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Abstract

Background: Worldwide, 30%-45% of adults have sleep disorders, which are linked to major health issues such as diabetes
and cardiovascular disease. Long-term monitoring with traditional in-lab testing is impractical due to high costs. Wearable artificial
intelligence (AI)–powered solutions offer accessible, scalable, and continuous monitoring, improving the identification and
treatment of sleep problems.

Objective: This scoping review aims to provide an overview of AI-powered wearable devices used for sleep disorders, focusing
on study characteristics, wearable technology features, and AI methodologies for detection and analysis.

Methods: Seven electronic databases (MEDLINE, PsycINFO, Embase, IEEE Xplore, ACM Digital Library, Google Scholar,
and Scopus) were searched for peer-reviewed literature published before March 2024. Keywords were selected based on 3
domains: sleep disorders, AI, and wearable devices. The primary selection criterion was the inclusion of studies that utilized AI
algorithms to detect or predict various sleep disorders using data from wearable devices. Study selection was conducted in 2
steps: first, by reviewing titles and abstracts, followed by full-text screening. Two reviewers independently conducted study
selection and data extraction, resolving discrepancies by consensus. The extracted data were synthesized using a narrative
approach.

Results: The initial search yielded 615 articles, of which 46 met the eligibility criteria and were included in the final analysis.
The majority of studies focused on sleep apnea. Wearable AI was widely deployed for diagnosing and screening disorders;
however, none of the studies used it for treatment. Commercial devices were the most commonly used type of wearable technology,
appearing in 30 out of 46 (65%) studies. Among these, various brands were utilized rather than a single large, well-known brand;
19 (41%) studies used wrist-worn devices. Respiratory data were used by 25 of 46 (54%) studies as the primary data for model
development, followed by heart rate (22/46, 48%) and body movement (17/46, 37%). The most popular algorithm was the
convolutional neural network, adopted by 17 of 46 (37%) studies, followed by random forest (14/46, 30%) and support vector
machines (12/46, 26%).

Conclusions: Wearable AI technology offers promising solutions for sleep disorders. These devices can be used for screening
and diagnosis; however, research on wearable technology for sleep disorders other than sleep apnea remains limited. To statistically
synthesize performance and efficacy results, more reviews are needed. Technology companies should prioritize advancements
such as deep learning algorithms and invest in wearable AI for treating sleep disorders, given its potential. Further research is
necessary to validate machine learning techniques using clinical data from wearable devices and to develop useful analytics for
data collection, monitoring, prediction, classification, and recommendation in the context of sleep disorders.
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Introduction

Background
Sleep is a fundamental biological process essential for
maintaining overall health and well-being. It is a dynamic state
in which the brain processes daily experiences, promotes
synaptic plasticity, and supports physical functions. During
sleep, the brain and body engage in recovery, repair, and
preparation for the next day [1]. Sufficient sleep is crucial for
mood stability, cognitive function, and overall health. Both
sleep quantity and quality are vital for optimal functioning of
the body and mind [2]. The National Sleep Foundation defines
optimal sleep quantity for adults as 7-9 hours per night [3],
while sleep quality is characterized by factors such as minimal
interruptions, appropriate sleep onset latency (typically under
30 minutes), and a significant proportion of restorative sleep
stages (eg, deep sleep, rapid eye movement sleep). According
to the Philips Global Sleep Survey [4], 62% of people worldwide
report not getting the quality of sleep they desire, and 44% have
experienced worsening sleep over the past 5 years, a problem
that may be attributed to various sleep disorders. The
International Classification of Sleep Disorders categorizes sleep
disorders into insomnia, sleep-disordered breathing, central
hypersomnolence disorders, circadian rhythm sleep-wake
disorders, parasomnias, and sleep-related movement disorders
[5].

