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Abstract

Background: The incidence of adrenal incidentalomas is increasing annually, and most types of adrenal masses require surgical
intervention. Accurate classification of common adrenal masses based on tumor computed tomography (CT) images by radiologists
or clinicians requires extensive experience and is often challenging, which increases the workload of radiologists and leads to
unnecessary adrenal surgeries. There is an urgent need for a fully automated, noninvasive, and precise approach for the identification
and accurate classification of common adrenal masses.

Objective: This study aims to enhance diagnostic efficiency and transform the current clinical practice of preoperative diagnosis
of adrenal masses.

Methods: This study is a retrospective analysis that includes patients with adrenal masses who underwent adrenalectomy from
January 1, 2021, to May 31, 2023, at Center 1 (internal dataset), and from January 1, 2016, to May 31, 2023, at Center 2 (external
dataset). The images include unenhanced, arterial, and venous phases, with 21,649 images used for the training set, 2406 images
used for the validation set, and 12,857 images used for the external test set. We invited 3 experienced radiologists to precisely
annotate the images, and these annotations served as references. We developed a deep learning–based adrenal mass detection
model, Multi-Attention YOLO (MA-YOLO), which can automatically localize and classify 6 common types of adrenal masses.
In order to scientifically evaluate the model performance, we used a variety of evaluation metrics, in addition, we compared the
improvement in diagnostic efficacy of 6 doctors after incorporating model assistance.

Results: A total of 516 patients were included. In the external test set, the MA-YOLO model achieved an intersection over
union of 0.838, 0.885, and 0.890 for the localization of 6 types of adrenal masses in unenhanced, arterial, and venous phase CT
images, respectively. The corresponding mean average precision for classification was 0.885, 0.913, and 0.915, respectively.
Additionally, with the assistance of this model, the classification diagnostic performance of 6 radiologists and clinicians for
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adrenal masses improved. Except for adrenal cysts, at least 1 physician significantly improved diagnostic performance for the
other 5 types of tumors. Notably, in the categories of adrenal adenoma (for senior clinician: P=.04, junior radiologist: P=.01, and
senior radiologist: P=.01) and adrenal cortical carcinoma (junior clinician: P=.02, junior radiologist: P=.01, and intermediate
radiologist: P=.001), half of the physicians showed significant improvements after using the model for assistance.

Conclusions: The MA-YOLO model demonstrates the ability to achieve efficient, accurate, and noninvasive preoperative
localization and classification of common adrenal masses in CT examinations, showing promising potential for future applications.

(J Med Internet Res 2025;27:e65937) doi: 10.2196/65937
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Introduction

Adrenal incidentaloma refers to an adrenal mass incidentally
discovered during nonadrenal imaging studies, such as
abdominal computed tomography (CT) or magnetic resonance
imaging. These masses are typically nonfunctional, meaning
that they do not cause abnormal hormone levels in the body.
Although most adrenal incidentalomas are benign, they still
require thorough evaluation to exclude possible malignant
tumors. Adrenal incidentalomas themselves may not pose a
direct threat to health, but some may secrete hormones, leading
to hormonal imbalances. For example, some incidentalomas
may secrete adrenaline or noradrenaline, which can cause
hypertension or other hormone-related symptoms. Additionally,
if the tumor is malignant, it may have more serious implications
for the health [1,2].

The incidence and detection rate of adrenal incidentalomas have
been increasing due to the widespread use of medical imaging
and enhanced awareness of health checkups. A retrospective
cohort study [3] showed that from 1995 to 2017, the incidence
of adrenal tumors increased by approximately 10 times.
Regarding detection rate, a study published in 1985 [4] found
that 1.3% of individuals undergoing CT scans in the general
population were incidentally found to have adrenal nodules,
while this rate has recently increased to 5% [5]. The etiology
of adrenal incidentalomas can be broadly classified into five
categories: (1) adrenal cortical adenoma or nodular hyperplasia,
(2) other benign lesions (myelolipoma, cysts, etc), (3) adrenal
cortical carcinoma, (4) other malignant tumors (metastatic
carcinoma, lymphoma, etc), and (5) pheochromocytoma [6].

Different types of adrenal masses require different management
strategies. Generally, definitive classification of adrenal masses
relies on pathologic testing, and invasive pathologic testing
usually has a negative physical and psychological impact on
the patient. Therefore, for adrenal masses, rapid and accurate
localization and identification through noninvasive methods are
of great significance for disease management. Contrast-enhanced
CT, as a noninvasive examination, can provide important
references for the classification of adrenal masses [7]. However,
locating and classifying adrenal masses based on CT images
often requires rich clinical experience and practice in this field,
and the accuracy of judgment may vary due to different doctors’
experiences [8], posing significant challenges for clinicians and
radiologists.

