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Abstract

Background: Diabetes has emerged as a critical global public health crisis. Prediabetes, as the transitional phase with 5%-10%
annual progression to diabetes, offers a critical window for intervention. The lack of a 5-year risk prediction model for diabetes
progression among Chinese individuals with prediabetes limits clinical decision-making support.

Objective: This study aimed to develop and validate a machine learning–based 5-year risk prediction model of progression
from prediabetes to diabetes for the Chinese population and establish an interactive web-based platform to facilitate high-risk
patients identifying and early targeted interventions, ultimately reducing diabetes incidence and health care burdens.

Methods: A retrospective cohort study was conducted on 2 prediabetes cohorts from 2 Chinese medical centers (primary cohort:
n=6578 and external validation cohort: n=2333) tracking from 2019 to 2024. Participants meeting the American Diabetes
Association (ADA) criteria (prediabetes: hemoglobin A1c [HbA1c] level of 5.7%-6.4%; diabetes: HbA1c level of ≥6.5%) were
identified. A total of 42 variables (demographics, physical measures, and hematologic biomarkers) were collected using standardized
protocols. Patients were split into the training (70%) and test (30%) sets randomly in the primary cohort. Significant predictors
were selected on the training set using recursive feature elimination methods, followed by prediction model development using
7 machine learning algorithms (logistic regression, random forest, support vector machine, multilayer perceptron, extreme gradient
boosting machine, light gradient boosting machine, and categorical boosting machine [CatBoost]), optimized through grid search
and 5-fold cross-validation. Model performance was assessed using the receiver operating characteristic curve, the precision-recall
curves, accuracy, sensitivity, and specificity as well as multiple other metrics on both the test set and the external test set.

Results: During the follow-up of 5 years, 2610 (41.6%) participants and 760 (35.2%) participants progressed from prediabetes
to diabetes, with mean annual progression rates of 8.34% and 7.04% in the primary cohort and the external cohort, respectively.
Using 14 features selected using the recursive feature elimination-logistic algorithm, the CatBoost model achieved optimal
performance in the test set and the external test set with an area under the receiver operating characteristic curve of 0.819 and
0.807, respectively. It also showed the best discrimination performance on the accuracy, negative predictive value (NPV), and
F1-scores as well as the calibration performances in both the test set and the external test set. Then the Shapley Additive
Explanations (SHAP) analysis highlighted the top 6 predictors (FBG, HDL, ALT/AST, BMI, age, and MONO), enabling targeted
modification of these risk factors to reduce diabetes incidence.
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Conclusions: We developed a 5-year risk prediction model of progression from prediabetes to diabetes for the Chinese population,
with the CatBoost model showing the best predictive performance, which could effectively identify individuals at high risk of
diabetes.

(J Med Internet Res 2025;27:e73190) doi: 10.2196/73190
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Introduction

Diabetes has become a severe global public health concern,
affecting 537 million adults aged 20-79 years worldwide and
threatening 860 million adults worldwide due to impaired
glucose tolerance and impaired fasting glucose, which are
commonly known as prediabetes [1]. The burden of diabetes
now surpasses the combined global impact of tuberculosis,
AIDS, and malaria [2]. In 2021, China had approximately 141
million adults with diabetes and 197 million adults with
prediabetes, ranking first globally for both conditions [1].
Prediabetes is typically viewed as a transitional stage of diabetes,
which can return to normal or progress to diabetes [3]. Around
5%-10% of patients with prediabetes progress to diabetes every
year, and up to 70% could develop diabetes eventually [4,5].
However, with lifestyle intervention and medications, the risk
of diabetes in patients with prediabetes can be greatly decreased
[6]. Therefore, identifying high-risk individuals among patients
with prediabetes and intervening in advance could greatly reduce
the incidence and health care burden of diabetes.

Machine learning has been widely used in the field of diabetes
and prediabetes, including early diagnosis and risk prediction.
Xue et al [7] built four machine learning models to diagnose
type 2 diabetes using physical measurements and questionnaire
information. Abnoosian et al [8] developed an integrated
multiclassifier machine learning model using various data
preprocessing techniques and machine learning algorithms to
identify patients with 3 conditions: diabetic, prediabetic, and
nondiabetic. Hu et al [9] constructed a model to predict the
5-year risk of developing prediabetes in the Chinese population.
Schallmoser et al [10] created 2 machine learning models for
predicting the risk of microvascular or macrovascular
complications within 5 years in patients with prediabetes or
diabetes. In terms of the progression from prediabetes to
diabetes, Cahn et al [11] constructed a 1-year risk prediction
model using 3 datasets, demonstrating superior accuracy (area
under the receiver operating characteristic curve [AUC]
0.865-0.925) over logistic regression. Liu et al [12] developed
a 1- or 2-year risk prediction model for the Chinese older adults
based on extreme gradient boosting machine (XGBoost),
demonstrating modest predictive performance (AUC 0.67).
Chen et al [13] built a 3-year risk prediction model for the
Chinese based on logistic regression using 9 indicators and

