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Abstract

Background: One of the main challenges with COVID-19 has been that although there are known factors associated with a
worse prognosis, clinicians have been unable to predict which patients, with similar risk factors, will die or require intensive care
unit (ICU) care.

Objective: This study aimed to develop a personalized artificial intelligence model to predict the patient risk of mortality and
ICU admission related to SARS-CoV-2 infection during the initial medical evaluation before any kind of treatment.

Methods: It is a population-based, observational, retrospective study covering from February 1, 2020, to January 24, 2023, with
different circulating SARS-CoV-2 viruses, vaccinated status, and reinfections. It includes patients attended by the reference
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hospital in Fuenlabrada (Madrid, Spain). The models used the random forest technique, Shapley Additive Explanations method,
and processing with Python (version 3.10.0; Python Software Foundation) and scikit-learn (version 1.3.0). The models were
applied to different epidemic SARS-CoV-2 infection waves. Data were collected from 11,975 patients (4998 hospitalized and
6737 discharged). Predictive models were built with records from 4758 patients and validated with 6977 patients after evaluation
in the emergency department. Variables recorded were age, sex, place of birth, clinical data, laboratory results, vaccination status,
and radiologic data at admission.

Results: The best mortality predictor achieved an area under the receiver operating characteristic curve (AUC) of 0.92, sensitivity
of 0.89, specificity of 0.82, positive predictive value (PPV) of 0.35, and mean negative predictive value (NPV) of 0.98. The ICU
admission predictor had an AUC of 0.89, sensitivity of 0.75, specificity of 0.88, PPV of 0.37, and NPV of 0.98. During validation,
the mortality model exhibited good performance for the nonhospitalized group, achieving an AUC of 0.95, sensitivity of 0.88,
specificity of 0.98, PPV of 0.21, and NPV of 0.99, predicting the death of 30 of 34 patients who were not hospitalized. For the
hospitalized patients, the mortality model achieved an AUC of 0.85, sensitivity of 0.86, specificity of 0.74, PPV of 0.24, and
NPV of 0.98. The model for predicting ICU admission had an AUC of 0.82, sensitivity of 1.00, specificity of 0.59, PPV of 0.05,
and NPV of 1.00. The models’ metrics presented stability along all pandemic waves. Key mortality predictors included age,
Charlson value, and tachypnea. The worse prognosis was linked to high values in urea, erythrocyte distribution width, oxygen
demand, creatinine, procalcitonin, lactate dehydrogenase, heart failure, D-dimer, oncological and hematological diseases, neutrophil,
and heart rate. A better prognosis was linked to higher values of lymphocytes and systolic and diastolic blood pressures. Partial
or no vaccination provided less protection than full vaccination.

Conclusions: The artificial intelligence models demonstrated stability across pandemic waves, indicating their potential to assist
in personal health services during the 3-year pandemic, particularly in early preventive and predictive clinical situations.

(J Med Internet Res 2025;27:e70674) doi: 10.2196/70674
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Introduction

At the end of 2023, the COVID-19 pandemic had produced
more than 766 million confirmed infections
(laboratory-confirmed tests, such as polymerase chain reaction
or antigen test), with 7 million deaths worldwide. In Spain, 13
million cases have been confirmed, with 121,000 deaths. In
Madrid, 2,004,209 were infected, with 21,246 deaths [1,2].

The Hospital Universitario de Fuenlabrada (HUF) is the
reference hospital for a population close to 220,000 inhabitants
in the south of Madrid. This means that HUF is the only hospital
where people from Fuenlabrada are admitted due to COVID-19.
It has attended to more than 5000 hospitalized patients for
COVID-19 with a mortality rate changing depending on the
vaccination status and the SARS-CoV-2 variants.

Massive vaccination campaigns have become the primary
strategy against the pandemic. Messenger RNA vaccines and
vaccines based on defective viral vectors have been the most
frequently administered vaccines in Spain [3-5]. Between
December 27, 2020, and October 14, 2021, the National Health
System notified that 90% of the target population received at
least 1 dose, and 88% completed the regimen, more than
40,700,000 people [6].

