but not among middle-aged adults. These findings provide empirical evidence supporting the role of eHealth literacy as a potential determinant of sleep quality, particularly among younger populations.

The significant association observed in this study is consistent with prior research linking limited health literacy to poorer sleep outcomes and increased sleep disturbances [34,35]. While existing studies have largely focused on traditional health literacy, emerging research suggests that eHealth literacy may play a comparable role in health management in digital contexts [36]. Extending previous findings that link eHealth literacy to better adherence to sleep hygiene practices [13], our results suggest a more direct association between eHealth literacy and overall sleep quality. Individuals with higher eHealth literacy are better equipped

to critically evaluate online health information and adopt evidence-based sleep practices. In contrast, limited eHealth literacy may increase vulnerability to online misinformation and suboptimal sleep practices, ultimately leading to poorer sleep outcomes.

Beyond eHealth literacy, several other factors, including age, educational level, marital status, and depressive symptoms, were also associated with sleep quality in the overall model, consistent with findings from previous research [37,38]. Among these factors, depressive symptoms emerged as a well-established and particularly strong predictor of sleep disturbances [39]. Individuals with mild to severe depressive symptoms had approximately 2 to 3 times higher odds of reporting poor sleep quality compared with those without depressive symptoms. This strong psychological effect may have attenuated the independent contributions of other covariates when adjusting simultaneously. In addition, prior studies have shown that individuals with lower eHealth literacy tend to experience greater psychological distress [40], partly due to the misuse of misleading or low-quality information encountered online. These patterns suggest that mental health may play an important role in the pathway through which eHealth literacy relates to sleep quality.

In the age-stratified analysis, lower eHealth literacy was associated with poorer sleep quality only among emerging and established adults. This finding aligns with those of prior research indicating that younger adults typically engage more actively with digital health information [15, 16] and rely more on online resources for health-related decisions. In contrast, middle-aged and older adults tend to depend more on traditional health care resources [41], making their sleep quality less influenced by online health information use. Furthermore, this age-specific association may also reflect distinct underlying mechanisms of sleep disturbances. Among middle-aged adults, sleep disturbance is more frequently attributed to age-related neurophysiological and neurochemical changes (eg, reduced sleep duration and increased fragmentation) [42]. Such physiologically driven sleep disturbances are only minimally related to eHealth literacy. Conversely, younger adults often experience irregular sleep patterns driven by external demands (eg, academic or occupational stress) [18,43], which may be more amenable to modification through improved eHealth literacy.

The age-specific association between eHealth literacy and sleep quality aligns with broader concerns about the digital health divide [20]. Although digital health technologies offer scalable and cost-effective solutions for health management, their benefits are not equitably distributed across age groups. Structural barriers such as limited access, lower digital confidence, and affordability disproportionately affect marginalized and older populations [44]. As sleep disturbances tend to increase with age, middle-aged adults may face a dual challenge: increased physiological susceptibility to poor

sleep and reduced capacity to engage with digital resources. However, existing eHealth interventions aimed at improving sleep outcomes have predominantly targeted younger populations [45-47]. Without targeted support, the expansion of digital health tools may unintentionally widen existing age-related disparities in sleep health.

Our findings highlight the importance of improving eHealth literacy to promote better sleep outcomes. For example, a 6-week online intervention during the COVID-19 pandemic integrated health education and digital skill training to improve university students' eHealth literacy and related health behaviors [48]. Although short-term sleep improvements were limited, the study highlighted the potential of eHealth literacy-based interventions and the importance of long-term evaluation [48]. Given the age-stratified association observed in our study, tailoring interventions to address age-specific barriers is essential. Middle-aged adults, who have lower digital engagement, may require additional support to effectively benefit from digital tools—such as affordable internet access, community-based digital skill training, and user-friendly interface design [49]. By accounting for the unique needs of different age groups, eHealth literacy can be leveraged to improve health outcomes for all, ultimately advancing digital health equity.