achieved optimal performance (AUC 0.78). Aoki et al [14]
created a 5-year risk prediction model (AUC 0.87) for
Americans based on the random forest using 8 laboratory
indicators. Although these predictive models for the progression
of prediabetes have been developed, Chinese-focused models
are limited to short observation periods (≤3 years), and there is
currently a lack of a 5-year prediction model specifically tailored
to the Chinese population. Prediabetes often undergoes a gradual
progression that can last for over 10 years; hence, a long-term
risk prediction model would be more meaningful than a
short-term prediction model. Therefore, to address this clinical
and geographical gap, we aimed to develop and validate a 5-year
risk prediction model for the progression from prediabetes to
diabetes within the Chinese population, and to establish an
interactive web-based platform for easy clinical practice.

Methods

Participants
This research was a retrospective cohort study that used health
checkup data from 2 independent medical centers, namely the
First Affiliated Hospital of Shandong First Medical University
(the primary cohort) and Binzhou Medical University Hospital
(the external cohort). Participants were tracked from 2019 to
2024 over a consecutive 5-year period, with annual assessments
conducted at a fixed time each year to evaluate diabetes
progression based on the American Diabetes Association (ADA)
diagnostic criterion of a hemoglobin A1c (HbA1c) level of ≥6.5%
[15]. Inclusion criteria required participants to have a confirmed
diagnosis of prediabetes (HbA1c level of 5.7%-6.4%) at the 2019
baseline examination. Exclusion criteria included pre-existing
diabetes (HbA1c level of ≥6.5% or use of glucose-lowering
therapy), history of gestational diabetes, use of medications
known to affect glucose metabolism, any previous diagnosis of
malignancy, and absence of a second physical examination after
the year of 2019. After finalizing study cohort and variable
selection, data cleaning was performed by removing participants
with any missing values. This complete-case analysis approach
is methodologically sound when the proportion of missing data
is minimal, as it ensures data integrity while maintaining
sufficient statistical power. The study design is illustrated in
Figure 1.
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Figure 1. Flowchart of this study. RFE: recursive feature elimination.

Data Collection
We collected 42 variables in total from the database based on
literature review, clinical expertise, and data availability,
including demographics, physical measures, and hematologic
biomarkers. These variables are gender, age, height, weight,
BMI, systolic blood pressure, diastolic blood pressure, white
blood cell, neutrophil count, lymphocyte count, monocyte count
(MONO), hemoglobin, red blood cell (RBC), platelet count,
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), ALT to AST ratio (ALT/AST), gamma-glutamyl
transferase, alkaline phosphatase, total bilirubin, direct bilirubin,
indirect bilirubin, total protein, albumin, globulin, albumin to
globulin ratio (albumin/globulin), triglycerides, total cholesterol
(TC), high-density lipoprotein cholesterol (HDL), low-density
lipoprotein cholesterol (LDL), HDL to TC ratio (HDL/TC),
blood urea nitrogen (BUN), creatinine, uric acid, estimated
glomerular filtration rate, BUN to creatinine ratio
(BUN/creatinine), fasting blood glucose (FBG), hematocrit,
mean corpuscular hemoglobin, triglyceride-glucose, monocyte
to high-density lipoprotein cholesterol ratio, and neutrophil to
high-density lipoprotein cholesterol ratio.

Physical and laboratory examinations are carried out by trained
medical staff in accordance with uniform standards. Height and
weight measurements require participants to remove heavy
clothing and take off shoes. The fully automatic electronic
sphygmomanometer was used to measure the participants’blood
pressure in the right upper arm after sitting still and resting for
10 min. The measurement of blood pressure was made twice,
each time with an interval of 1-2 minutes, and the average of
the 2 readings was taken and recorded. Blood samples were
collected from the antecubital vein after an 8- to 10-hour fast
and were promptly sent to the clinical laboratory for processing.
BMI was calculated as weight (kg) divided by the square of
height (m²), and triglyceride-glucose was calculated as Ln
(fasting triglycerides [mg/dL] × fasting glucose [mg/dL]/2).

