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Abstract

Background: The development of automatic emotion recognition models from smartphone videos is a crucia step toward the
dissemination of psychotherapeutic app interventions that encourage emotional expressions. Existing models focus mainly on
the 6 basic emotions while neglecting other therapeutically relevant emotions. To support this research, we introduce the novel
Stress Reduction Training Through the Recognition of Emotions Wizard-of-Oz (STREs WoZ) dataset, which contains facial
videos of 16 distinct, therapeutically relevant emotions.

Objective: This study aimed to develop deep learning—based automatic facial emotion recognition (FER) models for binary
(positive vs negative) and multiclass emotion classification tasks, assessthe models' performance, and validate them by comparing
the models with human observers.

Methods: The STREs WoZ dataset contains 14,412 facial videos of 63 individuals displaying the 16 emotions. The selfie-style
videos were recorded during a stress reduction training using front-facing smartphone cameras in a nonconstrained laboratory
setting. Automatic FER models using both appearance and deep-learned features for binary and multiclass emotion classification
were trained on the STREs WoZ dataset. The appearance features were based on the Facial Action Coding System and extracted
with OpenFace. The deep-learned features were obtained through a ResNet50 model. For our deep learning models, we used the
appearance features, the deep-learned features, and their concatenation asinputs. We used 3 recurrent neural network (RNN)—based
architectures: RNN-convolution, RNN-attention, and RNN-average networks. For validation, 3 human observerswere also trained
in binary and multiclass emotion recognition. A test set of 3018 facial emotion videos of the 16 emotions was completed by both
the automatic FER model and human observers. The performance was assessed with unweighted average recall (UAR) and
accuracy.

Results: Models using appearance features outperformed those using deep-learned features, as well as models combining both
feature types in both tasks, with the attention network using appearance features emerging as the best-performing model. The
attention network achieved a UAR of 92.9% in the binary classification task, and accuracy values ranged from 59.0% to 90.0%
in the multiclass classification task. Human performance was comparable to that of the automatic FER model in the binary
classification task, with a UAR of 91.0%, and superior in the multiclass classification task, with accuracy values ranging from
87.4% t0 99.8%.
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Conclusions: Future studies are needed to enhance the performance of automatic FER modelsfor practical usein psychotherapeutic
apps. Neverthel ess, this study represents an important first step toward advancing emotion-focused psychotherapeutic interventions

via smartphone apps.

(J Med Internet Res 2025;27:€68942) doi: 10.2196/68942
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Introduction

Background

Emotions are considered essential for human experience and
allow individuas to respond adaptively to their environment
[1]. Emotions are complex processes, which include behaviora,
cognitive, motivational, and physiological components in
addition to subjective experience, and most mental disorders
are accompanied by emotional disturbances [2]. The
most-researched psychotherapy approach, cognitive behavioral
therapy, has mainly focused on changing a patient’s behavior
and cognition for a long time, but recent developments
emphasi ze theimportance of working with a patient’'s emotional
states to achieve therapeutic changes [3]. The assumed
relationship between emotional expression during therapy and
therapy outcomes is also supported by meta-analytic evidence
[4]. Onechallengein modern psychotherapeutic careisthelack
of availability of evidence-based treatment, resulting in alarge
care gap [5]. To bridge this gap and waiting times for
psychotherapy, researchers are developing app-based
interventions delivered on smartphonesthat are easily accessible
and easy to disseminate [6]. Interventions fostering emotional
expressions, however, are difficult to integrate into
psychotherapeutic apps. To support the therapeutic process,
such apps would need to reliably recognize the emotional
expressions shown by patients and be ableto provide appropriate
feedback. Thus, there is a need for automated emotion
recognition that can be integrated into psychotherapeutic apps
with comparable performance to humans in detecting patients
emotional states.

There are 2 main theoretical frameworks to characterize
emotional states: the discrete and the dimensional model. The
discrete model assumes that emotions can be grouped into
distinct and discrete categories. In thisregard, the most popular
theory is basic emotion theory (BET) [7], which proposes the
existence of 6 basic emotions (ie, anger, fear, happiness, sadness,
disgust, and surprise) that are universal and characterized by a
unique pattern of facial muscle movements. The dimensional
model, by contrast, assumes that emotions can be characterized
by more or less pronounced expressions on different dimensions.
Thecircumplex model of affect [8], for example, maps emotions
on the 2 dimensions of valence and arousal.

One am of working with emotions in psychotherapy is that
patients learn to recognize and differentiate distinct emotional
states and make use of their unique features to achieve certain
goals[2]. Emotions in such tasks are better conceptualized by
discrete models, which is why our work focuses on them.
However, the notion of only 6 basic emotions, as proposed by
the BET, has been challenged [9], and in psychotherapy, more
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than these 6 emotions are considered relevant. For example,
emotions such as calmness or confidence can be used to support
therapeutic change [10]. Therefore, automatic facial emotion
recognition (FER) that can reliably recognize more emotional
categories that are relevant to therapeutic contexts should be
developed.

Currently, there are different approaches to assessing emotional
statesfor automati c emotion recognition. Contact-based methods
use physiological sensors to derive emotional states from, for
example, heart rate (variability), skin conductance, or muscle
tension [11]. Such methods are rather accurate but obtrusive
and cannot be integrated into smartphone apps without the help
of additional devices. Contactless methods exploit built-in
smartphone sensors, such as the camera, the microphone, the
GPS, the accelerometer, the gyroscope, the compass, and the
light. (refer to the review by Kotakowska et al [12]). Among
the contactless, nonobtrusive methods, emotion recognition
researchers mainly focused on the study of speech and facial
expressions recorded using embedded microphonesand cameras
[12]. Facial expressions, in particular, convey much information
specific to emotional states [13] and are very sensitive to
emotional changes[14]. Facia expressions can be encoded with
the Facial Action Coding System (FACS) devel oped by Ekman
and Friesen [15]. The FACS alows the description of all facial
actions with the help of 44 facial action units (FAUs), which
reflect changes in a predefined set of facial muscles. Specific
patterns of action units can then be categorized into distinct
emotional expressions.