Existing research has shown that sleep disorders significantly
impact both physical and mental health. They can manifest as
insufficient sleep, excessive sleep, or abnormal movements
during sleep. Several studies have found that sleep disorders
are associated with an increased risk of cardiovascular disease,
diabetes, and cancer [6-8]. Additionally, they are linked to
mental health issues such as depression, anxiety, and suicidal
behavior [9-11]. Beyond individual health, sleep disorders also
have broader societal consequences, including an increased risk
of road accidents [12]. To mitigate the negative health and social
impacts of sleep disorders, early detection, monitoring, and
treatment are essential.

Various methods and devices have been used to monitor and
diagnose sleep disorders, including polysomnography (PSG),
home sleep testing (HST), and actigraphy. PSG is the gold
standard for diagnosing sleep disorders, as it accurately assesses
sleep phases and identifies potential conditions. However,
despite its advantages, PSG has some limitations. It is costly
and time-consuming, requires individuals to spend the night in
a sleep laboratory, and depends on expert monitoring and
scoring. By contrast, HST and actigraphy are less costly, allow
data collection over multiple days, and can be used in
nonlaboratory settings compared with PSG [13,14]. However,
HST has limitations, including underestimating results and
providing limited evaluations of certain sleep disorders [15,16].
These limitations can be addressed by wearable artificial
intelligence (AI) technology.

As wearable AI devices become increasingly popular, they have
revolutionized the health care industry by enabling real-time
monitoring and diagnostic capabilities [17]. This technology
integrates AI into wearable devices (WDs), allowing them to
perform tasks such as data processing, inference, and
decision-making directly on the device [18]. According to the
IEC (International Electrotechnical Commission)
Standardization Group 10, wearable smart devices are
categorized into 4 groups based on their proximity to, placement
on, or implantation within an organism, such as the human body
(as cited in [19]). Near-body wearables, such as radar-based
monitoring systems, contactless sleep-tracking devices, and
mobile sleep apps, operate close to the body but do not require
direct skin contact. On-body wearables, including smartwatches,
fitness trackers, smart glasses, electrocardiogram electrodes,
electromyography sensors, and electrodermal activity monitors,
are worn directly on the body and maintain continuous skin
contact. In-body wearables, such as implantable smart patches
and pacemakers, are implanted into the body. Electronic textiles
integrate fabric-based electronics, including smart clothing
designed to monitor physiological parameters.

Research Problem and Aim
Several studies have been published on the use of WDs
combined with AI to detect or monitor sleep disorders. While
multiple reviews have summarized previous studies, certain
limitations exist. Some reviews focused solely on the features
of AI models without discussing their integration with WDs
[20-22]. Others examined only a specific type of sleep disorder
[23-25]. Additionally, several reviews used search queries that
omitted important terms [22,26]. Numerous reviews did not
include searches in popular databases such as MEDLINE,
PsycINFO, and Embase [20-22]. Some reviews focused on
specific types of data, such as clinical data or consumer data
from sleep technology devices used outside clinical settings
[20,26]. Several reviews were narrative in nature, indicating
that they did not follow systematic approaches [22,26].
Therefore, this review aims to provide an overview of
AI-powered WDs used for sleep disorders by analyzing key
aspects across 3 dimensions. First, it examines the study
characteristics, including design, population, and geographical
trends, to highlight research patterns. Second, it explores the
technological features of WDs, such as sensor types and
biosignals collected, emphasizing their role in sleep monitoring.
Third, it investigates the AI methodologies employed, their
applications, and validation approaches, showcasing
advancements in AI-driven sleep disorder detection.

Methods

Study Design
To ensure a thorough and systematic approach, this scoping
review adhered to the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for
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Scoping Reviews). A detailed account of adherence to
PRISMA-ScR guidelines is provided in Multimedia Appendix
1, outlining the structured process we followed.