Statistical Analysis
Baseline characteristics were analyzed using R version 4.3.1
(R Foundation for Statistical Computing). Quantitative data
were analyzed using Student t test or nonparametric Wilcoxon
signed-rank test, while qualitative data were analyzed using
chi-square test or Fisher exact test. Statistical significance
thresholds were set at P<.05 for all comparative analyses.
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Model training and validation were conducted using the
scikit-learn package (version 1.4.0) in Python (version 3.11.5).
Initially, the primary cohort was randomly divided into a training
set (comprising 70% of the participants) and a test set
(comprising the remaining 30%) [16]. To ensure better model
performance and reduce redundant features, recursive feature
elimination (RFE) was used on the training set for feature
selection with the logistic regression model as the base model
[15,17]. Subsequently, 7 machine learning algorithms were
selected, namely logistic regression, random forest, support
vector machine, multilayer perceptron, XGBoost, light gradient
boosting machine, and categorical boosting machine (CatBoost)
to construct the prediction models. These models were trained
and optimized on the training set, with the optimal parameters
determined using grid search and 5-fold cross-validation. The
next step involved validating the models’ discrimination and
calibration ability using the test set of the primary cohort and
the external cohort. The discrimination ability of different
models was compared using AUC and the area under the
precision-recall (PR) curve, along with accuracy, sensitivity,
specificity, positive predictive value, NPV, and F1-score. The
DeLong test was used for comparing AUC differences between
models. The calibration ability of different models was
compared using the calibration curves to assess the consistency
between predicted and observed values. The Shapley Additive
Explanations (SHAP) method was used to analyze variable
importance for the best-performing machine learning model.
Finally, decision curve analysis was used to evaluate the clinical
application values of each machine learning model, and an
interactive web page for easy clinical use was developed using
the Python Gradio framework.

Ethical Considerations
This study followed the principles of the Declaration of Helsinki
and was approved by the Ethics Committee of the First
Affiliated Hospital of Shandong First Medical University
(2024S657), and the informed consent was waived off by the
review boards due to the retrospective nature of this research.
All the images and tables presented in the manuscript and
supplementary materials were anonymized in accordance with
ethical standards, ensuring no personally identifiable information
could be discerned.

Results

Baseline Characteristics
This study enrolled 6270 eligible participants in the primary
cohort and 2157 in the external cohort. Over a 5-year period,
2610 participants (41.6%) in the primary cohort and 760 (35.2%)
in the external cohort progressed from prediabetes to diabetes,
with mean annual progression rates of 8.33% and 7.04%. The
characteristics of the primary and external cohorts are shown
in Table S1 in Multimedia Appendix 1. Over the 5-year
follow-up period, 510 participants were lost to follow-up in the

primary cohort. A comparative analysis of baseline
characteristics between the lost to follow-up group (n=510) and
the completed follow-up group (n=6270) revealed no statistically
significant differences in any observed variables (P>.05) as
shown in Table S2 in Multimedia Appendix 1. Given the
lost-to-follow-up–rate of 7.5% (510/6780) and 5.2% (127/2430)
in the primary and the external cohort respectively, the
demonstrated baseline equivalence between groups, we conclude
that the cases lost to follow-up are unlikely to compromise the
validity of the analytical outcomes.

Model Construction and Validation
The RFE-logistic feature selection algorithm finally screened
14 out of 42 health checkup variables using the training set of
the primary cohort, which were hematocrit, hemoglobin, RBC,
MONO, FBG, HDL/TC, LDL, HDL, creatinine, ALT/AST,
age, height, weight, and BMI. As illustrated in Figure S1 in
Multimedia Appendix 1, the RFE-logistic cross-validation
analysis demonstrated a plateau in AUC when reaching 14
features, with no significant improvement observed when
incorporating more features. As shown in Table S3 in
Multimedia Appendix 1, the RFE ranking system eliminated
lower-priority variables through iterative cross-validation (where
rank=1 denotes retained features, and higher ranks reflect earlier
elimination during the feature selection process). The
discrimination performances of the 7 machine learning models
on the test set and the external test set were shown in Figure 2
and Table 1, in which the ROC curves indicated that the
CatBoost model had the best performance on both of the test
sets (AUC 0.819) and the external test set (AUC 0.807), and
the DeLong test revealed that the differences in AUC values
for the models on 2 cohorts were statistically significant (P<.05).
The PR curve analysis further confirmed the superior
discriminative performance of the CatBoost model,
demonstrating significant advantages on both sets. In addition,
the CatBoost model showed the best accuracy (74.6%),
sensitivity (0.648), NPV (0.765), F1-score (0.68) on the test set,
and the best accuracy (75.9%), NPV (0.787), and F1-score
(0.626) on the external test set. The confusion matrix for the 7
machine learning models on both sets is shown in Figure S2 in
Multimedia Appendix 1.