Automatic FER has been explored by several studies, with many
approaches relying on FACS and multiple deep learning
methods (eg, [16-19]).

Traditiona FER systems primarily analyze cropped facia
images[20,21], sometimesincorporating additional inputs such
as optical flow [21] or phase difference [20] to enhance
recognition in videos. Facial features are commonly extracted
using convolutional neural networks (CNNSs), which are often
pretrained on emotion datasets and frozen during training
[20,22]. Residua neural network (ResNet) 50, known for its
strong performance in facial recognition tasks, has proven to
be a robust feature extractor for FER [23,24]. In addition,
MobileNetV2 and InceptionV3 have been explored in FER,
with a study showing that InceptionV3 outperforms
MobileNetV 2 in video-based emotion recognition [25].

In addition to deep learning—based feature extraction,
handcrafted features remain relevant in FER. Techniques such
as Gabor filters, pyramid histogram of orientated gradients,
histogram of orientated gradients, and scale-invariant feature
transform have been widely used. Among these, FAUs are the
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most commonly used handcrafted features for FER [26]. The
emergence of Automatic Facial Coding has further enhanced
FER by combining FAUs with machine learning techniques to
facilitate efficient facial expression analysis[27]. Multiplefacial
features have been successfully processed together in single
models to improve FER systems [20-22].

With the advancement of Transformer-based models, Vision
Transformers (ViTs) are increasingly being explored for FER
because of their ability to leverage long-range dependencies
across image patches. Unlike CNNs, ViTs do not rely on
convolutional operations but instead partition images into
patches and process them using sel f-attention mechanisms[28].
When fine-tuned on large-scale emotion datasets, ViTs
demonstrate promising results in detecting subtle facial
expressions [29,30]. The Expression Snippet Transformer
enhances facial expression recognition by dividing it into
intrasnippet  and intersnippet modeling. It uses an
attention-augmented feature extractor for detailed intrasnippet
encoding and a shuffled snippet order prediction head to capture
subtle motion variations [31]. Kim et al [32] used a Swin
Transformer architecture within a 3-stream network that
integrates visual, temporal, and audio modalities to enhance
expression recognition performance.

Beyond facial expressions, multimodal approaches have
expanded FER to incorporate additional modalities, such as
audio and text. Recent multimodal approaches use CNNSs that
process multiple inputs, including facial frames, optical flow,
and mel spectrograms, to recognize emotions [33]. Another
approach uses DistilROBERTa, a large language model
fine-tuned with a combined textual representation of audio and
visual features (FAUS). It uses a rule-based system to convert
nonverbal cues into text for efficient multimodal emotion
recognition [34]. Notably, this study also demonstrated that
FACS can till outperform deep learning architecturesin certain
scenarios [34]. This aligns with other findings indicating that
handcrafted featuresremain relevant. For instance, Gautam and
Segja [35] integrated a histogram of orientated gradients and
scale-invariant feature transform with CNNs for FER.

Temporal modeling plays a crucial role in video-based FER,
where the relationship between frames must be effectively
captured. Recurrent neural networks (RNNs), particularly long
short-term memory networks and gated recurrent units (GRUS),
are commonly used for this purpose [20,36]. Another approach
for modeling temporal relationshipsisthrough 3D CNNs|[21],
which perform convolutions across both the spatial dimensions
and the time dimension.

Attention mechanisms have also been important in improving
sequential dataprocessing for video FER. Thetransformer [37],
originally designed for language models, has been successfully
applied to visua tasks, such as ViTs [28]. The hierarchical
contextual attention mechanism (HCAM) usesa?2-level attention
mechanism at theword and utterance levels, enabling differential
focus on more and less important content [38]. Dutta and
Ganapathy [39] used utterance-level hierarchical attention with
bidirectional RNNs and self-attention to generate embeddings
and then applied a coattention layer to weigh the relevance of
these embeddings across audio and text for emotion recognition.
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Previousresearch found the performance of available automatic
FER software to be comparable [40,41] or even superior [42]
to that of human observers in recognizing emotions in highly
standardized pictures of prototypical facia emotional
expressions. Regarding FER of dynamic facial expressions, the
evidence is less conclusive. For instance, in the study by
Krumhuber et al [43], the commercia FER software FACET
(iMotions) performed better than human observers in
recognizing posed emotional expressions (overall recognition
rate of 62.0% from human observers and 69.8% from the
software) and equally well in recognizing spontaneous emotional
expressions (overall recognition rate of 39.4% from human
observers and 45.5% from the software); these results applied
to expressions representing the 6 basic emotions. In another
study by Krumhuber et a [44], the authors compared the
performance of FACET and human observers in recognizing
posed and spontaneous emotional expressionsfrom 14 databases
and found no performance differences (overall recognition rate
of 65.1% from human observers and 65.4% from the software).
Recognition rates differed between emotions, with the highest
rate found for happiness, followed by disgust, and the lowest
for fear. Other studies have also demonstrated the superior
performance of human aswell as automated FER in recognizing
happiness compared to other emotions[45,46]. However, inthe
study by Dupré et a [45], humans performed better than 8
automatic classifiersin recognizing posed (precision of 72.5%
from human observers and 53.9% from the software) and
spontaneous emationa expressions. Tcherkassof and Dupré
[46] aso found human observers performance to be superior
to automated FER in recognizing self-reports of spontaneous
emotional expressions; although in this study, the overall
recognition accuracy was |ow.