Search Strategy
A comprehensive search was conducted across several electronic
databases, including MEDLINE, PsycINFO, Embase, IEEE
Xplore, ACM Digital Library, Scopus, and Google Scholar. An
automatic alert was set to run the search query biweekly. The
bibliographic data collection period spanned from December
7, 2023, to March 6, 2024. As a result of the overwhelming
volume of results from Google Scholar and its ability to
prioritize relevant search results, this review deliberately focused
only on the first 100 results. To identify additional relevant
sources, we performed backward and forward reference list
checking. This process involved analyzing the reference lists
of included articles and examining studies that cited them using
Google Scholar’s “Cited by” feature.

The search queries combined terms related to sleep disorders
(eg, sleep disorder*s, sleep disturbance, and sleep apnea) with
terms related to AI (eg, AI, machine learning, and deep learning)
and WDs (eg, wearable, smartwatch, and smart band). In
collaboration with digital health experts and after reviewing
relevant literature, the final search query was meticulously
crafted. Boolean operators “OR” and “AND” were used to
combine terms within the same category and across different
categories, respectively. The language filter was set to English
only. Duplicates were identified and removed using EndNote
X9 (Clarivate Plc). Full details of the search terms used for each
electronic database are provided in Multimedia Appendix 2.

Study Eligibility Criteria
This review encompassed studies that utilized AI algorithms
for any purpose related to sleep disorders using data from WDs.
Research articles were deemed suitable for inclusion if they
primarily focused on individuals diagnosed with or suspected
of having any type of sleep disorder, without restrictions based
on age, gender, or ethnicity. Studies that focused solely on AI
applications for detecting sleep quality or sleep staging—without
directly addressing sleep disorders—or those forecasting
intervention outcomes for sleep disorders were excluded.

This review included studies that gathered data using
noninvasive, on-body WDs. Research papers that exclusively
relied on non-WDs, handheld devices (eg, mobile phones),
near-body or in-body WDs, WDs physically connected to
non-WDs, or wearables requiring expert oversight—such as
those necessitating precise electrode placement—were excluded.
Studies on animals or patients with other primary health
conditions were also eliminated. Additionally, only
peer-reviewed journal articles, conference papers, and
dissertations were considered, with no restrictions on study
setting, study design, reference standard (ie, ground truth), year
of publication, or country of study. However, papers not
published in English or classified as editorials, preprints,
reviews, protocols, posters, conference abstracts, or research
highlights were excluded from consideration.

Study Selection Process
The study selection process in this review comprised 2 key
steps. First, all retrieved articles underwent a preliminary
screening based on their titles and abstracts by 2 reviewers. This
step was essential for determining whether the articles met the
inclusion criteria without requiring a full-text review. It aimed
to exclude studies that clearly did not meet the criteria, such as
those unrelated to WDs or focusing on other aspects of sleep
technology.

Articles that passed the initial screening were then subjected to
a detailed full-text review. The same 2 reviewers independently
conducted this assessment, thoroughly evaluating each study
against the inclusion and exclusion criteria to confirm its
relevance to the research questions. Studies that lacked sufficient
data on AI algorithm performance, used nonwearable
technology, or fell outside the scope of peer-reviewed literature
were excluded. Any discrepancies between reviewers were
resolved through discussion until a consensus was reached. If
disagreement persisted, a third reviewer was consulted to make
the final decision.

Data Extraction Process
Two reviewers independently extracted data from the included
studies using Microsoft Excel. The extracted information
included study metadata, WD features, and AI algorithm
characteristics. The data extraction form used in this review is
provided in Multimedia Appendix 3. Any differences in data
interpretation or extraction between reviewers were resolved
through discussion until a consensus was reached.

Data Synthesis
We used a narrative approach to synthesize the extracted data,
which were then aggregated using text, tables, and figures.
Specifically, we first presented the search results, followed by
an overview of the studies’ general characteristics, and finally,
a detailed description of the features of WDs and AI
technologies. We examined the technical characteristics of WDs,
including key measurements, sensing approaches, and sensor
properties, as well as general attributes such as device type,
placement, and status. The AI aspects were analyzed based on
the models used, evaluation criteria, and their applications.