Strengths and Limitations

This study has several strengths, including adjustment for multiple confounders at different levels and an age-stratified analysis, offering a more nuanced understanding of the association between eHealth literacy and sleep quality. However, several limitations should be acknowledged. First, the cross-sectional design precludes causal inferences between eHealth literacy and sleep quality. Future studies should use longitudinal or experimental designs to clarify temporal relationships and causal pathways between eHealth

Funding

This study was funded by the key discipline projects of the Shanghai Three-Year Action Plan for Public Health (grant GWVI-11.1-29).

Data Availability

The datasets generated or analyzed during this study are not publicly available due to privacy protections or ethical restrictions but are available from the corresponding author on reasonable request.

Authors' Contributions

Conceptualization: YC

Data curation: RG, SL, CX

Formal analysis: YL, SW

Funding acquisition: YC

Methodology: WX, YC

Writing—original draft: YL, YS

Writing—review and editing: YL, WX, YC

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Supplementary table presenting the results of the sensitivity analyses.

[[DOCX File \(Microsoft Word File, 25 KB\)](#)-Multimedia Appendix 1]

References

1. Lim DC, Najafi A, Afifi L, et al. The need to promote sleep health in public health agendas across the globe. *Lancet Public Health*. Oct 2023;8(10):e820-e826. [doi: [10.1016/S2468-2667\(23\)00182-2](https://doi.org/10.1016/S2468-2667(23)00182-2)] [Medline: [37777291](https://pubmed.ncbi.nlm.nih.gov/37777291/)]
2. Chinese Sleep Research Society. 2025 China national health sleep white paper. Mar 25, 2025. URL: <http://www.zgsmjh.org/nd.jsp?id=945> [Accessed 2025-12-12]
3. Zhang J, Tan K, Xiao X, Tang Y, Tong J, Ling L. Current situation and relationship between occupational stress, burnout and sleep quality among ambulance drivers: a cross-sectional study. *BMJ Open*. Sep 5, 2024;14(9):e089252. [doi: [10.1136/bmjopen-2024-089252](https://doi.org/10.1136/bmjopen-2024-089252)] [Medline: [39237279](https://pubmed.ncbi.nlm.nih.gov/39237279/)]
4. Hernandez AF, Bautista RL, Tan CC. Sleep disturbances during shift work. *Sleep Med Clin*. Mar 2022;17(1):1-10. [doi: [10.1016/j.jsmc.2021.10.001](https://doi.org/10.1016/j.jsmc.2021.10.001)] [Medline: [35216756](https://pubmed.ncbi.nlm.nih.gov/35216756/)]
5. Lee S, Lee J, Jeon S, Hwang Y, Kim J, Kim SJ. Sleep disturbances and depressive symptoms of shift workers: effects of shift schedules. *J Psychiatr Res*. May 2023;161:371-376. [doi: [10.1016/j.jpsychires.2022.12.048](https://doi.org/10.1016/j.jpsychires.2022.12.048)] [Medline: [37012196](https://pubmed.ncbi.nlm.nih.gov/37012196/)]
6. Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. *Nat Sci Sleep*. May 19, 2017;9:151-161. [doi: [10.2147/NSS.S134864](https://doi.org/10.2147/NSS.S134864)] [Medline: [28579842](https://pubmed.ncbi.nlm.nih.gov/28579842/)]
7. Costa-Font J, Fleche S, Pagan R. The labour market returns to sleep. *J Health Econ*. Jan 2024;93:102840. [doi: [10.1016/j.jhealeco.2023.102840](https://doi.org/10.1016/j.jhealeco.2023.102840)] [Medline: [37995463](https://pubmed.ncbi.nlm.nih.gov/37995463/)]
8. Papadopoulos D, Etindele Sosso FA. Socioeconomic status and sleep health: a narrative synthesis of 3 decades of empirical research. *J Clin Sleep Med*. Mar 1, 2023;19(3):605-620. [doi: [10.5664/jcsm.10336](https://doi.org/10.5664/jcsm.10336)] [Medline: [36239056](https://pubmed.ncbi.nlm.nih.gov/36239056/)]
9. Wang S, Li B, Wu Y, et al. Relationship of sleep duration with sociodemographic characteristics, lifestyle, mental health, and chronic diseases in a large Chinese adult population. *J Clin Sleep Med*. Mar 15, 2017;13(3):377-384. [doi: [10.5664/jcsm.6484](https://doi.org/10.5664/jcsm.6484)] [Medline: [27998377](https://pubmed.ncbi.nlm.nih.gov/27998377/)]