Physicians are aware of many factors associated with worse
prognosis (immunosuppression, diabetes, malignancy,
gastrointestinal symptoms such as nausea, vomiting, and
abdominal pain, respiratory symptoms such as shortness of
breath and chest pain, invasive mechanical ventilation, HIV
status, and metabolic acidosis were some of the most important)
and higher mortality (older age, male sex, diabetes,

hypertension, pneumonia, and end-organ failure) [7,8]. However,
the reasons why patients with similar demographics, vaccine
status, and risk factors have a different evolution are still
unknown. About these, previous models for predicting
COVID-19 mortality were often inadequate for individual-level
predictions due to several factors such as poor performance in
external validations, high variability in data and methodological
bias, inconsistent performance in older populations, dynamic
changes in the pandemic context, heterogeneity in study
populations, and technological and methodological limitations:
Early models often relied on single prediction techniques and
lacked robust validation, leading to limited generalizability and
applicability in diverse clinical settings.

The aim of this observational, retrospective, cohort study is to
develop at-admission predictive clinical models for mortality
and intensive care unit (ICU) admission using machine learning
(ML) techniques based on the clinical, epidemiological, and
analytical characteristics of the patients the first moment they
consult in the emergency department due to SARS-CoV-2
infection and before receiving any treatment. This model has
been created only considering those patients with COVID-19
who have needed hospital admission during the COVID-19
pandemic (3 years). Later, the model has been validated.

The artificial intelligence (AI) approach to predicting COVID-19
mortality or ICU admission has proven to be a significant
improvement over previous clinical tools due to its ability to
integrate and analyze a large number of complex and multimodal
variables, allowing for more efficient management of patients
and resources in hospital settings.
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ML techniques improve upon traditional models for several
reasons. They enable the creation of personalized, predictive
models that can analyze complex, high-dimensional medical
data and identify patterns that conventional statistical models
might miss. ML can handle large amounts of diverse data and
uncover nonlinear relationships between variables and outcomes
that traditional models might overlook. ML models can adapt
to evolving data distributions, unlike conventional models,
which may need manual recalibration as conditions change.
This study uses the Shapley Additive Explanations (SHAP)
method to determine which variables impacted the prediction
the most. Traditional models typically provide fixed coefficients,
but ML methods offer flexible, data-driven insight into relevant
features.

The study’s importance is fourfold: (1) the highly relevant
classification metrics obtained after model validation; (2) it
covers a population of 220,000 inhabitants in one of the areas
with a large number of infections in Madrid; (3) it is validated
using all infected patients who were attended at the hospital,
either admitted or discharged; and (4) patients have been
infected with all the circulating SARS-CoV-2 variants during
the pandemic.

Methods

Ethical Considerations
In 2020, the clinical research ethics committee of HUF approved
the “Database of COVID-19 Patients Treated at Hospital
Universitario de Fuenlabrada (FUENCOVID)” project (approval
20/39). Given the retrospective nature of the study and the large
number of patients included, obtaining individual informed
consent was not feasible. The study relied solely on data
previously collected during routine clinical care, and all data
were fully anonymized prior to analysis. According to the
policies of the ethics committee of HUF, and considering that
the study involved no direct patient contact or additional risk
to participants, the ethics committee determined that informed
consent was not required. No patients received any kind of
compensation.

Study Design
This population-based, observational, and retrospective study
covers 3 years of evolution since the beginning of the
COVID-19 pandemic, with all the patients attending the only
reference hospital in the city of Fuenlabrada (Madrid, Spain).
All the processing has been performed using Python (version
3.10.0; Python Software Foundation) and scikit-learn (version
1.3.0) [9].

Data Collection
The objective was to create a large-scale database containing
anonymized, structured, and nontraceable medical information
of patients with SARS-CoV-2 infection who were treated at the
hospital, whether admitted or discharged. The database included
records of 11,975 patients.

Baseline epidemiological, clinical, laboratory, therapeutic,
vaccine status, and radiological data were collected at admission
for all patients. Additional information on clinical evolution

and COVID-19 treatment during hospitalization was also
recorded, amounting to over 700 variables. The Integrating
Biology and Bedside data warehouse was used, enabling
standardized data acquisition and incorporating features such
as postdischarge disease evolution and mortality records. Deaths
occurring during hospitalization or within 30 days after
discharge were considered COVID-19–related.