Results

Search Findings
Figure 1 illustrates the study selection process, as per
PRISMA-ScR guidelines (Multimedia Appendix 1). The initial
database search yielded 689 citations. After identifying and
removing 240 duplicates using EndNote X9, 449 unique studies
remained. Screening the titles and abstracts led to the exclusion
of 397 studies. The full texts of the remaining 52 studies were
retrieved and assessed, resulting in the exclusion of 9 studies.
The primary reasons for exclusion were the lack of studies
focusing on sleep disorders (n=2), the absence of AI algorithms
(n=6), and inappropriate publication type (n=1). Additionally,
3 relevant studies were identified through reference list
screening. Ultimately, 46 studies were included in this review.
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Figure 1. Flowchart of the study selection process. AI: artificial intelligence.

Characteristics of Included Studies
As shown in Table 1, the number of studies fluctuated over
time, with the highest counts recorded in 2023 and 2020 (11/46,
24%). The included studies were conducted across 17 different
countries, with the United States contributing the most (10/46,
22%). The majority of the research was published as journal
articles (36/46, 78%). The average number of participants per

study was 218.4 (SD 597.2), ranging from 4 to 3414. Among
the 29 studies that reported participant ages, the age range was
12-68 years, with an average of 45.8 (SD 12.4) years. The
proportion of female participants across 30 studies averaged
39.2%, ranging from 12% to 65%. The majority of studies
(42/46, 91%) focused on sleep apnea. Multimedia Appendix 4
provides the characteristics of each included study.
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Table 1. Characteristics of the included studies (N=46).

ReferencesStudiesFeatures

Year of publication, n (%)

[27-37]11 (24)2023

[38-47]10 (22)2022

[48-53]6 (13)2021

[54-64]11 (24)2020

[65,66]2 (4)2019

[67-69]3 (7)2018

[70-72]3 (7)Othersa

Country of publication, n (%)

[30,33,40,48,51,58,69-72]10 (22)United States

[34-37,39,41,44,45,50]9 (20)China

[28,47,55,64,66]5 (11)South Korea

[49,60,61]3 (7)Ukraine

[42,53]2 (4)Australia

[63,65]2 (4)Canada

[32,38]2 (4)Italy

[29,52]2 (4)Norway

[54,62]2 (4)Taiwan

[31,59]2 (4)The Netherlands

[27,43,55-57,67,68]7 (15)Othersa

Publication type, n (%)

[27-36,38-48,50-59,62,63,66,69,71]36 (78)Journal article

[37,49,60,61,64,65,67,68,70,72]10 (22)Conference paper

Number of participants

[27-29,31-72]218.4 (597.2)Mean (SD)

N/Ab4-3414Range

[30]1 (2)Not reported, n (%)

Age

[28,29,31-33,35,36,38,40,42,43,45-49,51,52,54,55,57,59-63,65,66,69,70]45.8 (12.4)Mean (SD)

N/A12-68Range

[27,30,34,37,39,41,44,50,53,55,56,58,64,67,68,71,72]17 (37)Not reported, n (%)

Female (%)

[28,29,32-36,38,40-43,45,46,48,51-54,57-60,62,63,65,66,69,70,72]39.2 (14.2)Mean (SD)

N/A12-65Range

[27,30,31,37,39,44,47,49,50,55,56,61,64,67,68,71]16 (35)Not reported, n (%)

Target disease, n (%)

[29,30,33-41,43-52,54-65,67-72]39 (84.7)Sleep apnea

[28,42,53,66]4 (9)Insomnia

[31]1 (2)Rapid eye movement sleep be-
havior disorder

[27]1 (2)Sleep stroke
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ReferencesStudiesFeatures

[32]1 (2)Sleep disorderc

aOther includes the total number of studies where a feature was added as one.
bN/A: not applicable.
cNot any specific disorder, but in general, all characteristics considered for any specific disorder, such as breathing events, apnea, irregular breathing,
snoring, and obstructive sleep apnea.