10. Norman CD, Skinner HA. eHealth literacy: essential skills for consumer health in a networked world. *J Med Internet Res*. Jun 16, 2006;8(2):e9. [doi: [10.2196/jmir.8.2.e9](https://doi.org/10.2196/jmir.8.2.e9)] [Medline: [16867972](https://pubmed.ncbi.nlm.nih.gov/16867972/)]
11. Kim K, Shin S, Kim S, Lee E. The relation between eHealth literacy and health-related behaviors: systematic review and meta-analysis. *J Med Internet Res*. Jan 30, 2023;25:e40778. [doi: [10.2196/40778](https://doi.org/10.2196/40778)] [Medline: [36716080](https://pubmed.ncbi.nlm.nih.gov/36716080/)]
12. Milanti A, Chan DN, Parut AA, So WK. Determinants and outcomes of eHealth literacy in healthy adults: a systematic review. *PLoS ONE*. Oct 4, 2023;18(10):e0291229. [doi: [10.1371/journal.pone.0291229](https://doi.org/10.1371/journal.pone.0291229)] [Medline: [37792773](https://pubmed.ncbi.nlm.nih.gov/37792773/)]
13. Alijanzadeh M, Yahaghi R, Rahmani J, et al. Sleep hygiene behaviours mediate the association between health/e-health literacy and mental wellbeing. *Health Expect*. Dec 2023;26(6):2349-2360. [doi: [10.1111/hex.13837](https://doi.org/10.1111/hex.13837)] [Medline: [37551056](https://pubmed.ncbi.nlm.nih.gov/37551056/)]
14. Zhu X, Zheng T, Ding L, Zhang X. Exploring associations between eHealth literacy, cyberchondria, online health information seeking and sleep quality among university students: a cross-section study. *Heliyon*. Jun 22, 2023;9(6):e17521. [doi: [10.1016/j.heliyon.2023.e17521](https://doi.org/10.1016/j.heliyon.2023.e17521)] [Medline: [37408886](https://pubmed.ncbi.nlm.nih.gov/37408886/)]
15. Sun C, Meijer E, Chavannes NH, et al. eHealth literacy in the general population: a cross-sectional study in China. *BMC Public Health*. Jan 17, 2025;25(1):211. [doi: [10.1186/s12889-025-21389-0](https://doi.org/10.1186/s12889-025-21389-0)] [Medline: [39825311](https://pubmed.ncbi.nlm.nih.gov/39825311/)]
16. Hua Z, Yuqing S, Qianwen L, Hong C. Factors influencing eHealth literacy worldwide: systematic review and meta-analysis. *J Med Internet Res*. Mar 10, 2025;27:e50313. [doi: [10.2196/50313](https://doi.org/10.2196/50313)] [Medline: [40063939](https://pubmed.ncbi.nlm.nih.gov/40063939/)]
17. Stellefson M, Hanik B, Chaney B, Chaney D, Tennant B, Chavarria EA. eHealth literacy among college students: a systematic review with implications for eHealth education. *J Med Internet Res*. Dec 1, 2011;13(4):e102. [doi: [10.2196/jmir.1703](https://doi.org/10.2196/jmir.1703)] [Medline: [22155629](https://pubmed.ncbi.nlm.nih.gov/22155629/)]
18. Jonasdottir SS, Minor K, Lehmann S. Gender differences in nighttime sleep patterns and variability across the adult lifespan: a global-scale wearables study. *Sleep*. Feb 12, 2021;44(2):zsaa169. [doi: [10.1093/sleep/zsaa169](https://doi.org/10.1093/sleep/zsaa169)] [Medline: [32886772](https://pubmed.ncbi.nlm.nih.gov/32886772/)]
19. Wu M, Xue P, Yan J, Benedict C. Association between age and comorbid insomnia and sleep apnea. *Sleep Med*. Dec 2024;124:659-661. [doi: [10.1016/j.sleep.2024.11.011](https://doi.org/10.1016/j.sleep.2024.11.011)] [Medline: [39531785](https://pubmed.ncbi.nlm.nih.gov/39531785/)]
20. Hall AK, Bernhardt JM, Dodd V, Vollrath MW. The digital health divide: evaluating online health information access and use among older adults. *Health Educ Behav*. Apr 2015;42(2):202-209. [doi: [10.1177/1090198114547815](https://doi.org/10.1177/1090198114547815)] [Medline: [25156311](https://pubmed.ncbi.nlm.nih.gov/25156311/)]
21. Norman CD, Skinner HA. eHEALS: the eHealth Literacy Scale. *J Med Internet Res*. Nov 14, 2006;8(4):e27. [doi: [10.2196/jmir.8.4.e27](https://doi.org/10.2196/jmir.8.4.e27)] [Medline: [17213046](https://pubmed.ncbi.nlm.nih.gov/17213046/)]
22. Wang L. Adaptation and evaluation of Chinese version of eHEALS and its usage among senior high school students. *Chin J Health Educ*. 2013. URL: <https://scispace.com/papers/adaptation-and-evaluation-of-chinese-version-of-eheals-and-2wi1pv9o3> [Accessed 2025-12-10]