Objectives

Current deep FER models are limited by existing datasets
because of their need for large amounts of data. Solutions such
as data augmentation, dataset combination, and the creation of
new advanced datasets are needed to enhance training
effectiveness and reduce overfitting. In addition, further progress
in illumination, face poses, and occlusion must be made to
enable better generalizable FER [47,48]. Thiswork introduces
the novel Stress Reduction Training Through the Recognition
of Emotions Wizard-of-Oz (STREs WoZ) dataset for video
FER. Unlike many existing datasets focusing on the 6 basic
emotions by Ekman [44], the STREs WoZ dataset contains 16
different emotions, enabling more fine-grained emotion
classification by distinguishing 4 negative and 12 positive
emotions. Each video is assigned to exactly 1 emation. To the
best of our knowledge, with >14,000 videos and 63 participants,
it is the largest facial video emotion recognition dataset in an
unconstrained laboratory environment [49-53], featuring
variations in illumination, face poses, and occlusions. The
dataset is specifically tailored for FER exploiting selfie videos,
making it particularly suitable for smartphone apps.

Moreover, this study aimed to devel op an automatic FER model
from the STREs WoZ dataset. Relying on the linguistic content
of predefined sentences can limit the model’s applicability in
real-world scenarios, where inputs are more varied and
unconstrained. Thus, to ensure our emotion recognition models
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are generalizable and effective in broader contexts, we focused
exclusively on the visua modality, enhancing the model’s
adaptability to nonconstrained, real-world applications. We
approached the problem from two different perspectives: (1) as
abinary classification task differentiating between the negative
and the positive emotions and (2) as amulticlass classification
task targeting the recognition of the 16 fine-grained emotions
originally recorded in the dataset. For this purpose, we exploited
2 different types of facial features: appearance and deep-learned
features. As a baseline, we modeled the extracted appearance
features with a support vector machine (SVM). As the
architecture for our deep learning networks, we used
1-directional GRU models with 3 different heads: HCAM,
convolution, and average.

Furthermore, this study aimed to validate the newly devel oped
models. To the best of our knowledge, no study so far has
evaluated the performance of automatic FER using smartphone
selfievideos. Moreover, most studies have only used the 6 basic
emotions, although more than those 6 emotions might be
relevant for future applications. To fill these research gaps, we
evaluated the performance of the modelsin the test partition of
the STRES WoZ dataset and compared it with that of human
observers annotating the same test set.

Methods

Database

The STREsWoZ dataset isanovel emotion recognition dataset
with facial videos in a selfie-style format collected using a
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smartphone. It contains samples corresponding to 16 different
emotionsfor fine-grained emotion classification, and each video
conveys exactly 1 emotion. Of the 16 considered emotions, 4
are negative—anger, disgust, fear, and sadness—and the
remaining 12 are positive—confidence, contentment, courage,
excitement, gratitude, happiness, joy, love, pride, relaxation,
resolve, and tranquility. The emotions were selected by clinical
psychologists and expertsin psychotherapeutic app devel opment
(including the senior author) to represent therapeutically relevant
emotionsthat can beincluded in psychotherapeutic apps. Figure
1 shows 5 facial frames from the same participant, representing
a subset of the emotions considered in the dataset (consent
obtained). To the best of our knowledge, this is the largest
video-based FER dataset in an unconstrained laboratory
environment, with 14,412 videos. The videos were collected in
the context of a cognitive restructuring training targeting
elevated stress. In the training, participants were required to
convey a predefined negative emotion in response to 30
stress-enhancing statements and a positive emotion in response
to 30 stress-reducing statements presented to them in random
order on a smartphone (for details on the training, refer to the
study protocol by Keinert et a [54]). To convey the emation,
participantsfollowed instructionsto perform facial expressions
and a body movement, and they uttered a predefined German
sentence. Participantswere freeto adjust the specific instructions
and personalize the respective emotion display. We fixed the
emotion-sentence pairs, and consequently, for each emotion,
all participants uttered the same sentence in al the recorded
videos. The predefined emotion that participants were supposed
to convey served as the videos' ground truth label.

Figure 1. Visualization of facial images representing a subset of the emotionsin the dataset. From left to right: disgust, relaxation, happiness, joy, and

sadness.

i

A total of 63 unique participants took part in our recordings.
The sample had a mean age of 22.89 (SD 6.81) years, was 90%
(57) university students, and included 12 men and 51 women.
Each participant provided 240 videos, with recordings over 4
days with 3 sessions per day. In each session, 1 positive and 1
negative emotion were recorded 10 times. While the positive
emotions varied between sessions, the negative emotions
remained the same within a day. There were 6 different
conditions of the stressreduction training, which differed inthe
negative emotions to be conveyed. In 4 conditions, participants
conveyed the same negative emotion (ie, anger, anxiety, disgust,
or sadness) each day. In the remaining 2 conditions, participants

https://www.jmir.org/2025/1/e68942
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conveyed a different negative emotion on each day of the
training. Thisresulted in the number of videos per emotion not
being equally distributed in the dataset.

The videos were collected using the front-facing cameras of a
Samsung Galaxy S10+ smartphone, which has a 10 MP selfie
camera and an 8 MP RGB depth camera. All videos are in
portrait format with aframerate of 30 frames per second. There
is usually awhite wall in the background of the videos so that
the participants’ faces are mainly visible.

Although the videos were recorded in the laboratory, they were
recorded under unconstrained conditions. The participants
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recorded the videos with 1 hand, and they interacted naturally
with the smartphone while recording—presenting nonfrontal
faces, nonconstant participant-smartphone distances, and free
head movements. For these reasons, the resulting videos are not
aways stable, contain different viewing angles, and the
participants’ faces might only be partialy visible in some
frames. Furthermore, participants were allowed to moveinside
the recording room.