Technical Specifications of Wearable Devices
Commercial WDs constituted the majority of the included
studies (30/46, 65%; Table 2). The most frequently mentioned
WDs were Actiwatch, Belun Ring, and Fitbit (3/46, 7%), with
smart bands being the most common type (12/46, 26%). WDs
were placed on various body parts, with the wrist (19/46, 41%),
chest (15/46, 33%), and abdomen (8/46, 17%) being the most
common locations. Most of these devices collected activity and
sleep measures (10/46, 22%), along with other biosignals. As

illustrated in Figure 2A, the most common sensors identified
in these WDs were accelerometers (34/46, 74%) and
photoplethysmography sensors (14/46, 30%). Figure 2B
highlights a clear trend of accelerometer sensor adoption over
the years, often in combination with other sensors. Most of these
devices (44/46, 96%) employed an opportunistic approach to
data collection, autonomously sensing and recording data
without requiring users to manually input information or activate
processes. The technical specifications of the WDs in each
included study are detailed in Multimedia Appendices 5 and 6.
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Table 2. Technical specifications of wearable devices.

ReferencesStudies, n (%)Feature

Status of WDa

[28,29,31-33,37-40,42-44,46-53,56-58,61,62,64,66,67,70,72]30 (65)Commercial

[27,30,34-36,41,45,54,55,59,60,63,65,68,69,71]16 (35)Noncommercial

Name of WD

[42,53,67]3 (7)Actiwatch

[33,51,62]3 (7)Belun Ring

[28,38,66]3 (7)Fitbit

[55,69]2 (4)ADXL345

[54,69]2 (4)Alice 5 PSG

[63,65]2 (4)Patch

[49,61]2 (4)Samsung Galaxy

[46,47]2 (4)T-REX TR100A

[27,30,34,36,39,41,44,45,50,59,60,68,71]13 (28)Not reported

[29,31,32,35,37,40,43,48,52,56-58,64,70,72]15 (33)Others

Type of WD

[27,31,38-40,42,44,50,53,57,59,66]12 (26)Smart band

[28,37,48,49,61,64,67,72]8 (17)Smartwatch

[30,41,46,47,54,56,70]7 (15)Electrodes

[33,34,51,62]4 (9)Smart ring

[35,36,69]3 (7)Sensor

[29,55]2 (4)Smart belt

[45]1 (2)Not reported

[52,71]2 (4)Others

Placement

[27,28,31,37-39,42,44,48-50,52,53,59,61,64,66,67,72]19 (41)Wrist

[29,32,40,41,43,45,52,54,56-58,60,68,70,71]15 (33)Chest

[29,46,47,52,54-56,58]8 (17)Abdomen

[29,33,34,51,52,62]6 (13)Finger

[29,36,52]3 (7)Nose

[63,65]2 (4)Neck

[69]1 (2)Not reported

[30,35]2 (4)Others

Measured biosignals

[27-29,31-33,37,38,40-43,48,49,51-55,57-70,72]34 (74)Activity measures

[27-29,31-33,37,38,40-43,48,49,51-55,57-70,72]34 (74)Sleep measures

[33,34,37-39,41,44-47,49-51,54,57,59,61,62,64,68,70-72]23 (50)Cardiovascular measures

[33-35,37-39,44,49-51,59,61,62,64,69,72]16 (35)Oxygenation measures

[31,42,49,53]4 (9)Light exposure

[27,58]2 (4)Motion measures

[36,56]2 (4)Respiratory data

[27,30,32]3 (7)Others

Sensors

J Med Internet Res 2025 | vol. 27 | e65272 | p. 7https://www.jmir.org/2025/1/e65272
(page number not for citation purposes)