23. Chao DP. Associations between sociodemographic characteristics, eHealth literacy, and health-promoting lifestyle among university students in Taipei: cross-sectional validation study of the Chinese version of the eHealth Literacy Scale. *J Med Internet Res.* Jul 18, 2024;26:e52314. [doi: [10.2196/52314](https://doi.org/10.2196/52314)] [Medline: [39024006](#)]

24. Long C, Zheng L, Liu R, Duan Z. Structural validation and measurement invariance testing of the Chinese version of the eHealth Literacy Scale among undergraduates: cross-sectional study. *J Med Internet Res.* Dec 13, 2023;25:e48838. [doi: [10.2196/48838](https://doi.org/10.2196/48838)] [Medline: [37990370](#)]

25. Buysse DJ, Reynolds CF 3rd III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. *Psychiatry Res.* May 1989;28(2):193-213. [doi: [10.1016/0165-1781\(89\)90047-4](https://doi.org/10.1016/0165-1781(89)90047-4)] [Medline: [2748771](#)]

26. Zhang C, Zhang H, Zhao M, et al. Reliability, validity, and factor structure of Pittsburgh Sleep Quality Index in community-based centenarians. *Front Psychiatry.* Aug 31, 2020;11:573530. [doi: [10.3389/fpsyg.2020.573530](https://doi.org/10.3389/fpsyg.2020.573530)] [Medline: [33110414](#)]

27. Ho KY, Lam KK, Xia W, et al. Psychometric properties of the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) among Hong Kong Chinese childhood cancer survivors. *Health Qual Life Outcomes.* Jul 6, 2021;19(1):176. [doi: [10.1186/s12955-021-01803-y](https://doi.org/10.1186/s12955-021-01803-y)] [Medline: [34229705](#)]

28. Engel GL. The need for a new medical model: a challenge for biomedicine. *Science.* Apr 8, 1977;196(4286):129-136. [doi: [10.1126/science.847460](https://doi.org/10.1126/science.847460)] [Medline: [847460](#)]

29. Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. *Biomed Environ Sci.* Mar 2002;15(1):83-96. [Medline: [12046553](#)]

30. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. *J Gen Intern Med.* Sep 2001;16(9):606-613. [doi: [10.1046/j.1525-1497.2001.016009606.x](https://doi.org/10.1046/j.1525-1497.2001.016009606.x)] [Medline: [11556941](#)]

31. Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. *Arch Intern Med.* May 22, 2006;166(10):1092-1097. [doi: [10.1001/archinte.166.10.1092](https://doi.org/10.1001/archinte.166.10.1092)] [Medline: [16717171](#)]