Meanwhile, the calibration performances of the 7 models on
the test set and the external test set were evaluated using
calibration curves as shown in plots A and C in Figure 3, in
which the black curve corresponding to the CatBoost model
had been distributed closest to the dashed line in the middle,
indicating the best calibration ability in both sets. The clinical
application value of the 7 models on the test set and the external
test set were evaluated using decision curves as shown in plot
B and D in Figure 3, in which the area under the curve of the
CatBoost model reached the maximum, and when the threshold
probability was less than around 0.80, all the clinical decisions
made would be beneficial to the patients.
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Figure 2. Receiver operating characteristic curve and precision-recall curve curves of the 7 models on the test set and the external test set. Plots A and
B depict the model performances on the test set, and plots C and D present the model performances on the external test set. CatBoost: categorical
boosting; LightGBM: light gradient boosting machine; MLP: multiplayer perceptron; ROC: receiver operating characteristic; SVM: support vector
machine; XGBoost: extreme gradient boosting machine.
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Table 1. The metrics of model performance on the test set and the external test set.

F1-scoreNPVbPPVaSpecificitySensitivityAccuracyModels

The test set in the primary cohort

0.6480.7390.7380.8540.5770.739Logistic regression

0.6550.7450.7320.8460.5920.741Random forest

0.4170.6510.8340.9610.2770.677SVMc

0.6740.7620.7040.8060.6470.74XGBoostd

0.4770.660.680.8770.3670.665MLPe

0.6640.7510.7290.8380.610.744LightGBMf

0.680.7650.7150.8160.6480.746CatBoostg

The external test set

0.5590.7530.7370.9130.450.749Logistic regression

0.6240.7860.680.8520.5780.755Random forest

0.570.7580.7270.9040.4680.75SVM

0.6010.7760.6560.8420.5540.74XGBoost

0.5540.7540.6230.8360.4990.717MLP

0.5420.7470.750.9230.4240.747LightGBM

0.6260.7870.690.860.5720.759CatBoost

aPPV: positive predictive value.
bNPV: negative predictive value.
cSVM: support vector machine.
dXGBoost: extreme gradient boosting.
eMLP: multiplayer perceptron.
fLightGBM: light gradient boosting machine.
gCatBoost: categorical boosting.
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Figure 3. The calibration curves and clinical decision curves of the 7 models on the test set and the external test set. Plots A and B depict the model
performances on the test set, and plots C and D present the model performances on the external test set. CatBoost: categorical boosting; LightGBM:
light gradient boosting machine; MLP: multiplayer perceptron; SVM: support vector machine; XGBoost: extreme gradient boosting machine.

Feature Importance
The SHAP analysis of the best-performing CatBoost model is
shown in Figure 4. The top 6 variables contributing most to the
model were FBG, HDL, ALT/AST, BMI, age, and MONO,
where HDL and ALT/AST were negatively correlated with the
outcome, that is, protective against progression to diabetes, and
the rest were positively correlated and risky for progression to
diabetes. Baseline FBG was the most important factor affecting

the CatBoost model. In addition, the SHAP dependency plots
for the 6 features were shown in Figure 5, which showed the
correspondence between the change in the value of variables
and the change of importance to the CatBoost model indicated
by SHAP values. Finally, we constructed the user-friendly
interactive web interface of the prediction model for progression
from prediabetes to diabetes as shown in Figure S3 in
Multimedia Appendix 1.
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Figure 4. SHapley Additive exPlanations feature importance and summary plot of the CatBoost model. ALT: alanine aminotransferase; AST: aspartate
aminotransferase; FBG: fasting blood glucose; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol; MONO: monocyte
count; RBC: red blood cell.

Figure 5. The Shapley Additive Explanations dependency plots for the top 6 features. ALT: alanine aminotransferase; AST: aspartate aminotransferase;
FBG: fasting blood glucose; HDL: high-density lipoprotein cholesterol; MONO: monocyte count.