Currently, deep learning is increasingly being applied in the
medical field, particularly showing promising performance in
the recognition, segmentation, and partial disease classification
of abdominal organs and lesions [9-14]. Deep learning models
possess strong feature learning capabilities, allowing them to
automatically learn high-level abstract feature representations
from data. In medical imaging, the localization and classification
of abdominal organs often require consideration of various
features such as morphology, texture, and spatial location. Deep
learning models can effectively learn these features and
demonstrate good generalization performance when dealing
with diverse imaging data. Although some studies have used
machine learning techniques to focus on the classification and
diagnosis of certain types of adrenal masses based on CT
[15-19], research on the automatic detection of adrenal masses
combined with multiclassification diagnosis using CT remains
a largely unexplored area.

Therefore, this study proposes a novel preoperative diagnostic
method for adrenal masses—Multi-Attention YOLO
(MA-YOLO). Through experimental evaluation, the
effectiveness of the MA-YOLO model in the localization and
classification of adrenal masses was evaluated, and its potential
application in clinical decision support was validated, aiming
to improve diagnostic efficiency and accuracy through a
noninvasive approach.

Methods

Ethical Considerations
This retrospective study was conducted in accordance with the
World Medical Association Declaration of Helsinki. It was
approved by the Research Ethics Committee of the First People’s
Hospital of Yunnan Province (number KHLL2023-KY170) and
the Second Affiliated Hospital of Kunming Medical University
(number 2023-233). Due to the retrospective and anonymous
nature of the analysis, the Ethics Committee waived the need
for informed consent. Additionally, all retrospective datasets
were deidentified prior to collection to remove any
patient-related information. None of the authors were involved
in the data deidentification process.

Study Design
The flowchart of the study is shown in Figure 1. Our study is
divided into 4 main steps, the first step is to create a multicenter
large CT image database of adrenal masses, in which the mass
types include 6 common adrenal masses, and the CT types
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include unenhanced, arterial, and venous phases. Second, 3
physicians were invited to provide high-quality annotations of
the mass types and locations. Then the MA-YOLO model
proposed in this study was used to train the data and achieve
accurate localization and classification of 6 types of adrenal
masses. Finally, in order to scientifically evaluate the effect of

the model proposed in this study, we used the model as well as
invited 6 junior, intermediate, and senior clinicians and
radiologists, respectively, on an external test dataset and
evaluated the diagnostic efficacy of the physicians before and
after MA-YOLO assistance, and used decision curve analysis
to evaluate the clinical net benefit.

Figure 1. The flowchart of the research. (A) Training and validation of MA-YOLO model on internal sets. (B) Test of MA-YOLO model on external
sets, for the venous phase model with the best results, and a model versus physician assisted by model comparison test was used. MA-YOLO:
Multi-Attention YOLO.

Data Collection
Our dataset consists of 2 patient cohorts, including patients who
underwent adrenalectomy for adrenal masses with clear
pathological diagnoses at the Second Affiliated Hospital of

Kunming Medical University (internal dataset) from January
1, 2021, to May 31, 2023, and at the First People’s Hospital of
Yunnan Province (external dataset) from January 1, 2016, to
May 31, 2023. Based on these criteria, a total of 669 and 348
patients were respectively retrieved. Exclusion criteria were
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defined as follows: (1) incomplete clinical or imaging data, (2)
poor image quality due to factors such as respiratory motion,
making it difficult to visualize the adrenal region, (3) lesion
diameter <1 cm, (4) presence of other lesions within the same
cross-sectional slice of the adrenal mass or multiple adrenal
masses, and (5) pathological classifications not relevant to this
study. According to the aforementioned inclusion and exclusion
criteria, a total of 343 and 173 patients were respectively
enrolled from the 2 centers (Figure S1 in Multimedia Appendix
1 [20,21]). The dataset included six categories: (1)
adrenocortical adenoma (AA; n=249/n=111), (2)
pheochromocytoma (n=35/n=38), (3) adrenal myelolipoma
(AM; n=19/n=7), (4) adrenal cyst (AC) (n=22/n=8), (5) adrenal
ganglioneuroma (AGN; n=11/n=5), and (6) adrenocortical
carcinoma (ACC; n=7/n=4). Among all patient images, only
those containing adrenal masses were included, totaling 36,911
images, with 12,089, 12,329, and 12,493 images acquired during
the unenhanced, arterial, and venous phases, respectively. The
patient images from the internal dataset were selected as the
training and validation sets in a ratio of 9:1. The patient images
from the external dataset were used as the external test set.