32. Arnett JJ, Žukauskienė R, Sugimura K. The new life stage of emerging adulthood at ages 18-29 years: implications for mental health. *Lancet Psychiatry.* Dec 2014;1(7):569-576. [doi: [10.1016/S2215-0366\(14\)00080-7](https://doi.org/10.1016/S2215-0366(14)00080-7)] [Medline: [26361316](#)]

33. Mehta CM, Arnett JJ, Palmer CG, Nelson LJ. Established adulthood: a new conception of ages 30 to 45. *Am Psychol.* 2020;75(4):431-444. [doi: [10.1037/amp0000600](https://doi.org/10.1037/amp0000600)] [Medline: [32378940](#)]

34. Stellefson M, Paige SR, Alber JM, et al. Association between health literacy, electronic health literacy, disease-specific knowledge, and health-related quality of life among adults with chronic obstructive pulmonary disease: cross-sectional study. *J Med Internet Res.* Jun 6, 2019;21(6):e12165. [doi: [10.2196/12165](https://doi.org/10.2196/12165)] [Medline: [31172962](#)]

35. Luo H, Chen Z, Bell R, Rafferty AP, Gaskins Little NR, Winterbauer N. Health literacy and health behaviors among adults with prediabetes, 2016 Behavioral Risk Factor Surveillance System. *Public Health Rep.* 2020;135(4):492-500. [doi: [10.1177/003354920927848](https://doi.org/10.1177/003354920927848)] [Medline: [32511939](#)]

36. Del Giudice P, Bravo G, Poletto M, et al. Correlation between eHealth literacy and health literacy using the eHealth literacy scale and real-life experiences in the health sector as a proxy measure of functional health literacy: cross-sectional web-based survey. *J Med Internet Res.* Oct 31, 2018;20(10):e281. [doi: [10.2196/jmir.9401](https://doi.org/10.2196/jmir.9401)] [Medline: [30381283](#)]

37. Hsu MF, Lee KY, Lin TC, Liu WT, Ho SC. Subjective sleep quality and association with depression syndrome, chronic diseases and health-related physical fitness in the middle-aged and elderly. *BMC Public Health.* Jan 19, 2021;21(1):164. [doi: [10.1186/s12889-021-10206-z](https://doi.org/10.1186/s12889-021-10206-z)] [Medline: [33468101](#)]

38. Muhammad T, Pai M, Ahire K, Sharma M. Demographic, socioeconomic, and health correlates of sleep quality and sleep duration among community-dwelling older adults in India. *BMC Psychiatry.* Oct 8, 2024;24(1):665. [doi: [10.1186/s12888-024-06122-2](https://doi.org/10.1186/s12888-024-06122-2)] [Medline: [39379840](#)]

39. Fang H, Tu S, Sheng J, Shao A. Depression in sleep disturbance: a review on a bidirectional relationship, mechanisms and treatment. *J Cell Mol Med.* Apr 2019;23(4):2324-2332. [doi: [10.1111/jcmm.14170](https://doi.org/10.1111/jcmm.14170)] [Medline: [30734486](#)]

40. Yang X, Huang Y, Li S, Yeung KY, Zhang L. The role of eHealth literacy in psychological distress and health-related quality of life in adolescents in Hong Kong: the potential mediation of screen-based lifestyles. *J Affect Disord.* Jan 15, 2026;393(Pt B):120421. [doi: [10.1016/j.jad.2025.120421](https://doi.org/10.1016/j.jad.2025.120421)] [Medline: [41083071](#)]

41. Sun X, Yan W, Zhou H, et al. Internet use and need for digital health technology among the elderly: a cross-sectional survey in China. *BMC Public Health.* Sep 11, 2020;20(1):1386. [doi: [10.1186/s12889-020-09448-0](https://doi.org/10.1186/s12889-020-09448-0)] [Medline: [32917171](#)]

42. Mander BA, Winer JR, Walker MP. Sleep and human aging. *Neuron.* Apr 5, 2017;94(1):19-36. [doi: [10.1016/j.neuron.2017.02.004](https://doi.org/10.1016/j.neuron.2017.02.004)] [Medline: [28384471](#)]