Aziz et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ReferencesStudies, n (%)Feature

[27-29,31-33,37,38,40-43,48,49,51-55,57-70,72]34 (74)Accelerometer

[33,34,37-39,44,49-51,59,61,62,64,72]14 (30)Photoplethysmography

[31,35,42,49,53]5 (11)Light sensor

[41,45,47,54,55,57,68,70,71]9 (20)Electrocardiogram

N/Ab2 (4)Gyroscope

[27,30,32,36,56,58,62,69,71]9 (20)Others

Sensing approach

[27-50,52-67,69-72]44 (96)Opportunistic

[51,53]2 (4)Participatory

[68]1 (2)Not reported

aWD: wearable device.
bN/A: not applicable.

Figure 2. Sensor types used for sleep analysis by devices. ACC: accelerometer; ECG: electrocardiogram; PPG: photoplethysmography.

AI Model Charateristics
In the included studies, classification was the most commonly
used problem-solving strategy (45/46, 98%; Table 3). A variety
of AI methods were used, with convolutional neural networks
(CNNs) being the most popular (17/46, 37%), followed by
random forest (14/46, 30%) and support vector machines (12/46,
26%). As shown in Figure 3, the adoption trends of these
methods evolved over the years. The majority of the reviewed
studies utilized AI for diagnosis and screening (44/46, 96%),
while only a few focused on using wearable AI to predict sleep
problems before they occurred (6/46, 13%). Approximately 31
studies reported a mean data set size of 59,647.4 (SD 133,284),
with a range of 12-561,480. Open-source data were used in a
small number of studies (7/46, 15%), whereas the majority relied
on closed-source data (39/46, 85%). All studies (46/46, 100%)
collected data using wearable technology, while 4 (9%) also
incorporated self-reported questionnaires, and 2 (4%) utilized

nonwearable technology, such as cell phones. The most
commonly used data types for model development included
breathing-related metrics (eg, respiratory rate and respiratory
effort; 25/46, 54%), heart rate–related metrics (eg, heart rate,
heart rate variability, and interbeat interval; 22/46, 48%), and
body movement (activity levels; 17/46, 37%). A total of 23
studies reported the number of features used, ranging from 2 to
10,500, with an average of 497.7 (SD 2181).

The most commonly chosen reference standard was clinical
assessment (35/46, 76%). As shown in Multimedia Appendix
7, PSG was the most frequently used clinical assessment method.
To validate AI model performance, most studies used a train-test
split and K-fold cross-validation (21/46, 46%). The most
commonly used metric for evaluating AI algorithms was
accuracy (34/46, 74%), followed by sensitivity (29/46, 63%)
and specificity (27/46, 59%). Multimedia Appendices 8 and 9
provide details on AI model characteristics in each cited study.
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Table 3. AIa model characteristics.

ReferencesStudiesFeature

Problem-solving approach, n (%)

[27-65,67-72]45 (98)Classification

[29,35,40,46-48,50,61-63,65,70,71]13 (28)Regression

[66]1 (2)Clustering

AI algorithms, n (%)

[27,29,30,32,33,36,44,45,47,52,58-60,63,65,67,72]17 (37)Convolutional neural network

[28,29,31,34,38-42,46,48,50,52,53]14 (30)Random forest

[31,34,41,42,46,48,52,53,69-72]12 (26)Support vector machines

[29,41,49,52,54,57,61,63,65,67]10 (22)Long short-term memory

[34,39,41-43,50,52,64,72]9 (20)K-nearest neighbors

[39,41,42,48,50,64]6 (13)Naive Bayes

[29,38,46,52,68]5 (11)Multilayer perceptron

[51,55,62,64]4 (9)Artificial neural network

[39,41,48,50]4 (9)Decision trees

[41,43,48]3 (7)AdaBoostb

[28,34,37]3 (7)XGBoostc

[29,31,41,46,48,52,63,66]8 (17)Others <3

[35,56]2 (4)Not reported

Aim of AI algorithm, n (%)