Three different phases can be identified from the resulting
videos: (1) a preparation phase, where participants had already
started the recording but were moving the smartphone to the
predetermined position for collecting the actual facial video;
(2) an emotional phase, where participants convey the desired
emotion; and (3) a disengagement phase, characterized by
moving the smartphone from the recording position to a more
relaxed position to stop the recording.

Dataquality iscrucial for training deep learning—based models,
asit directly impactstheir performance. To ensure high-quality
inputs for model training, we only included video frames
corresponding to the emotional phase. The preparation and

Table 1. Summary of the STREs WoZ? dataset by emotion category.

Keinert et d

disengagement phases were excluded, asthey are nonemational
and could introduce noise, potentially degrading the model
performance. Focusing solely on the emotional phase reduced
the total duration of the dataset, leading to faster processing
times and lower memory consumption. To detect the emotional
phase, we used an automatic voice activity detector, which
recognizes the longest continuous nonsilent segment in each
recording as the emotional phase. To ensure that longer-lasting
emotions were also captured, 1 second after this segment was
included. The accuracy of this procedure was evaluated by
analyzing arandomly selected sample of 100 segmented videos.
Table 1 provides a summary of the collected data for each
emotion. Thetotal duration of the original videoswas 17 hours
49 minutes 13 seconds and the total duration of the segmented
videoswas 7 hours 44 minutes 10 seconds. The disparity in the
total duration of each emotion arises from the varying lengths
of the utterances associated with each emotion. While some
utterances consist of full sentences, others are limited to single
words. A list of the utterances is provided in Multimedia
Appendix 1.

Emotions Unique participants, n (%) Videos (trials), n (%)  Origina duration (h:min:s) Segmented duration (h:min:s)
Anger 31 (49) 1691 (11.73) 4:30:08 1:11:16
Anxiety 29 (46) 1620 (11.24) 5:29:18 1:10:05
Confidence 60 (95) 645 (4.5) 1:31:11 00:13:13
Contentment 59 (94) 635 (4.4) 1:31:40 00:14:13
Courage 60 (95) 645 (4.5) 1:26:30 00:12:47
Disgust 30 (48) 1635 (11.34) 4:48:22 00:58:59
Excitement 60 (95) 645 (4.5) 1:17:27 00:11:07
Gratitude 60 (95) 645 (4.5) 1:28:03 00:10:53
Happiness 60 (95) 645 (4.5) 1:19:31 00:09:52
Joy 62 (98) 669 (4.6) 1:57:33 00:17:53
Love 62 (98) 670 (4.6) 2:02:53 00:23:04
Pride 60 (95) 641 (4.4) 1:36:21 00:17:45
Relaxation 62 (98) 612 (4.2) 2:57:02 00:32:16
Resolve 60 (95) 636 (4.4) 1:29:38 00:13:14
Sadness 31 (49) 1734 (12.03) 6:57:30 1:15:56
Tranquility 60 (95) 645 (4.5) 1:25:58 00:11:30

8STREs WoZ: Stress Reduction Training Through the Recognition of Emotions Wizard-of-Oz.

Development of the Automatic FER Model
Facial Features Extraction

Overview

The preprocessing stages before feature extraction consisted of
face detection and data injection. We used the OpenFace [55]
software to detect the faces in each frame of the video. The
software produced a cropped image of the detected face with a
224224 pixelssize. In caseswhere the software failed to detect

https://www.jmir.org/2025/1/e68942

afacein certain frames, thelast extracted facial imagewasused
until a new face was detected in the video. Any gaps occurring
at the beginning or end of the video were ignored.

Appear ance Features

The appearance features investigated correspond to a subset of
FAUs, which are based on the FACS and extracted using
OpenFace [55]. OpenFace estimates (1) the presence of the
FAUSs, denoting whether the action unit is visible on the face
and (2) their intensity measured on a 5-point scale. OpenFace
recognized the FAUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20,
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23, 25, 26, 28, and 45 [55] and predicted the presence and
intensity for 17 of these 18 FAUs. For FAU 28 (lip suck), only
its presence was predicted. We used all the available features
as input for our networks, resulting in a 35D vector for each
frame.

Deep-L earned Features

The deep-learned features were extracted using a ResNet 50
model [56], which had been pretrained on the VGGFace2 [57]
and FER+ datasets [58]. Compared to handcrafted feature
extraction techniques, deep features derived from ResNet-50
capture more abstract and high-level representations of facial
expressions. |n contrast to the FAUS, the resulting 2048D feature
vector does not allow us to understand the exact meaning of
each individual feature.

Data Splitting

Properly training and ng the performance of the artificial
intelligence—based models required splitting the available data
into 3 different splits: the first one for training, the second one
for validation, and the third one for testing. On the basis of the
data partitioning methodology presented in the study by
Mallol-Ragolta et al [59], which aims at homogenizing the
recognition difficulty among the data partitions, we first
followed aleave-one-subject-out cross-validation approach and
trained SV Msto measure the unweighted averagerecall (UAR)
performance for each individual participant. The UAR is a
measure for determining the performance of a classification
model, which is often used for unevenly distributed data. In this
study, the UAR was used to evaluate the performance of the

Keinert et d

model s regarding their ability to recognize the correct emotion.
Owing to the uneven distribution of the data, this metric assessed
whether all emotionswere classified effectively rather than only
those that occurred more frequently.