43. Dillon HR, Lichstein KL, Dautovich ND, Taylor DJ, Riedel BW, Bush AJ. Variability in self-reported normal sleep across the adult age span. *J Gerontol B Psychol Sci Soc Sci*. Jan 2015;70(1):46-56. [doi: [10.1093/geronb/gbu035](https://doi.org/10.1093/geronb/gbu035)] [Medline: [24829303](https://pubmed.ncbi.nlm.nih.gov/24829303/)]
44. Lawrence K. Digital health equity. In: Linwood SL, editor. *Digital Health*. Exon Publications; 2022. [doi: [10.36255/exon-publications-digital-health-health-equity](https://doi.org/10.36255/exon-publications-digital-health-health-equity)] ISBN: 9780645332018
45. Rosenberg L, Rigney G, Jemcov A, van Voorst D, Corkum P. Usability of an eHealth sleep education intervention for university students. *Digit Health*. Jun 5, 2024;10:20552076241260480. [doi: [10.1177/20552076241260480](https://doi.org/10.1177/20552076241260480)] [Medline: [38846369](https://pubmed.ncbi.nlm.nih.gov/38846369/)]
46. Champion KE, Newton NC, Gardner LA, et al. Health4Life eHealth intervention to modify multiple lifestyle risk behaviours among adolescent students in Australia: a cluster-randomised controlled trial. *Lancet Digit Health*. May 2023;5(5):e276-e287. [doi: [10.1016/S2589-7500\(23\)00028-6](https://doi.org/10.1016/S2589-7500(23)00028-6)] [Medline: [37032200](https://pubmed.ncbi.nlm.nih.gov/37032200/)]
47. O'Dean S, Sunderland M, Newton N, et al. The Health4Life e-health intervention for modifying lifestyle risk behaviours of adolescents: secondary outcomes of a cluster randomised controlled trial. *Med J Aust*. May 6, 2024;220(8):417-424. [doi: [10.5694/mja2.52279](https://doi.org/10.5694/mja2.52279)] [Medline: [38613175](https://pubmed.ncbi.nlm.nih.gov/38613175/)]
48. Roh M, Won Y. Impact of online-delivered eHealth literacy intervention on eHealth literacy and health behavior outcomes among female college students during COVID-19. *Int J Environ Res Public Health*. Jan 22, 2023;20(3):2044. [doi: [10.3390/ijerph20032044](https://doi.org/10.3390/ijerph20032044)] [Medline: [36767409](https://pubmed.ncbi.nlm.nih.gov/36767409/)]
49. Badr J, Motulsky A, Denis JL. Digital health technologies and inequalities: a scoping review of potential impacts and policy recommendations. *Health Policy*. Aug 2024;146:105122. [doi: [10.1016/j.healthpol.2024.105122](https://doi.org/10.1016/j.healthpol.2024.105122)] [Medline: [38986333](https://pubmed.ncbi.nlm.nih.gov/38986333/)]

Abbreviations

eHEALS: eHealth Literacy Scale

OR: odds ratio

PSQI: Pittsburgh Sleep Quality Index

Edited by Amy Schwartz, Matthew Balcarras; peer-reviewed by Li Li, Vivian Yawei Guo; submitted 11 Apr. 2025; final revised version received 26 Nov. 2025; accepted 26 Nov. 2025; published 24 Dec. 2025

Please cite as:

Liu Y, Xue W, Sheng Y, Wang S, Gong R, Liu S, Xu C, Cai Y

Age-Specific Associations Between eHealth Literacy and Sleep Quality Among Adults: Cross-Sectional Study

J Med Internet Res 2025;27:e75813

URL: <https://www.jmir.org/2025/1/e75813>

doi: [10.2196/75813](https://doi.org/10.2196/75813)

© Yujie Liu, Wenjie Xue, Yuhui Sheng, Suping Wang, Ruijie Gong, Shangbin Liu, Chen Xu, Yong Cai. Originally published in the Journal of Medical Internet Research (<https://www.jmir.org>), 24 Dec 2025. This is an open-access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on <https://www.jmir.org/>, as well as this copyright and license information must be included.