Discussion

Principal Findings
In this retrospective cohort study, we used 7 machine learning
algorithms to build and evaluate 5-year risk prediction models
for the progression from prediabetes to diabetes in 2 different
cohorts. Among them, the CatBoost model showed the best
performance in terms of discrimination and calibration. The
CatBoost model achieved the highest AUC values in both the
test set (0.819) and external validation set (0.807), outperforming

all other models. This indicates its exceptional ability to
distinguish individuals who will progress to diabetes from those
who will not. The model’s AUC values reflect good
discrimination for clinical use (AUC ≥0.8 is often considered
strong in risk prediction), placing it in the mid-to-high range of
published studies (AUC 0.67-0.87) and approaching top-tier
models [11-14]. The stability of AUC across internal and
external test sets (<2% difference) suggests that the 14 features
selected by RFE-logistic capture biologically and clinically
generalizable signals, rather than overfitting to cohort-specific
noise. Compared with the traditional logistic regression model,
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the CatBoost model’s improvement in AUC highlights the value
of ensemble algorithms in modeling complex interactions
between metabolic, hematological, and anthropometric variables.

Among the 7 evaluated models, the CatBoost algorithm also
demonstrated superior performance in sensitivity, NPV, and
F1-score. In disease screening and risk assessment contexts,
high sensitivity holds particular clinical significance as missed
diagnoses of high-risk patients may lead to severe health
consequences. Our study also took into consideration the
cost-benefit analysis of false-positive cases, systematically
balancing the economic and psychological burdens against
diagnostic sensitivity through optimized thresholds. The
CatBoost model exhibited exceptional capability in low-risk
population exclusion, achieving NPV of 76.5% and 78.7% in
2 cohorts. This performance positions it as an ideal solution for
resource-constrained health care settings, enabling efficient
allocation of medical resources to medium- and high-risk
subgroups.

The CatBoost model dominated the space of the precision-recall
curve, achieving the highest precision at different recall levels.
For example, at a recall of 0.648 in the test set, the model
maintained a highest precision of 0.715. This superiority implies
that CatBoost reduces unnecessary interventions; for every 100
patients flagged as “high-risk” by CatBoost, 71.5% would truly
progress to diabetes. In resource-constrained settings, this
precision directly translates to cost savings and reduced patient
anxiety. The decision curves further validated the clinical value
of the CatBoost model. When the threshold probability for
intervention was below 80%, the model provided a net benefit
over “treat all” or “treat none” strategies, which means the model
remains clinically beneficial across a wide range of risk
thresholds, accommodating varying risk tolerance among
patients and health care systems.

SHAP analysis of the feature importance identified FBG, HDL,
ALT/AST, BMI, age, and MONO as the top 6 variables
contributing the most to the CatBoost model, and an interactive
web interface for this model was constructed. This interface
provided caregivers with an easy tool to assess the 5-year risk
of progression to diabetes in patients with prediabetes. It can
be integrated into the health information system in China, which
could streamline risk assessment, allowing automated alerts for
high-risk prediabetic patients during routine health check-ups.
By stratifying patients into risk categories, clinicians can
prioritize high-risk individuals for intensive monitoring or early
lifestyle intervention, such as dietary changes, physical activity
plans, or pharmacological approaches in alignment with current
clinical guidelines. The web interface bridges the gap between
predictive analytics and clinical decision-making, advocating
for a paradigm shift toward data-driven, individualized
prevention strategies, emphasizing early intervention in high-risk
groups to curb diabetes progression.

Comparisons With Previous Work
The application of machine learning techniques has made
significant progress in the field of diabetes, opening up new
possibilities for early diagnosis and prevention. CatBoost is an
advanced machine learning algorithm designed for gradient
boosting with decision trees, applicable to a variety of tasks

including classification, regression, and ranking. It leverages
techniques such as ordered boosting, stochastic permutations,
and gradient-driven optimization to deliver superior results
[18-20]. Shojaee et al [18] developed a fasting blood glucose
status prediction model using the CatBoost algorithm based on
3376 adults older than 30 years at 16 comprehensive health
service centers in Tehran, Iran, which demonstrated good
performance with 0.737 AUC. Shiren et al [19] developed a
cutting-edge, interpretable risk assessment model for patients
with diabetes. The CatBoost algorithm significantly
outperformed the other methods in terms of AUC, delivering
an impressive average AUC of 90.47% across 4 diabetes-related
complications, namely coronary heart disease, diabetic
nephropathy, diabetic retinopathy, and nonalcoholic fatty liver
disease. Qiu et al [20] constructed a model capable of forecasting
the likelihood of cancer in individuals with type 2 diabetes by
using tumor biomarkers from a dataset of 5198 patients. The
CatBoost model yielded a favorable AUC of 0.852, which might
be helpful for early cancer detection and prevention. While
CatBoost offers notable advantages, it also has drawbacks. It
exhibits higher computational demands compared with
lightweight frameworks like light gradient boosting machine
(LightGBM), particularly with large datasets. Its performance
is sensitive to hyperparameter tuning, demanding significant
computational resources and time. In addition, the model’s
complexity makes interpretation challenging without external
tools like SHAP for transparency.