This study used various multislice CT scanners (Brilliance iCT,
Philips; SOMATOM Force, SOMATOM Drive, or SOMATOM
Perspective, Siemens; Aquilion ONE, Canon) for abdominal
contrast-enhanced scanning. The collimation settings were
128×0.625, 192×0.6, 128×0.6, 64×0.6, and 100×0.5, with a tube
voltage range of 80-120 kVp and a matrix size of 512×512. The
gantry rotation time was 0.5 seconds, with a pitch range of
0.5-0.993 and a slice thickness varying between 0.9 mm and 5
mm. For Brilliance iCT, the tube current was set at 200-250
mAs, while for the other scanners, it was automatically adjusted.
Nonionic contrast agents, Iohexol Injection or Iomeprol
Injection, were administered via the cubital vein at a dosage of
450 mg I/kg, with concentrations of 350 mg I/mL for Iohexol
and 400 mg I/mL for Iomeprol. Arterial phase imaging used
threshold-triggering technology, while venous phase imaging
used a fixed delay of 50-70 seconds.

Image Annotation
Our annotations consist of class labels for each type of tumor
and bounding boxes with localization. This study included 6

common types of adrenal tumors, namely AA,
pheochromocytoma (PCC), AM, AC, AGN, and ACC. This
bounding box ideally represents the minimum outer rectangle
encompassing the entire tumor. Standardization of annotations
is crucial for ensuring high-quality annotations; therefore, we
implemented a standardized and rigorous image annotation
process. All CT images of included patients were directly
exported in JPG format from the picture archiving and
communication system, with window width and level fixed to
commonly used ranges facilitating the identification of adrenal
masses (window width: 250-300 Hounsfield units [HU], window
level: 30-50 HU).

During annotation, all radiologists were blinded to clinical
history and patient information. In the internal dataset, 100
images were randomly selected from each of the 6 categories,
totaling 600 adrenal mass images. These images were annotated
manually using the LabelImg software (version 1.8.6) by 3
radiologists: 1 radiologist with 17 years of clinical experience,
1 radiologist with 16 years of urological imaging experience,
and 1 radiologist with 21 years of imaging experience.
Annotations included bounding box selection of the images and
classification based on pathological results. Efforts were made
to ensure that the bounding boxes fully encompassed the masses.
Interlabeler average intersection over union (IoU) was
calculated.

After a 1-month clarification period, the same procedure was
repeated to calculate the average IoU among labelers. The
calculated values for both interlabeler and intralabeler average
IoU were found to be greater than 0.90 (Table 1), indicating
excellent interlabeler and intralabeler consistency [22].
Subsequently, all images were manually annotated by the
aforementioned 3 physicians in a random manner. To ensure
accurate labeling of adrenal masses within each image, after 1
physician completed the labeling, the other 2 physicians
examined each mark individually. In cases of disagreement
among the 3 physicians, a final decision was made collectively
after consultation.

Table 1. Comparison intersection over union (IoU) between interlabeler and intralabeler.

Average IoUMethod

Interlabeler comparison

0.920Labeler 1 vs Labeler 1

0.917Labeler 2 vs Labeler 2

0.917Labeler 3 vs Labeler 3

Intralabeler comparison

0.923Labeler 1 vs Labeler 2

0.922Labeler 2 vs Labeler 3

0.945Labeler 1 vs Labeler 3
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Development of the MA-YOLO Model
The model architecture (Figure 2), parameter settings (Table

S1 in Multimedia Appendix 1 [20,21]), and other details of the
MA-YOLO model can be found in the Multimedia Appendix
1 [20,21].

Figure 2. Structure of MA-YOLO model. (A) General structure of the MA-YOLO model. (B) Specific structure of Transition module, Focus module,
Convolutional Block Attention module (CBAM), and ConvAttention Module in MA-YOLO model. MA-YOLO: Multi-Attention YOLO.

Comprehensive Evaluation of the MA-YOLO Model
We initially conducted comparative experiments between the
MA-YOLO model and 5 other models, including YOLO V3,
V5, and V7, which represent different stages of YOLO

development, as well as 2 widely recognized object detection
models, faster region-based convolutional neural network
(R-CNN) and EfficientDet. We used evaluation indexes such
as IoU, mean average precision (mAP), Precision, Recall, and
F1-score to compare and evaluate the model performance,
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Meanwhile, a decision curve analysis was performed to evaluate
the clinical net benefit of the MA-YOLO model.