Let A be a contingency matrix, where Aij is the number of
instances of a classi classified asj. Let K be the number of
classes. Then, the UAR [60] is defined as:

El_l Z

For these initial experiments, the SVMs classified the 16
emotions, and we averaged the extracted FAUsfrom each video
over the time domain to obtain a single, video-level feature
representation asinput for the SV Ms. The UAR scores obtained
from each participant varied between 4.4% and 39.8%, with a
mean of 20.4% (SD 7.2%). The chancelevel regarding the UAR
for a 16-class classification problem is 6.25%. Next, we sorted
the participantsin descending order according to the UAR scores
obtained. Following a round-robin fashion, the first 3
participants were assigned to the training split, and the fourth
and fifth participants to the validation and the test splits,
respectively. We repeated this processuntil al participantswere
assigned to adatasplit. The properties of the partitioned dataset
are presented in Table 2. The large difference in the SD of the
test partition with respect to the training and validation partitions
originates from videos with long durations. There were 61, 23,
and 2 videos in the training, validation, and test partitions,
respectively, that were longer than 10 seconds.

Table 2. Summary of the partitioned STREs WoZ? dataset by emotion category.

Partition Participants, n (%)  Videos (trials), n Original duration Total segmented duration Segmented duration (s), mean
(%) (h:min:s) (h:min:s) (SD)

Training 37 (59) 8454 (58.66) 24:02:33 6:39:39 2.83(1.93)

Validation 13 (21) 2940 (20.40) 9:35:36 2:18:58 2.84(1.85)

Test 13 (21) 3018 (20.94) 8:02:06 2:15:34 2.70 (1.09)

8STREs WoZ: Stress Reduction Training Through the Recognition of Emotions Wizard-of-Oz.

Description of Model Architectures

Our baseline model implemented an SVM exploiting the
extracted appearance features. The features were preprocessed
using standard scaling. The SVM used aradial basis function
kernel for classification, with the regularization parameter set
to 1 and the kernel’s gamma parameter set to scale, which
automatically adjusts based on the number of features. The
baseline should provide a lower bound for the FER problem,

https://www.jmir.org/2025/1/e68942

using a nondeep learning approach. We performed grid search
optimization on the validation set to determine our
hyperparameters.

In our deep learning—based experiments, we used the appearance
features, the deep-learned features, and the concatenation of
both feature types as input to our models. The architecture and
parameters of our models were optimized using the validation
data. A visuaization of the network structures is depicted in
Figure 2.

JMed Internet Res 2025 | vol. 27 | e68942 | p. 6
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Keinert et d

Figure 2. Illustration of the workflow of the deep neural networks. GRU: gated recurrent unit; MLP: multilayer perceptron.
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The first block of our networks implemented a 1-directional
stacked GRU with 3 hidden layers and ahidden size of 35. The
differences among the networksrely on the second block, which
combined the outputs of the GRU to obtain a single feature
representation to be fed into the multilayer perceptron (MLP)
for the final classification. The implementation of the second
block of the networks was based on the following methods:

«  GRU average—the output of the first block was reduced
to a video-level feature representation using a simple
average. Thisfeature representation was passed to the ML P.

+  GRU HCAM—an HCAM was implemented to obtain a
video-level feature representation. The features of each
frame were treated anal ogously to the sentence embeddings
in adocument using the attention mechanism presented by
Yang et al [38].

«  GRU convolution—this block implemented a single 1D
convolutiona layer with a kernel size of 3, a stride of 1,
and the same padding, followed by an adaptive average
pooling with a1D output over the sequence length for each
feature. The convolutional layer applied the kernel to the
same feature in multiple consecutive frames, considering
past and future information to determine the salient
representation of the current frame.

Thethird block was composed of an MLP, which implemented
2 hidden layers, each containing 24 hidden units and rectified
linear unit as the activation function. The final activation
function of this block was a softmax function. For a fair
comparison among the models, wetrained all our networkswith
Adam as the optimizer, a learning rate of 0.001, and a batch
size of 64. We aso implemented an early stopping mechanism
with apatience of 30 epochsto minimizetherisk of overfitting.

The models were trained on a GTX Titan X, equipped with 12
GB of GDDR5 memory. This setup provided sufficient resources
for thetraining process, allowing usto handle the computational
demands of the models. Training timesvaried depending onthe
architecture, with more complex models requiring longer
processing periods because of the increased number of
parameters and computational operations. The batch size was
adjusted to optimize performance while ensuring efficient
memory use. The SVM and deep learning models were
implemented using Python (Python Software Foundation) and
thefollowing libraries: scikit-learn for the SVM implementation
and PyTorch for the deep learning models.

https://www.jmir.org/2025/1/e68942

Perfor mance Evaluation of the Automatic FER M odel

Description of the Test Set

The test set used for the validation of the newly developed
models was taken from the STREs WoZ dataset and comprised
13 individuals displaying 1 of the 16 emotions. All individuals
were women, with amean age of 20.92 (SD 2.06; range 18-24)
years, White, and—except for 1—reported elevated subjective
stress levels. The test set included 3018 videos. For the
validation with human observers, they were not only shown the
emotional phase but the entire videos. We opted for this
approach to allow a realistic comparison between automated
and human assessment, as preprocessing of the data, including
extraction of the relevant phase, is an integral part of the
automated processing pipeline. Asaresult, the average duration
of the videos shown to human observers was 8.5 (SD 4.79)
seconds. The dataset included the following emations. anger
(316/3018, 10.47%), anxiety (534/3018, 17.69%), disgust
(77/3018, 2.55%), sadness (406/3018, 13.45%), confidence
(145/3018, 4.8%), contentment (135/3018, 4.47%), courage
(144/3018, 4.77%), excitement (135/3018, 4.47%), gratitude
(144/3018, 4.77%), happiness (135/3018, 4.47%), joy (144/3018,
4.77%), love (144/3018, 4.77%), pride (145/3018, 4.8%),
relaxation (145/3018, 4.8%), resolve (135/3018, 4.47%), and
tranquility (134/3018, 4.44%). Aswe aimed to focus exclusively
on the visual modality, the videos were muted for all purposes
of this study.