Data Preprocessing
In addition to standard preprocessing procedures, several
additional steps were taken: (1) categorical features were
encoded while preserving their order relation, (2) out-of-range
values in features were removed, and (3) each patient’s initial
date was determined as their first contact date with the hospital
attention, and all subsequent dates, including vaccination dates,
were recalculated relative to this initial date.

Missing values in the dataset were handled using the separate
class method. The missing values of each feature are randomly
distributed across the records and neither introduce any
uninformed bias of the measurement or recording procedure
nor provide any insight into the target variable in the prediction
[10]. The datasets contained a high number of features relative
to the number of instances, which could potentially introduce
noise and reduce accuracy. To address this, recursive feature
elimination with k-fold cross-validation was applied. This
method selected the minimum subset of features that achieved
the best model accuracy, avoiding overfitting by using
cross-validation [11].

Datasets
Two datasets were created for training and testing ML models
using data from patients hospitalized from February 2020 to
April 2022. The first dataset (exitus dataset) focused on
predicting patient mortality caused by SARS-CoV-2 infection,
while the second dataset (ICU dataset) aimed to predict
admission to the ICU during the hospital stay. Both datasets
experienced class imbalance, which could negatively impact
model performance. Two oversampling techniques—synthetic
minority oversampling technique and SMOTETomek
[12]—were tested to address this situation. Both are based on
generating new synthetic samples (data augmentation) of the
minority class along the segment connecting actual minority
class samples. SMOTETomek adds a cleaning step by removing
the samples in the majority class closest to those in the minority
class. Both techniques were used to evaluate whether new
synthetic samples could improve the model performance. Since
there are no standardized tests for assessing the utility of
synthetic data, we relied on the improvement of the models’
performance metrics to evaluate their usefulness. Models’
metrics did not improve. Given the good performance of the
models without synthetic data and concerns regarding the
realism of the synthetic data when applied to complex,
real-world medical scenarios [13], we decided not to use any
data augmentation technique.

The models were validated using separate datasets: a validation
dataset of hospitalized patients who were ultimately admitted
from April 2022 to January 2023 and a validation dataset of
nonhospitalized (discharged) patients between February 2020
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and January 2023. All datasets share the same features and
preprocessing procedures, including only the features known
at admission.

Random Forest
Random forest (RF) is a supervised ML technique that uses an
ensemble of decision trees for classification and regression. It
combines the outputs of multiple trees to provide a probability
of positive classification for a given input based on the ratio of
decision trees that return a positive classification. The higher
the probability, the stronger the confidence that the patient’s
data effectively align with patterns associated with a positive
outcome [14]. A threshold value should be provided so that a
binary yes or no outcome is returned. If risk stratification is
required rather than a binary outcome, the probability scores
generated by the RF model can be used. RF is favored for three
reasons: (1) it achieves accuracy comparable to deep learning
models in applications without strong temporal or spatial
correlation among data [15], (2) it offers better interpretability
compared to deep learning models [16], and (3) previous studies
have ranked RF among the top ML techniques for biomedical
prediction models [17]. The architecture of an RF model is
determined by several hyperparameters, which are empirically
tuned using a 10-fold cross-validation grid search to optimize
performance and minimize model size [18].

Metrics and Interpretability
In data with normal distributions, the mean and SD are used,
while for nonnormal distributions, the median and IQR are used.
Due to the imbalance in the dataset, the accuracy metric is not
recommended, as it focuses on improving the true positive rate
of the majority class. To address this, the area under the receiver
operating characteristic curve (AUC) is chosen as the metric to
optimize during model training.

The SHAP technique is used to interpret the importance of
features in predictions. SHAP is an agnostic technique that uses
Shapley values from coalitional game theory to explain the
significance of features in predicting an instance’s outcome
[19]. SHAP calculates the difference in model output by
including or excluding individual features. This process yields
a Shapley value for each feature, providing insights into both
its contribution and its impact on the model’s predictions. The
SHAP method assesses the contribution of each feature value
to the classification, taking into account the removal of the
prevalence. This knowledge becomes crucial for clinicians to
identify the most influential variables that significantly affect
the prediction. It is essential to highlight that the significance
of SHAP values does not rely solely on their magnitude, as
lower SHAP values do not necessarily imply less importance.
If the difference between the SHAP base value (prevalence)
and the classification threshold is small, even a low SHAP value
for a feature can contribute to a positive classification.