Subsequently, we compared the MA-YOLO model with
physicians. It was achieved by evaluating the potential clinical
utility of the constructed classification model by comparing its
diagnostic performance with that of physicians independently,
and by assisting physicians with model results and comparing
them with physicians’ independent diagnoses. By randomly
selecting 10 patients from each of the 6 categories within the
external test dataset, we chose 1 image each from the
unenhanced, arterial, and venous phases of the tumor’s
maximum diameter. Six physicians were invited, 3 junior,
intermediate, and senior radiologists practicing urologic imaging
(with 5, 16, and 21 years of diagnostic imaging experience),
and urologic clinicians (with 7, 14, and 27 years of clinical
experience). Six physicians were first invited to make a
full-blind judgment, then the order of the images was disrupted
and a second judgment was made with the assistance of the
MA-YOLO model results. Finally, Delong test was used to
compare the difference between the physicians’ independent
diagnosis and the MA-YOLO model diagnosis results, as well
as the difference between the physicians’ independent diagnosis
and the diagnosis results assisted by the MA-YOLO model.

Statistical Analysis
Statistical analysis of patient baseline data was performed using
SPSS (version 26.0; IBM Corp). IoU was used to assess the
consistency between the model and radiologists in identifying
masses. To evaluate the performance of the classification model,
we conducted a receiver operating characteristic (ROC) analysis
and calculated the area under the receiver operating
characteristic curve (AUC). Additionally, Precision, Recall,

mAP, Confusion Matrix, and F1-score were used as performance
metrics for the classification model. The Delong test was used
to compare the differences between radiologists and the deep
learning algorithm, as well as between radiologists working in
a fully blinded manner and those assisted by the deep learning
algorithm. A 2-tailed P value<.05 was considered statistically
significant. The statistical analysis of the above performance
metrics was conducted using Python (version 3.8; Python
Software Foundation).

Results

Construction of the Adrenal Masses Dataset
The construction of a dataset for Adrenal masses is exceedingly
complex and entails a substantial workload. The adrenal masses
dataset developed in this study consists of 6 categories, divided
into two parts: (1) an internal dataset and (2) an external dataset.
The internal dataset consists of 24,054 CT images from 343
patients with adrenal masses at the Second Affiliated Hospital
of Kunming Medical University, while the external dataset
comprises 12,857 CT images from 173 patients with adrenal
masses at the First People’s Hospital of Yunnan Province. The
inclusion and exclusion criteria of patients are illustrated in
Figure S1 in Multimedia Appendix 1 [20,21], while the based
characteristics of patients are outlined in Table 2. Then, we
invited 3 radiologists with more than 20 years of experience to
annotate all 36,911 CT images using the bounding box approach,
an illustrative representation of the annotations for the 6
categories of adrenal tumors at different phases is provided in
Figure S2 in Multimedia Appendix 1 [20,21]. Finally, we
partitioned the internal dataset into training and validation sets
in a ratio of 9:1, the breakdown by category is shown in Figure
S3 in Multimedia Appendix 1 [20,21] and Table 3.

Table 2. Patient characteristics.

ACCfAGNeACdAMcPCCbAAaDataset

ExternalInternalExternalInternalExternalInternalExternalInternalExternalInternalExternalInternal

475118227193835111249Patients, n

Age (years)

53.3
(6.1)

49.3
(12.4)

36.4
(17.2)

36.7
(15.8)

39.5
(15.4)

45.4
(13.1)

53.4
(12.7)

54.7 
(8.2)

45.8
(16.5)

44.3
(14.9)

47.5
(11.3)

49.3 
 (10.8)

Mean
(SD)

48-6230-667-515-5721-6218-7630-6837-6518-849-7212-7216-76Range

Sex, n (%)

2 (50.0)2 (28.6)4 (80.0)9 (81.8)4 (50.0)9 (40.9)3 (42.9)13 (68.4)14 (36.8)17 (48.6)49 (44.1)125 (50.2)Male

2 (50.0)5 (71.4)1 (20.0)2 (18.2)4 (50.0)13 (59.1)4 (57.1)6 (31.6)24 (63.2)18 (51.4)62 (55.9)124 (49.8)Female

aAA: adrenocortical adenoma.
bPCC: pheochromocytoma.
cAM: adrenal myelolipoma.
dAC: adrenal cyst.
eAGN: adrenal ganglioneuroma.
fACC: adrenocortical carcinoma.
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Table 3. Summary of patient imaging dataset.