Human Observers

A total of 3 psychology students (2 women, 1 man; mean age
28.33 (SD 2.08) years) participated in the study as human
observers. Before completing the test set, they underwent a
training in which they discussed the typical features of each
target emotion (refer to Multimedia Appendix 1 for the features).
Subsequently, they viewed sample video clips of an actor
displaying each emation, followed by classification practice.
For this purpose, we used atraining set of 144 videos from the
STREs WoZ dataset that were not part of the test set. The
training set was drawn from 3 randomly selected participants
and comprised 3 videos per emotion per participant. Human
observers were aware of the respective emotions displayed in
the videos, allowing them to study and familiarize themselves
with the defining features of each emotional expression by
watching each video carefully.

To prepare the test set for human annotation, video file names
were replaced with random numbers generated using a
web-based tool [61], preventing any bias based on thefile name
or segquence. The human observers were instructed to watch all
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3018 video clips carefully, with adequate rest periods to
maintain focus. Human observers emotion recognition was
assessed using aforced-choi ce task, in which they wererequired
to categorize each video based on the valence of the emotion
(positive vs negative) and select the specific emotion displayed
fromalist of 16: anxiety, anger, disgust, sadness, joy, relaxation,
love, excitement, tranquility, gratitude, happiness, resolve,
contentedness, courage, confidence, and pride.

Data Analysis

For the performance evaluation and comparison with human
observers, we selected the model with the best overall
performancein the validation data. The performance of the deep
learning model and the human observersin both binary (positive
vs negative) and multiclass (distinguishing the 16 emations)
classification tasks was evaluated using accuracy

(n true positive+n true negative
n total

) and UAR. For human observers, we
calculated the mean and SD of the accuracy, as well as the
bootstrapped Cls with 1000 replicates. In addition, we used a
1-sided binomidl test to determine whether the accuracy exceeds
chance with a significance level of a=.05. To assess interrater
reliability, including agreement between human observers and
between human and model inference, Fleiss k and Cohen K
were calculated. We followed standard heuristics, interpreting
K values asindicating dight (k<.2), fair (0.2<k<0.4), moderate
(0.4<k<0.6), substantial (0.6<k<0.8), or almost perfect (0.8<k)
agreement [62]. All analyses were conducted using RStudio
(Posit, PBC, version 4.4.0) [63]. Performance metrics were
calculated using the confusionMatrix function from the caret
package [64], and the interrater reliability was computed using
theirr package [65].

Ethical Consider ations

This study adhered to the ethical principles outlined in the
Declaration of Helsinki and received approval from the Ethics
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Committee of the German Psychologica  Society
(BerkingM atthias2020-09-10AM). Participants were informed
by the study staff about the study procedures and the inherent
impossibility to fully anonymize video data. Subsequently, they
provided written informed consent for the collection and analysis
of their recordings. To ensure data security, all video fileswere
stored under aunique personal code for each participant. Given
the limitations on anonymization, the data were stored on a
password-protected hard drive that was securely locked at all
times.

As compensation, participants were given the opportunity to
enter a€500 (US $ 567.52) lottery. Psychology students could
alternatively receive course credits.

Results

Development of the Automatic FER Model

As baseline, we trained an SVM on the mean appearance
features of the videos. We obtained a UAR of 85.1% for the
binary classification on the validation partition and a UAR of
89.3% on thetest partition. The SVM achieved aUAR of 29.2%
for the multiclass classification on the validation partition and
33.5% on the test partition. All our GRU networks with
appearance features performed better than the SVM baseline.
The deep features and feature concatenation did not lead to
performance improvements, as their effectiveness largely
depended on the specific architecture in which they were
integrated. The attention head seemed to be the most suitable
for all features, as it obtained their best performance. Table 3
shows the results of the various approaches for the binary
classification task. The attention networks obtained the best
performance on both the validation and the test sets,
outperforming the other heads in nearly every experiment,
except for the GRU Convolution approach in the test set.

Table 3. Results of the binary emotion classification task reported using unweighted average recall.

GRU?average, % GRU attention, %

GRU convolution, % svmP basdline, %

Validation
AFS 88.2 89.3
DEd 87.6 89.1
Both 88.9 907"
Test
AFs 90.5 w29f
DFs 86.2 90.8
Both 88.1 90.4

88.9 85.1
87.7 N/AE
86.2 N/A
927 89.3
85.0 N/A
926 N/A

8GRU: gated recurrent unit.
bsvm: support vector machine.
CAF: appearance feature.

IDF: deep feature.

EN/A: not applicable.

Italicization indicates the best performance for the validation and test partitions.
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In the multiclass classification task (Table 4), the attention head
clearly enhanced the exploration of feature potential across both
sets. While the convolution head improved the model
performance on the validation set, itsresults on the test set were
mixed, sometimes performing worse and other times better than
the average approach. When analyzing the different features,

Keinert et d

the appearance and deep features performed almost equival ently
on the validation set for the binary task. However, on the test
set, the appearance features outperformed the deep features.
The concatenation of both features showed asmall performance
gain onthevalidation set, but in some cases, they led to adecline
in performance on the test set.

Table 4. Results of the multiclass emotion classification task reported using unweighted average recall.

GRU?average, % GRU attention, %

GRU convolution svmP basdline, %

Validation
AFs® 38.6 44,61
DES 224 353
Both 19.2 29.2
Test
AFs 47.3 5294
DFs 30.1 41.7
Both 30.9 42.0

413 29.2
237 N/Af
236 N/A
448 335
312 N/A
30.4 N/A

8GRU: gated recurrent unit.
bsvM: support vector machine.
CAF: appearance feature.

9italicization indicates the best performance for the validation and test partitions.