Furthermore, the SHAP value for a specific instance and feature
can be decomposed into the interactions of the feature with all
other feature values for that instance. The SHAP values of these
interactions quantify the importance of combinations of feature
values for classifying an instance.

Results

Dataset Characterization
The analysis of hospitalized patient records used for model
training and testing finds that 2729 (54.6%) were male with an
average age of 61.0 (SD 16.7) years, average BMI of 29.3 (SD
5.2), and average disease evolution time of 7.2 (SD 4.2) days.
The remaining 2269 (45.4%) were female with an average age
of 62.1 (SD 19.2) years, average BMI of 30.2 (SD 6.3), and
average disease evolution time of 7.4 (SD 4.5) days. The median
time to death since hospital admission was 11.9 (IQR 5.6-18.2)
days, and the median time to ICU admission was 2.8 (IQR
0.8-4.8) days.

Figure 1 [20,21] illustrates the trends in admissions, mortality
rate, and age over the study period. Data have been smoothed
using a moving 14-day sliding window average to filter
high-frequency stochastic behavior. Spain has experienced 7
waves of SARS-CoV-2 infections, leading to 7 hospital
admissions waves in HUF [20].

The exitus dataset contains 4710 patients with 126 features
known at admission per patient, with 472 (10%) patient deaths
during admission or in the first 30 days after discharge. The
ICU dataset has 4998 patients with 124 features per patient and
409 (8%) ICU admissions. The prevalence of COVID-19
infections for each SARS-CoV-2 main variant is presented in
Table 1.

Feature selection using recursive feature elimination with k-fold
cross-validation and AUC resulted in 60 selected features for
both mortality and ICU admission prediction. Figure 2 illustrates
how models’ AUCs remain stable, with values equal to or
greater than 0.90, up to 60 features. Note that while the number
of features is the same, the selected features differ depending
on whether the prediction is for mortality or ICU admission.
Finally, the exitus dataset was reduced to 35 features, while the
ICU dataset contained 61 features.

The validation dataset (April 2022 to January 2023) contains
240 hospitalized patients with 43 deaths and 5 ICU admissions
and 6737 nonhospitalized patients with 34 deaths within 30
days after discharge. Patients who died more than 30 days after
discharge were eliminated from the validated dataset to avoid
the class noise [22]. The datasets’ missingness is random and
unrelated to the outcomes. Of all the patients predicted by our
model to die, 21%-25% actually did. Conversely, among the
patients predicted by our model to survive, 98%-99% did not
die.
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Figure 1. Moving 14-day sliding window average of the evolution in the number of admissions, mortality rate, and age (in years) between January
2020 and April 2022. Background colors represent the dominant SARS-CoV-2 variants over time: blue is Wuhan, red is the Alpha variant, green is the
Delta variant, and magenta is the Omicron variant. The arrows mark the starting dates for the vaccination of different collectives.

Table 1. Number of patients and proportion of positive infection cases (prevalence) per dataset for the 4 variants.

ICUa datasetExitus datasetVariant

PrevalencePatients (n=4998), n (%)PrevalencePatients (n=4710), n (%)

0.061836 (36.7)0.111721 (36.5)Wuhan

0.08983 (19.6)0.09924 (19.6)Alpha

0.101377 (27.5)0.101293 (27.4)Delta

0.10802 (16)0.09772 (16.4)Omicron

aICU: intensive care unit.
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Figure 2. AUC of the random forests for the different number of variables for death (exitus) and ICU admission (ICU). AUC: area under the receiver
operating characteristic curve; ICU: intensive care unit.

Model Training and Test
The best RF parameters are (1) 600 estimators, (2) Gini metric,
(3) maximum depth of 20, and (4) 8 features per tree. These
values have been obtained using Optuna, a framework for
searching optimal hyperparameters using Bayesian optimization.

The evolution of SARS-CoV-2 variants with different clinical
metrics raises the question of whether predictive models per
variant can improve prediction performance. To investigate this,
we created 5 models per dataset: 1 global model trained with
all variants (global) and 4 per-variant models (Wuhan, Alpha,
Delta, and Omicron). Figure 3 compares the AUC, true positive
rate, and true negative rate—metrics not affected by the
prevalence of the positive class—of the 5 models per variant.