Number of images in the
external test set

Number of images in the in-
ternal validation set

Number of images in the in-
ternal training set

Total number of images

12,857240621,64836,911Total number of images

49691087978315,839AAa

413150545419177PCCb

127432929604563AMc

123521519313381ACd

65312311091885AGNe

59514713242066ACCf

aAA: adrenocortical adenoma.
bPCC: pheochromocytoma.
cAM: adrenal myelolipoma.
dAC: adrenal cyst.
eAGN: adrenal ganglioneuroma.
fACC: adrenocortical carcinoma.

Performance of MA-YOLO Model
Following training and validation on the internal dataset, the
MA-YOLO model proposed in this study was evaluated on the
external test set. Figure 3 shows the test results of 6 types of
adrenal masses under the MA-YOLO model and the heat map
of the model’s focus area.

In order to evaluate the accuracy of the model in localizing
adrenal masses, we used the IoU metric, and used metrics such
as mAP, AUC, Recall, Confusion Matrix, and F1-score to assess
the accuracy of the model in classifying the 6 types of adrenal
masses. The results of the evaluation are shown in Figure 4.

Figure 4A illustrates the average mAP and IoU of the
MA-YOLO model for localizing and classifying the 6 types of
adrenal masses across different phases. Overall, the MA-YOLO
model demonstrates satisfactory localization and classification

performance across 3 phases. However, arterial and venous
phases exhibit superior performance compared with the
unenhanced phase. To provide a comprehensive presentation
of the model testing results, in Figure 4B, we depict the
classification performance of the MA-YOLO model for the 6
types of adrenal masses across 3 phases using radar charts.
Figures 4C-Figures 4E presents the confusion matrices of the
MA-YOLO model for classifying the 6 types of adrenal masses
across different phases. It can be observed that the overall
classification of the MA-YOLO model is effective in all 3
phases, except that the classification of AA is slightly inferior
to that of the other categories.

The results indicate that the MA-YOLO model proposed in this
study can accurately localize and classify the 6 types of adrenal
masses, with relatively optimal performance observed in
localization and classification by the venous phase model.
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Figure 3. Original test images and images with annotations of 6 types of adrenal masses, test results based on the MA-YOLO model, and heat maps.
(A) AA, (B) PCC, (C) AM, (D) AC, (E) AGN, and (F) ACC. AA: adrenocortical adenoma; AC: adrenal cyst; ACC: adrenocortical carcinoma; AGN:
adrenal ganglioneuroma; AM: adrenal myelolipoma; MA-YOLO: Multi-Attention YOLO; PCC: pheochromocytoma.
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Figure 4. Performance of Multi-Attention YOLO (MA-YOLO) model on the external test set. (A) Average mAP and IoU for localizing and classifying
the 6 types of adrenal masses across different phases. (B) Radar charts of classification performance for the 6 types of adrenal masses across 3 phases.
Confusion matrices for classifying the 6 types of adrenal masses across (C) unenhanced, (D) arterial, and (E) venous phases. AA: adrenocortical adenoma;
AC: adrenal cyst; ACC: adrenocortical carcinoma; AGN: adrenal ganglioneuroma; AM: adrenal myelolipoma; IoU: intersection over union; mAP:
mean average precision; PCC: pheochromocytoma.

Performance Comparison Between the MA-YOLO
Model and Other Models
The MA-YOLO model proposed in this study is built upon the
YOLO framework and incorporates various attention
mechanisms. In order to validate the superior performance of
the MA-YOLO model, this study adopts the YOLO V3, YOLO
V5, YOLO V7, Fast R-CNN, and Efficientdet models as
comparative models, which differ from each other in terms of
the backbone network structure and optimization strategies.
These models were trained using the same training set,
hyperparameters, and subsequently tested on the same test set.
The comparative experimental results are presented in Figures
S4-S6 and Table S2 in Multimedia Appendix 1 [20,21].

For the overall assessment of model localization accuracy, we
used the IoU metric. Among comparison models, the YOLO
V3 model achieves IoU values of 0.717, 0.838, and 0.787 for
the unenhanced phase, arterial phase, and venous phase
respectively. The IoU values for the YOLO V5 model are 0.835,

0.859, and 0.847. The IoU values for the YOLO V7 model are
0.811, 0.865, and 0.873. The IoU values for the Fast R-CNN
model are 0.550, 0.770, and 0.764, while for the Efficientdet
model, they are 0.820, 0.840, and 0.870. The MA-YOLO model
proposed in this study achieves IoU values of 0.838, 0.885, and
0.890 respectively, all of which are optimal. For the overall
assessment of model classification accuracy, we used the mAP
metric. Specifically, the YOLO V3 model achieves mAP values
of 0.826, 0.903, and 0.875 for the unenhanced phase, arterial
phase, and venous phase, respectively. Whereas, the mAP values
of YOLO V5 model are 0.894, 0.889, and 0.883 and the mAP
values of YOLO V7 model are 0.879, 0.908, and 0.905,
respectively. In comparison, the MA-YOLO model proposed
in this study achieves mAP values of 0.885, 0.913, and 0.915,
demonstrating relatively superior performance.