®DF: deep feature.
N/A: not applicable.

For the multiclass classification task (Table 4), the concatenated
features offered minimal improvement over the baseline. Only
the GRU attention approach on the test set outperformed the
baseline. The deep feature networks with the attention head
scored higher UAR scores than the baseline in both validation
and test sets. The appearance feature networks achieved the best
resultsin both validation and test sets.

Perfor mance Evaluation of the Automatic FER M odel

For the performance evaluation, we selected the best overall
model (ie, the model with attention head and appearance
features), asit performed the strongest on the validation data.

Binary Classification

The attention network with appearance features achieved an
overal accuracy of 92.2% (95% Cl 91.2-93.2) and a UAR of
92.9% (Table 3) for the binary classification, which was
significantly greater than chance (P<.001) with Cohen k=0.84.
The human observers achieved a mean accuracy of 91.1% (SD
0; 95% Cl 90.9-91.4) and a UAR of 91.0% for the binary
classification, which was also significantly greater than chance
(P<.001). The overall agreement among human observers was
high (Fleiss k=0.987), and the agreement on correct
classifications was similarly high (Fleiss k=0.961). The mean
agreement between the attention network and the human

https://www.jmir.org/2025/1/e68942

observers classification was substantial, with mean Cohen
k=0.70 (SD 0).

Multiclass Classification

The attention network’s multiclass classification achieved an
overall accuracy of 54.2% (95% CIl 52.4-56) and a UAR of
52.9% (Table 4), which was significantly greater than chance
(P<.001) with Cohen k=0.50. UARs of the fine-grained
emotions ranged between 59.0% for disgust and 90.0% for
anxiety. The human observers achieved a mean accuracy of
85.9 (SD 0.02; 95% CI 84.1-87.5]), also significantly greater
than chance (P<.001). The human observers overall agreement
(Fleiss k=0.927) and the agreement of correct classifications
(Fleiss k=0.758) was substantial to high. Accuracies of the
fine-grained emotions ranged between 87.4% for courage and
99.8% for sadness. The confusion matrices for single emotion
classifications by both the attention network and the human
observers are displayed in Figures 3 and 4, respectively. The
mean agreement between the attention network’sand the human
observers' classification was moderate, with mean Cohen k=0.45
(SD 0). The balanced accuracies for both the attention network
and the human observers are displayed in Table 5. For the
individual performance metrics, such as accuracy, sensitivity,
specificity, precision, and F;-scores, refer to Tables S1 and S2
in Multimedia Appendix 2.
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Figure 3. Confusion matrix of the attention network’s multiclass classification.
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Figure 4. Confusion matrix of the human observers multiclass classification.
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Table 5. Accuracy of the attention network’s and the human observers’ classification.

Emotion Attention network, % Human observers, %
Anger 71.9 88.5

Anxiety 90.9 91.7

Disgust 59 95.1

Sadness 85.2 99.8

Confidence 76.4 91.9

Contentment 65.8 89

Courage 71.3 874

Excitement 70.6 91

Gratitude 715 90.6

Happiness 74.1 88.5

Joy 74.9 93

Love 80.1 94.2

Pride 80.8 93.7

Relaxation 69.7 93.9

Resolve 68.9 93.2

Tranquility 70.2 91
Discussion generalization of emotions and further improve model

Principal Findings

This study focused on devel oping and evaluating an automatic
FER model for the classification of 16 discrete, therapeutically
relevant emotions from the STRES WoZ dataset. The dataset
contains 14,412 selfie videos of posed emotions collected via
a smartphone app in the context of a stress reduction training.
The FER models performed a binary classification task (ie,
distinguishing positive and negative emotions) and amulticlass
classification task (ie, distinguishing the 16 discrete emotions).

Regarding the development of automatic FER models, we
exploited both appearance and deep features. Notably, the
appearance features outperformed the deep features. This was
an unexpected result, given that deep featuresaretypically more
complex and can, therefore, capture more salient information.
A possible explanation is that the deep features were not
fine-tuned on the facesin this dataset. When both featureswere
concatenated, the performance even declined in some cases,
potentially because of the dominance of the deep features, which
may have limited the capabilities of the appearance features.
The results also indicate that a head with HCAM was more
effective in creating feature representations than the averaging
or the convolutional approaches.

A notable finding was the large performance gain on the test
set compared to the validation set. This can likely be attributed
to theincreased availability of training data, as both thetraining
and validation datawere used for training before evaluating the
test data. This approach may have facilitated improved
differentiation and generalization of emotions. Consequently,
extending the STREsWoZ dataset with more participantscould
be beneficial for future research, as it may enhance the

https://www.jmir.org/2025/1/e68942

performances.

Regarding the performance evaluation, the attention network’s
accuracy in the binary classification task was high (92.2%) and
comparable to human observers' performance, who had amean
accuracy of 91.1%. In terms of classifying the 16 fine-grained
emotions, the attention network’s accuracy ranged between
moderate (59.0% for disgust) and amost perfect (90.0% for
anxiety), whereas human observers achieved a mean accuracy
of at least 87.4%. In this study, the automatic classifier's
recognition accuracy for posed dynamic facial emotional
expressions ranged from lower [43,44] to comparable [45]
compared to other tools reported in the literature, while human
observers demonstrated superior overall accuracy. However,
those studies only investigated automatic FER of the 6 basic
emotions. To the best of our knowledge, this study is the first
to investigate automatic FER of 16 distinct emotion categories.
This might explain the inferior performance of the automatic
classifier in our study, as differences between these emotions
are more subtle than between the 6 basic emotions and,
therefore, more difficult to distinguish.