No clear winner emerged among the models. The global model
performs better in predicting mortality for the latest variants
but performs worse in predicting ICU admission. This behavior
is also observed in the Interpretation section.

Since models perform similarly, we present the detailed test
metrics for the global model across all variants after evaluating
thirty 10-fold cross-validations. The exitus predictor has a mean
AUC of 0.92 (SD 0.01), mean best threshold of 0.14 (SD 0.03),

mean sensitivity of 0.89 (SD 0.05), mean specificity of 0.82
(SD 0.04), mean positive predictive value (PPV) of 0.35 (SD
0.04; 134/439), and mean negative predictive value (NPV) of
0.98 (SD 0.06; 956/974). ICU predictor has a mean AUC of
0.89 (SD 0.01), mean best threshold of 0.14 (SD 0.05), mean
sensitivity of 0.75 (SD 0.05), mean specificity of 0.88 (SD 0.05),
mean PPV of 0.37 (SD 0.10; 92/223), and mean NPV of 0.98
(SD 0.01; 1242/1275). Figure 4 presents the receiver operating
characteristics (ROCs) of both predictors.

Notably, both predictors exhibit very high NPVs, indicating
effective classification for most (>90%) hospitalized patients.
In addition, PPVs and specificities allow for the detection of
patients who will not die or require ICU admission, advising
clinicians to pay more attention to those patients who could do
it. These results are consistent regardless of the predominant
SARS-CoV-2 variant.

On average, across all model evaluations, the mortality
prediction requires at least 70 trees returning a positive outcome
to classify a case as positive, whereas the ICU prediction
requires 94 trees to do the same. The lower number of features
needed for mortality prediction (35 features) compared to ICU
prediction (61 features) aligns with this finding (Figure 2).
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Figure 3. Comparison of the AUC, TPR, and TNR metrics values for the 4 predominant variants of SARS-CoV-2 for the per-variant and global models
for both datasets. Abscissas represents the value of the metrics, and the ordinate represents the 4 variants grouped by metric. Green bars for each variant
represent the metric of the per-variant model of that variant; yellow bars represent the metric of the global model for that variant. (A) Mortality predictor
model and (B) ICU admission predictor metrics. AUC: area under the receiver operating characteristic curve; TNR: true negative rate; TPR: true positive
rate.
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Figure 4. Global predictors ROCs for mortality and ICU admissions.

Model Validation
Model validation using new records confirms the performance
of the global models. With validation hospitalized dataset, the
exitus global model has a sensitivity of 0.86, specificity of 0.74,
PPV of 0.24 (18/79), NPV of 0.98 (160/163), and AUC of 0.85.
The ICU global predictor has a sensitivity of 1.00, specificity
of 0.59, PPV of 0.05 (5/106), NPV of 1.00 (0/151), and AUC
of 0.82.

With validation nonhospitalized dataset, the exitus global model
has sensitivity of 0.88, specificity of 0.98, PPV of 0.21 (30/113),
NPV of 0.99 (4/6590), and AUC of 0.95. Especially relevant is
that the model was able to predict the mortality of 30 of 34
patients who were not hospitalized.

Interpretation

Mortality
Figure 5 presents the SHAP value of the top 40 features for the
prediction of a patient’s mortality. Age, Charlson value, and
tachypnea symptoms are the most important features, and the
higher their values, the worse the prognosis, whereas low values
are protective. High values in urea, erythrocyte distribution
width (EDW), oxygen demand in emergencies, creatinine,

procalcitonin, lactate dehydrogenase (LDH), heart failure,
D-dimer, oncological and hematological diseases, neutrophil,
and heart rate indicate a worse prognosis, while higher values
of lymphocytes and systolic and diastolic blood pressures are
associated with a better prognosis.

An age cohort analysis concludes that a high SHAP value has
a greater impact on patients aged 65 years and older. The
importance of vaccination is evaluated with a 3-cohort analysis
(0, 1, and 2 doses). The results are congruent with the fact that
not having been vaccinated or receiving only 1 dose of vaccine
is less protective than being completely vaccinated (in our series,
only 17 patients have received the Ad26.COV2.S vaccine
[Janssen vaccine], and of them, only 10 have received only 1
dose of vaccine).