The comparison experiments indicate that the MA-YOLO model
proposed in this study can accurately localize and classify the
6 types of adrenal masses, and its performance generally
surpasses that of other models.
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Performance Comparison Between the MA-YOLO
Model and Physicians and Its Clinical Evaluation
The ROC curves for the classification diagnosis of 6 types of
adrenal masses using the MA-YOLO model are shown in Figure
5. On these ROC curves, we marked the expert operating points
of 6 physicians before and after assistance from the MA-YOLO
model. To evaluate the superiority of the MA-YOLO model
and physicians’ independent diagnoses, as well as the
significance of the model’s improvement in physicians’
diagnostic performance, this study used the DeLong test [23,24].
The comparison between the MA-YOLO model and physicians’
independent diagnoses is presented in Multimedia Appendix 2,
while the comparison between physicians’ independent
diagnoses and their diagnoses with model assistance is shown
in Multimedia Appendix 3. Table 4 lists the comparison of
physicians’ diagnosis times before and after model assistance,
as well as the diagnosis time of the model. The DeLong test
results indicated that, except for the AM category, significant
differences were observed in all categories across one or more
comparison groups between the model and physicians’
independent diagnoses. Excluding the senior physician group,
the MA-YOLO model demonstrated significantly higher
diagnostic efficiency for PCC and ACC categories in the other
5 comparison groups. Additionally, its diagnostic efficiency for

AC and AGN categories was significantly better than
physicians’ independent diagnoses in at least half of the
comparison groups, highlighting the model’s excellent
diagnostic performance for these 4 types of adrenal masses.
Even in the AA category, where the model’s diagnostic
performance was the lowest, 2 comparison groups showed
significant differences. Thus, it can be concluded that, except
for the AM category, the MA-YOLO model demonstrated
superior diagnostic efficiency over physicians for the other 5
types of adrenal masses.

Moreover, the DeLong test results showed that, compared with
physicians’ independent diagnoses, the diagnostic efficiency of
the other 4 mass categories significantly improved in 3 out of
6 comparison groups under the assistance of the MA-YOLO
model, excluding AM and AGN categories. For the AGN
category, significant improvements were observed in 2 of the
6 comparison groups. Furthermore, as shown in Figure 5, under
optimal model assistance, nearly all physicians maintained or
improved their accuracy in classifying adrenal masses across
all categories, achieving significant improvements in the
classification diagnosis of the aforementioned mass categories.

Finally, the decision curve reflecting the clinical net benefit of
the MA-YOLO model is shown in Figure S7 in Multimedia
Appendix 1 [20,21].
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Figure 5. ROC curves for each category generated by the MA-YOLO model and expert operating points for physicians’ classification before and after
model assistance. (A) AA, (B) PCC, (C) AM, (D) AC, (E) AGN, and (F) ACC. AA: adrenocortical adenoma; AC: adrenal cyst; ACC: adrenocortical
carcinoma; AGN: adrenal ganglioneuroma; AM: adrenal myelolipoma; AUC: area under the receiver operating characteristic curve; MA-YOLO:
Multi-Attention YOLO; PCC: pheochromocytoma; ROC: receiver operating characteristic.
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Table 4. Average diagnostic duration for urologists and radiologists for the classification of 6 types of adrenal masses.

Multi-Attention YOLO (average diagnos-
tic time per patient in seconds)

With MA-YOLOa assistance (average di-
agnostic time per patient in seconds)

Without assistance (average diagnos-
tic time per patient in seconds)

Diagnostician

—b7.9310.97Junior radiologist

—11.6512.73Intermediate radiologist

—17.9816.45Senior radiologist

—12.5813.85Junior clinician

—15.0017.54Intermediate clinician

—11.5213.80Senior clinician

0.05——AIc

aMA-YOLO: Multi-Attention YOLO.
bNot applicable.
cAI: artificial intelligence.