The variables selected from RFE-logistic algorithm have been
proven to be relevant to diabetes in different ways. Changes in
hematocrit can alter red blood cell ratios, affecting HbA1c test
results and causing overestimation or underestimation of true
blood glucose levels in type 2 diabetes [21]. HbA1c had
significant correlations with RBC and hemoglobin because
chronic hyperglycemia can exacerbate inflammation and alter
hematological parameters in diabetic patients [22]. HDL is a
protective factor against diabetes, while lower levels of HDL
are associated with increased insulin resistance and elevated
cardiovascular risk [23]. ALT, TC, triglycerides, HDL, and
LDL are clinically significant biomarkers associated with
diabetes, which serve as sensitive indicators of insulin resistance
and metabolic syndrome [24]. Studies also demonstrate BMI
is a modifiable risk factor for diabetes and its macrovascular
and microvascular complications. There are positive correlations
between BMI and key glycemic control parameters, FBG and
HbA1c, highlighting its role in β-cell dysfunction and systemic
insulin resistance [25]. The results of the feature importance
analysis are consistent with the other diabetes studies, where
FPG was the most important factor contributing to diabetes risk.
As the core diagnostic criterion for diabetes, FBG directly
reflects the pathological mechanisms of insulin resistance and
β-cell dysfunction. Even when FBG levels remain below the
diagnostic threshold for diabetes, persistent elevation can
accelerate β-cell functional failure through glucotoxic effects.
In addition, age, BMI, HDL as well as ALT/AST played
significant roles in influencing the risk of diabetes
[11-14,26-28]. Aging directly contributes to the decline of
pancreatic β-cell function and reduced insulin sensitivity. With
aging, diminished hepatic gluconeogenesis regulation and
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impaired glucose uptake efficiency in muscle tissues
progressively destabilize fasting glucose homeostasis, which
might underlie the critical transition from prediabetes to
diabetes. We also found that MONO was an important factor
contributing to diabetes risk. Monocytes release a variety of
inflammatory mediators and participate in the inflammatory
and injury processes in our body, and may prompt the
progression from prediabetes to diabetes [29,30].

Limitations
To the best of our knowledge, this study is the first to develop
a 5-year risk prediction model for the progression from
prediabetes to diabetes based on the Chinese population. China
faces a heavy disease and economic burden due to diabetes and
its complications, and identifying high-risk populations among
patients with prediabetes could reduce the health care burden
of diabetes by implementing lifestyle and pharmacological
interventions [31-33]. There are some limitations of our study.
First, due to the retrospective nature of this study, the absence
of some risk factors, such as smoking, drinking, and the family
history of diabetes may introduce residual confounding, while
the lack of longitudinal tracking of some variables during
follow-up could affect the predictive validity. Second, out of
operational practicality, we take HbA1c as the sole diagnostic
criterion for diabetes in this study. While HbA1c demonstrates

superior accuracy in reflecting long-term glycemic levels
[34-36], the exclusion of complementary assessments, such as
FBG, oral glucose tolerance test, and clinical symptom
evaluation, may introduce diagnostic bias, which might reduce
the generalizability of our prediction model. Third, the absence
of external validation in populations with distinct genetic
backgrounds may limit extrapolation to other ethnic groups. In
the future, we will establish prospective cohorts to include more
risk factors, diagnostic variables, and implement longitudinal
monitoring. In addition, we will validate our model across
diverse ethnic and geographic populations through multi-center
collaborations to enhance the generalizability.

Conclusions
In conclusion, we constructed and evaluated seven 5-year risk
prediction models for the progression from prediabetes to
diabetes using machine learning algorithms based on the Chinese
health checkup cohorts. The CatBoost model demonstrated the
best performance, suggesting its potential as an effective tool
in the field of diabetes prevention and management. We can
embed the model in electronic health records to flag high-risk
individuals during annual checkups, enable targeted allocation
of glucose monitoring resources, and facilitate early lifestyle
modification to these predicted high-risk patients to reduce
diabetes incidence and health care burdens.
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