To evaluate features’ interactions, 60×60 analyses were
performed using the SHAP interaction values. We reduce this
number by focusing on those with a peak SHAP value above
0.15 (the first 24 features in Figure 5 that account for up to 80%
of the mean SHAP value) and when the interaction peak value
among the features accounts for more than the 15% of the
overall autointeraction SHAP value of the feature. Table 2
presents the interactions that meet the selection criteria.
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Figure 5. Detailed SHAP values of the 40 most important variables for the exitus model prediction. The red color means a high variable value, whereas
the blue one means a low value. Positive SHAP values mean a high impact on the positive of the instance. ALT: alanine aminotransferase; AST: aspartate
aminotransferase; COPD: chronic obstructive pulmonary disease; SHAP: Shapley Additive Explanations.

Table 2. Most important interactions between features for mortality prediction.

Interaction withFeature

DyspneaAge

Heart rateAge

Systolic blood pressureAge

Oncological diseaseCharlson

LeukocyteNeutrophil

Figure 6 presents the interaction between systolic blood pressure
and age: systolic blood pressure above ≈100 mm Hg is protective
in older people and below 100 mm Hg is protective for young
people.

The SHAP values of the 10 most important features are analyzed
over time to detect variations due to changes in the dominant
SARS-CoV variant. No significant changes are observed,
consistent with the fact that customized models per variant do
not lead to performance improvements.
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Figure 6. Systolic blood pressure (mm Hg) and age (years) interactions for mortality prediction measured using the SHAP interaction metric. SHAP:
Shapley Additive Explanations.

ICU Admissions
Figure 7 displays the SHAP values of the top 40 features for
predicting ICU admission. The most important features are a
high extension in pulmonary infiltrate in the radiology report,
tachypnea, LDH, BMI, C-reactive protein, and leukocyte.

Features such as creatinine, EDW, and procalcitonin have
ambiguous interpretations, as both low and high values
contribute to the prediction. Figure 8 provides an example of
this behavior for EDW.

Age and vaccination status are not included in the top 10
features, congruent with previous cohorts’ analysis and with
the fact that a high ratio of the oldest patients were not admitted
to the ICU in the first wave when the median patient’s average
age in the ICU was 65 (SD 14) years. This means that not all
the patients who died were admitted to the ICU. This was more

evident during the first wave when older people in their 80s
were not admitted to the ICU due to a lack of available beds,
as the health care system was overwhelmed.

We define the critical interactions between features as those
with a mean absolute SHAP value greater than 0.03 (the top 30
features in Figure 7), which together account for 80% of the
total mean SHAP value. Additionally, the mean absolute
interaction value between these features must contribute more
than 15% of the feature’s own autointeraction SHAP value.

Figure 9 exemplifies 2 interactions. Figure 9A illustrates that
bilateral pulmonary infiltrate (high values) combined with low
lymphocyte counts are associated with an increased probability
of ICU admission, but a higher lymphocyte count decreases the
ICU admission probability. Figure 9B illustrates a similar
behavior for EDW and in combination with pulmonary infiltrate
observed on radiography.
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Figure 7. Detailed SHAP values of the most important features for the ICU admission prediction. The red color means a high value of the feature,
whereas the blue one means a low value. Positive SHAP values mean a high impact on the positive of the instance. ALT: alanine aminotransferase;
AST: aspartate aminotransferase; HUF: Hospital Universitario de Fuenlabrada; Rx: radiography; SHAP: Shapley Additive Explanations.

Figure 8. SHAP values for erythrocyte distribution width (in percentages) in the ICU dataset. SHAP: Shapley Additive Explanations.
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Figure 9. Feature interactions measured using the SHAP interaction metric. (A) Interaction between lymphocyte count (mL–1) and pulmonary infiltrate
as observed on Rx (1 means no infiltrate, 2 is unilateral infiltrate, and 3 is bilateral infiltrate). (B) Interaction between erythrocyte distribution width (in
percentages) and pulmonary infiltrate (same scale as mentioned earlier). Rx: radiography; SHAP: Shapley Additive Explanations.