Discussion

Principal Findings
The adrenal glands are situated in a unique anatomical position,
characterized by their small size and proximity to various
neighboring organs, making the interpretation of abdominal CT
scan images complex. Consequently, physicians diagnosing
adrenal masses need to make comprehensive judgments by
comparing images from different phases and overall views.
However, the results of classifying these masses are often
unsatisfactory, and due to the influence of these factors, machine
learning also encounters challenges in handling such complex
images. This multicenter study demonstrates that the
MA-YOLO–based deep learning algorithm can more accurately
identify adrenal masses using contrast-enhanced abdominal CT
scans, thereby improving diagnostic efficiency for clinicians
with artificial intelligence (AI) assistance and holding the
potential to transform current clinical practice.

Comparison to Prior Work
Previous research related to adrenal machine learning has
predominantly focused on tasks such as the automatic
segmentation of adrenal glands, discrimination between normal
adrenal glands and those containing masses, and classification
of certain types of adrenal masses [16-18,25,26]. However, most
of these studies are single-center investigations and seldom
classify based on accurate pathological results. This limitation
hinders the demonstration of the model’s generalizability and
fails to provide convincing classification criteria for readers. In
addition, as mentioned above, the MA-YOLO model proposed
in this study constructs Focus module, ConvAttention module,
Transition module, and Convolutional Block Attention module
on the basis of the YOLO model, which enables the model to
extract and use the key information in the image more
efficiently, and is able to better fusion of local and global
information in the image, and at the same time can reduce the
computational complexity, improve the training and inference
efficiency of the model, and has better generalization. In
contrast, the aforementioned studies generally adopt U-Net,
DensNet, Convolution, or a combination of both models, and
although they all achieve better results in their respective tasks,

they all lack the attention mechanism with adaptive ability, and
have certain limitations in feature extraction, computational
efficiency, and model generalization.

This study is the first deep learning model for the automatic
detection and classification of adrenal masses based on
multicenter data. The application of external data confirmed the
generalizability of the MA-YOLO model. To evaluate the
performance of the MA-YOLO model, we conducted
comparative experiments, selecting YOLO V3, V5, and V7
models representing different stages of YOLO development, as
well as the widely recognized Faster R-CNN and EfficientDet
object detection algorithms. The comparative experimental
results with the aforementioned 5 models indicate that the
MA-YOLO model exhibits superior overall performance (Table
S1 in Multimedia Appendix 1 [20,21]). This can likely be
attributed to the integration of multiple spatial and channel
attention modules in the MA-YOLO model, enabling it to better
capture critical information in both spatial and channel
dimensions. Notably, the improvement is more pronounced for
certain specific tumors, such as AA and PCC. Both AA and
PCC account for the vast majority of adrenal masses (>90%)
and, with the exception of nonfunctional AA, typically require
surgical intervention. Therefore, the aforementioned
improvements are of significant importance for AI diagnostic
models of adrenal masses. From another perspective, it can
assist clinicians in quickly locating masses, saving time in image
interpretation, and also help patients understand their condition,
thereby alleviating anxiety.

Practical Value of the MA-YOLO Model
The MA-YOLO model demonstrates diagnostic accuracy for
classifying 6 tumor types that are greater than or equal to all 6
physicians. Its practical value is primarily reflected in the
significant improvement in diagnostic accuracy for certain
specific tumor categories compared with the 6 physicians
(Multimedia Appendix 2). The improvement is particularly
significant in the 4 tumor types: PCC, ACC, AC, and AGN.
Certain characteristics of these tumors in actual diagnostic
practice, such as similar imaging features among them, the
relative rarity of ACC and AGN leading to insufficient clinical
experience, and other factors [27,28], contribute to reduced
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diagnostic accuracy by physicians when assessing these tumor
categories in real-world scenarios. Deep learning algorithms
can effectively address the aforementioned issues, thereby
improving diagnostic accuracy. In clinical practice, especially
when dealing with the 4 tumor types mentioned, accurate
preoperative diagnosis is essential. For example, asymptomatic
or small ACs may be monitored through observation rather than
undergoing unnecessary surgical intervention under uncertain
conditions [29]. PCC and AGN require surgical excision, and
adequate preoperative preparation is essential to prevent
significant hemodynamic fluctuations during surgery [30].
Patients suspected of having ACC need further systemic
evaluation and may require a unilateral adrenalectomy distinct
from other tumor categories, potentially accompanied by lymph
node dissection. Additionally, postoperative adjuvant therapy
may be necessary [31]. On the other hand, due to the current
level of trust that physicians place in AI results, along with
ethical and safety concerns, it is unrealistic to fully delegate
decision-making to AI. Therefore, we use AI results as an
adjunct to the clinician’s judgment. The results indicate that
with AI assistance, physicians show a universally significant
improvement in diagnostic accuracy for 4 tumor types: AA,
PCC, AC, and ACC (Multimedia Appendix 3). This holds
substantial practical significance and provides a realistic
reference for future clinical applications.