In addition, although emotional expressionsinthe STREsWoZ
dataset were posed, participants were free to adjust the specific
instructions and personalize their emotional displays.
Consequently, the emotional expressions in our dataset are
probably less prototypical than in other datasets of posed
expressions, making FER more challenging. Thismight explain
why human observers were superior in recognizing the
fine-grained emotions, as they might be better at attributing
subtle changesto the correct emotion. However, it issurprising
that human observers in our study outperformed those in
previous studies. It is possible that they were able to recognize
the predefined sentences that participants uttered when
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conveying the respective emotion and based their categorization
mainly on that rather than on the facial features, which might
explain our finding.

Our work advances theoretical development in the field by, to
the best of our knowledge, being the first to apply automatic
FER to 16 distinct, therapeutically relevant emotions. Previous
studies have primarily focused on the 6 basic emotions proposed
by BET [7], which do not fully capture the complexity of human
emotional expression and the variety of emotional states that
arerelevant in psychotherapeutic contexts. The confusion matrix
resultsfrom our study, particularly the relatively low confusion
among most positive emotions, suggest that these emotions
indeed contain distinct elements, supporting the validity of
distinguishing >6 emotions. This approach more accurately
reflects the diversity of emotional experiences and provides a
stronger foundation for future research in emotion recognition.

Regarding the clinical relevance of our findings, developing
automatic FER models for smartphone selfie videos represents
a significant step toward integrating emotion recognition into
psychotherapeutic app interventions. However, it remains
guestionable whether the performance achieved in thisstudy is
sufficiently high to ensure the effective functioning of such
apps. Whilethe 92.2% accuracy in the binary classification task
was comparable to human performance and likely adequate, the
59.0% to 90.0% accuracy in multiclass classification—though
significantly above chance—was far inferior overall to that of
human observers. Using a model that correctly classifies just
over half of the cases for an app designed to provide feedback
and respond based on accurate classificationis not feasible. The
high rate of incorrect classifications would likely cause user
irritation and frustration. However, when working with patients
emotional states in psychotherapeutic app interventions,
recognizing different emotion categories beyond merely
differentiating positive and negative is essential. Therefore, to
make the integration of automatic FER into such appsfeasible,
improvements in the model performance are necessary. This
could likely be achieved by extending the STREs WoZ dataset
to include more participants. Our study demonstrated that
increased data can enhance performance, as evidenced by the
performance gain in the test set compared to the validation test.
Another approach might involve using multimodal strategies
to boost accuracy, such asincorporating eye movement or gaze
information into the models. Audio could also be used for better
emotion recognition. However, cautionisrequired when training
models using speech, asthereisarisk that the model may learn
artificial patterns for emotion recognition. This concern arises
from thefact that, in the dataset used in this study, each emotion
isrepresented by only a single distinct utterance.

Limitations

Thisresearch has several limitationsto be considered. First, our
current model relies on older handcrafted features, such as
FAUs, or features extracted from older architectures, such as
ResNet-50, which, while useful for establishing a benchmark,
are not as effective as newer, more powerful models. Future
work should involve exploring more recent and advanced
models, such as ViTs or Swin Transformers, which have
demonstrated superior performance in many vision tasks,
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including emotion recognition. These models, though
computationally demanding, are likely to offer significant
improvements in multiclass emotion recognition and may be
crucia for the successful integration of FER into
psychotherapeutic app interventions.

Second, the posed nature of the emotions in our dataset limits
the use of our model for real-world applications in naturalistic
settings. In-the-wild emotions can differ in appearance and thus
cannot be recognized well with systems trained on posed
emotions. However, by recording the videos as selfie videos,
the STREsS WoZ dataset shows real-world properties for
perspectives, recording angles, head movements, and shakiness,
and thus takes a first step toward better generalizability to
real-world settings. Moreover, the recognition of posed emotion
displays might be relevant for certain psychotherapeutic apps
where patients are instructed to adopt certain poses or facia
expressions to evoke emotiona states based on embodiment
theories [66]. Third, a further limitation of generalizability in
this study is the lack of cross-cultural validation of the 16
emotion categories. To make our results applicable to other
cultures, this will be a crucial step for future studies. Fourth,
our sample was homogeneous regarding age, gender, and
ethnicity. Faces change with age; therefore, recognizing
emotions in older people becomes much more challenging.
Older people are less expressive and have less elaborated
emotion schemas [67]. Moreover, typical facial features differ
between genders and ethnicities. Therefore, there is a risk of
bias in the models devel oped with our dataset. In a follow-up
study, we are aready working on collecting data from a more
diverse participant pool (ie, regarding age, gender, ethnicity,
and clinical variables) to increase generalizability. In addition,
future research could leverage the potential of artificial
intelligence to generate more diverse datasets for the
development of bias-free FER models. Fifth, the different input
conditions of automatic and human FER in our study may also
have introduced bias in the performance comparisons. Human
observers viewed the entire videos, including the preparation
and disengagement phases, whereas the automatic classification
was based solely on the emotiona phase. Although we opted
for this approach to reflect a realistic comparison between
automatic and human FER, human observers may have had
access to additional contextual information that aided in
recognizing the correct emotion. Finally, because the emotional
displays in the videos were accompanied by the utterance of a
predefined sentence that varied little between participants,
human observerslikely guessed the sentence through lip-reading
and based their categorization on that, making the task easier
and potentialy boosting their performance. In addition, the
predefined sentences may have created artificial patternsin the
data, introducing biases in emotion recognition. Future studies
should enhance the comparability of human and automatic FER
by minimizing the possibility of lip-reading and using
spontaneous utterances.

Conclusions

Despite these limitations, this research makes a valuable
contribution by developing models for automatic FER of 16
distinct, therapeutically relevant emotions from smartphone
videos. Consequently, it represents an important first step toward
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the development and integration of automatic FER into and effective digital mental health interventions.
psychotherapeutic apps, paving the way for more personalized
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