Discussion

Principal Findings
In this work, we have developed and validated predictive models
of mortality and admission to the ICU to be used by clinicians
in the first patient assessment using records of nearly 11,000
patients of a population of 220,000 inhabitants in the
Fuenlabrada area. We have trained the AI models with nearly
5000 patients who needed hospital admissions throughout the
pandemic. Subsequently, we have validated the models using
data from over 6000 patients from the city population collected
in a different period. Our AI-based models enable us to predict
ICU admission and mortality on a case-by-case basis, taking
into account different factors such as age, medical history,
analytical data, vaccination status, and the date of infection (that
indirectly estimates the circulating strain of SARS-CoV-2) at
the moment of diagnosis of SARS-CoV-2 infection. The model’s
originality is that it can help clinicians to predict “yes or no,”
whether a concrete patient will die or need ICU admission at
its first evaluation at the hospital.

RF provides a probability score based on the ratio of decision
trees that return a positive classification. A threshold value
should be provided so that a binary yes or no outcome is
returned. The ROC curves in Figure 4 illustrate how the
sensitivity and specificity of the model change with the chosen
threshold. Therefore, the model does not inherently produce a
strict yes or no classification but rather assigns a probability
that can be converted into a binary decision based on a
predefined threshold. The models in this work use a threshold
of 0.14 (Figure 4), determined by the elbow of the ROC curve.
This point indicates the optimal trade-off between sensitivity
and specificity, making it a reference for selecting the best
classification threshold.

There are many pre-existing prediction models for mortality or
ICU admission among patients with COVID-19, but most give
probabilities and highlight the population characteristics that
predict the patient’s outcome. Few of them apply to a specific
concrete patient, as our model does. Likewise, our model is also
a pandemic and a population model.

Some of the analytical variables we found to be associated with
mortality have been described in other studies. Hence, several
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studies have identified age as the strongest predictor of mortality
[23].

An analytical value that deserves to be mentioned is EDW,
which is associated with higher mortality in our work. Our
findings are consistent with those in the review of Lee et al [24],
which included a meta-analysis of 14,866 patients from 10
studies and found that higher levels of EDW were associated
with adverse outcomes in patients with COVID-19.

In this sense, there are works, in which red cell distribution
width is associated with mortality in patients with COVID-19
who are nonanemic. These associations were independent of
age, sex, race, and the Charlson index [25].

Furthermore, we observed a shift toward older patients requiring
hospital admission since January 2022, likely due to more than
5,390,000 (80%) of the Madrid population being fully
vaccinated, and admissions occurred mainly in older patients
with more comorbidities and patients with immunosuppression.
While overall admissions decreased, a higher proportion of
hospitalizations occurred among individuals aged 65 years and
older [26].

Several predictive models related to the severity and prognosis
in SARS-CoV-2 infections have been published. Hudda et al
[27] reviewed 19 studies, including 7 (37%) focused on model
development, 2 (11%) involved external validation of existing
models, and 10 (53%) addressed both the development and
external validation of the same model.

Asteris et al [28] developed an artificial neural network model
based on laboratory indices at admission, achieving high
accuracy in predicting ICU hospitalization. They used data from
248 adult patients with COVID-19 for database creation,
training, and model development. The 5 most important
laboratory indices were the neutrophil to lymphocyte ratio,
LDH, fibrinogen, albumin, and D-dimer. The best artificial
neural network model achieved an accuracy of 95.97%, a
precision of 90.63%, a sensitivity of 93.55%, and an F1-score
of 92.06%, as verified in the validation cohort [28].

Moslehi et al [29] implemented a generalized neural additive
model to predict mortality in more than 2000 hospitalized
patients. A total of 22 baseline features, including demographic
information and clinical biomarkers, were collected. The model
achieved an accuracy of 0.84 [29].

Yu et al [30] developed various models to predict in-hospital
mortality in patients with COVID-19 during their first day of
hospitalization using 138 patient records. Advanced age and
the abnormal expression of certain cytokines were found to be
closely associated with a worse prognosis. The accuracy of the
logistic regression, RF, and decision tree models was 87%, 80%,
and 86%, respectively [30].