Future Directions
It is worth noting that in terms of recognition and classification,
the model’s performance in AA is slightly inferior to that of the
other 5 tumor types. This may be due to the smaller average
diameter of AA compared with the other tumor categories. Some
studies have found that deep learning may lack sufficient feature
extraction capabilities to identify small lesions. For instance,
Bi et al [25] discovered that in the CT cross-sectional images
of certain adrenal lesions, the first or last layer often displays
smaller tumor diameters, which may lack sufficient lesion
information for feature extraction, leading to a decrease in
recognition and classification accuracy for these images.
Additionally, while examining the AA test set images, we
observed that some smaller-diameter AAs were not successfully
identified. Therefore, we randomly selected 200 images of AAs
with diameters greater than 2 cm for further testing and found
a significant improvement in localization efficiency, with an
IoU of 0.806, compared with an IoU of 0.779 for the AA images
in the test set without diameter screening. Furthermore, the
improvement in localization efficiency also impacted
classification accuracy, as tumors that were not successfully
localized in the images could not be classified for prediction.
Additionally, considering that AA includes both fat-rich and
fat-poor adenomas, we selected 150 images each of fat-rich
(average CT value of the largest tumor diameter <10 HU) and
fat-poor (average CT value of the largest tumor diameter >10
HU) adenomas for further testing, using the internationally
recognized CT value threshold of 10 HU [32-35]. The
MA-YOLO model achieved an AUC of 0.87 in diagnosing
fat-poor adenomas and 0.80 in diagnosing fat-rich adenomas.
Considering low-density lesions such as AC and AGN, the low
density in the images implies lower pixel density, which can
affect the model’s localization and classification results.

Therefore, we believe that the slight decline in the model’s
accuracy in AA classification and diagnosis may be related to
their smaller diameter and heterogeneous density.

Although the results in the unenhanced phase of this study were
slightly lower than those in the other 2 phases, both the mAP
and IoU still exceeded 0.8. Considering the following three
factors—(1) the economic burden of contrast-enhanced CT
scans on patients, (2) the potential effects of contrast agent
injection, and (3) the significantly longer examination time
required for contrast-enhanced CT compared with unenhanced
CT—future research should focus more on improving the
performance of deep learning algorithms in unenhanced CT
scans. Based on existing guidelines, AI assistance significantly
reduces the extent and complexity of patient examinations while
ensuring diagnostic accuracy, which holds significant value for
both clinicians and patients. Additionally, as the detection rate
of AI (artificial intelligence) continues to improve annually, it
suggests the potential need for large-scale adrenal screening in
the future. Mature AI algorithms can assist clinicians in
preliminary localization and classification tasks, significantly
reducing their workload and improving efficiency.

Study Limitations
This study still has several limitations. First, it is a retrospective
study, and future research should collect prospective data to
further validate the performance of the MA-YOLO model.
Second, this study was based on 2D images for training and did
not incorporate 3D modeling of all patients’ tumors or conduct
multimodal analysis with clinical data. Multimodal and
multidimensional analysis is the future direction of medical AI,
and further research in these areas is necessary. Third, we only
included adrenal masses with a diameter greater than 1 cm.
Although this is the accepted definition for incidental adrenal
nodules, some adrenal masses may be smaller than 1 cm. Future
research may need to further explore the localization and
classification of adrenal nodules smaller than 1 cm. Finally, this
study only examined the performance of the Multi-Attention
YOLO algorithm in the localization and classification of adrenal
masses and did not include imaging of patients with tumors
involving adjacent organs of the adrenal gland. The adrenal
gland is adjacent to several organs, and tumors, such as those
of the liver or upper pole of the kidney, are commonly found
around the adrenal gland. These masses may interfere with the
automatic localization and classification of adrenal masses.
Therefore, future studies should include imaging of patients
with tumors adjacent to the adrenal gland to further explore the
performance of the MA-YOLO model in complex scenarios.

Conclusions
In conclusion, this study collected multicenter abdominal
multiphase CT data and established a dataset of adrenal masses.
We proposed the MA-YOLO model based on the multiattention
mechanism and the YOLO framework, which can quickly and
accurately automatically localize and classify 6 common types
of adrenal masses. With the assistance of the model, the
diagnostic performance of physicians can be effectively
improved, providing meaningful preoperative reference for
physicians.
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