Our mortality prediction model achieved an AUC of 0.90, with
a sensitivity of 0.89, specificity of 0.76, PPV of 0.31, and NPV
of 0.98. The model for predicting ICU admission yielded an
AUC of 0.89, with a sensitivity of 0.74, specificity of 0.90, PPV
of 0.41, and NPV of 0.97. Notably, both models exhibited high
NPV, suggesting their effectiveness in identifying patients at
low risk of mortality or ICU admission. This is particularly

relevant, given that 4238 (90%) of hospitalized patients
survived, and 4589 (92%) did not require ICU admission.

Furthermore, the model’s performance is independent of the
circulating SARS-CoV-2 variant, demonstrating stability in
both testing and external validation. A key advantage is its
ability to handle missing values natively, allowing patient
classification even when some data are unavailable.

To implement the model into a hospital triage system, an
application should be developed that is accessible from the
hospital’s digital interface and automatically collects the clinical,
analytical, and epidemiological data defined by our model in
the evaluation of the patient in the emergency department. This
application would perform the calculation used by the model
for its prediction, providing an automated response with PPV
and NPV, for example, for patient mortality—risk of death: yes
or no.

Patients with a no risk of death result could be discharged
thinking about the high NPV of the model prediction. Patients
with a “yes” risk of death result should be evaluated for hospital
admission, or they could be discharged only if they are clinically
stable with no supplemental oxygen requirements and with daily
clinical follow-up.

This study stands out for its robust validation, which is
uncommon among other AI-based predictive models for
COVID-19. The validation cohort includes hospitalized patients,
potentially infected with Omicron variants, as well as a
significant number of patients who were discharged from the
emergency department without hospitalization. The model
successfully identified most patients who died within 30 days
after hospital discharge in the validation cohort (30/34 deaths).
We do not know why these patients were not admitted, as
hospitalization decisions were made by their personal
physicians. Most of these cases occurred during the first wave
when the overwhelming health care crisis and epidemic
conditions may have influenced such decisions. Nevertheless,
we believe this does not impact our analysis, as the model is
trained on patients’ initial clinical assessment. As hospitalization
decisions are independent of the model, they do not influence
its training process or predictions.

Some Limitations of Our Study
This study is a single-center retrospective study. The results
obtained may be influenced by the number of patients
hospitalized during each wave and could be specific to periods
dominated by a particular SARS-CoV-2 variant. However, our
global model has demonstrated stability in these contexts and
has also been validated using data from a different period and
with patients distinct from those used to create the predictive
model.

Another limitation is that our model was developed using data
from 5000 patients and validated with another 6000 patients,
all belonging to the same region of Spain (the city of
Fuenlabrada). It would be of interest to apply this model to other
regions in Spain or other countries worldwide to assess its
generalizability.
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Conclusions
The scientific community has increasingly focused on
integrating AI into COVID-19 predictive modeling. RF
techniques were predominantly used in papers published from
2019 to 2023. However, most studies lacked external validation,
which hindered reproducibility and applicability to diverse
datasets. None of these studies covered the entire pandemic
period, and nearly all involved fewer than 5000 patients. While
the models demonstrated moderately good performance, with
AUC values above 0.7, data collection often included
demographics, clinical records, laboratory results, and
pharmacological studies, but the applicability settings of these
models were often unspecified.

Our study is unique, as it represents a population-based study
in a city reflective of the Spanish population. Unlike other
studies, it covers a 3-year pandemic period. We developed an
AI predictive model for COVID-19–related mortality and ICU

admission, which was validated with patients different from
those used to create the model. This model covers a 3-year
pandemic period, demonstrating its usefulness during both pre-
and postvaccination periods. Ethnicity could likely enhance the
model’s utility, especially in Southern Europe. We discuss
ethnicity because this study has been conducted in a
Mediterranean country, specifically in a city with 217,184
inhabitants, where 195,465 (90%) of the population is Spanish
and 23,337 (10.7%) are immigrants (n=5991, 2.8% from Central
and South America). The model, based on ML, can be
automatically applied when a patient seeks medical attention.
It is valuable for identifying patients requiring hospitalization
and those eligible for home care. This multidisciplinary study,
conducted by clinicians and engineers, used data from over
12,000 patients and extensive covariables. Our model offers
practical applicability in daily clinical practice, providing a clear
risk assessment for mortality and ICU admission.
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