[27,29-65,67-72]44 (96)Diagnosis/screening

[28,48,56,57,66,71]6 (13)Prediction

[60]1 (2)Monitoring

Data set size

[29,32,33,36-41,43-48,51,52,55-57,59,60,62-65,67,70]59,647.4 (133,284)Mean (SD)

N/Ad12-561,480Range

[27,31,34,35,42,49,50,53,54,58,61,66,68,69,71]15 (33)Not reported, n (%)

Data source, n (%)

[27,28,30-41,43-45,48-52,54,55,57-66,68-72]39 (85)Closed

[29,42,46,47,53,56,67]7 (15)Open

Data types, n (%)

[27-72]46 (100)WDe based

[37,66,67,69]4 (9)Self-reported

[37,69]2 (4)Non-WD based

Data input to AI algorithm, n (%)

[29,32,36,37,40,41,43,46-48,52,54-61,63,65,68-71]25 (54)Respiration data

[28,33-35,37-39,41,44-47,50,51,57,59,61,62,64,68,70,71]22 (48)Heart rate

[28,32,33,35,37,38,41,42,51,57,59,61,62,64,66,67,70]17 (37)Body movement

[29,32-35,37,40,51,52,54,62,69,71]13 (28)Oxygen saturation

[32,37,71]3 (7)Acoustics data

[27,30,31,37,49,53,59,67,72]9 (20)Others <3

Number of features
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ReferencesStudiesFeature

[31,33,38-43,45-48,50,53,54,58,61-63,65,68,69,71]497.7 (2181)Mean (SD)

N/A2-10,500Range

[27-30,32,34-37,44,49,51,52,55-57,59,60,64,66,67,70,72]23 (50)Not reported, n (%)

Reference standard, n (%)

[29,30,33-40,43-54,56-59,61-63,65-67,69-71]35 (76)Clinical assessment

[27,55]2 (4)Wearable device

[41,60,68]3 (7)Context

[27,28,31,32,42,72]6 (13)Not reported

Type of validation, n (%)

[27,28,32,33,35,36,41,44-47,51,54-56,58-62,64]21 (46)Train-test split

[29,31,33,37,39,40,42-45,48,50,52,57,63-65,67,68,71,72]21 (46)K-fold cross-validation

[29,32,38,53,69,70]6 (13)Leave-one-out cross-validation

[30,34,66]3 (7)Not reported

[27,28,31,42,49,72]6 (13)Others

Machine learning performance measures, n (%)

[27,29,31-34,36,37,39-47,50-53,56-62,64,67,68,70-72]34 (74)Accuracy

[27-29,31-35,37-54,56,57,59,62,63,67,70]33 (72)Sensitivity (recall)

[27-29,31-35,37-39,41-47,50-53,56,57,59,62,70]27 (59)Specificity

[27,39-42,44,45,48,49,54,58,61,63,65,67,69]16 (35)F1-score

[27,28,33,35,38,40,41,43,46-49,51,54,59,62,63,67,69]19 (41)Positive predictive value (preci-
sion)

[29,30,33,46,47,49,51,52,59,61,62]11 (24)Cohen κ

[28,35,40,42,46,47,51,58,59,62,67]11 (24)Area under the curve

[28,33,35,38,43,46,47,51,62]9 (20)Negative predictive value

[35,40,46,47,51,59]6 (13)Area under the precision curve

[33,35,51,62]4 (9)Positive likelihood ratio

[33,35,51,62]4 (9)Negative likelihood ratio

[38]1 (2)Diagnostic odds ratio

[55,66]2 (4)Not reported

aAI: artificial intelligence.
bAdaBoost: Adaptive Boosting.
cXGBoost: Extreme Gradient Boosting.
dN/A: not applicable.
eWD: wearable device.
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Figure 3. Artificial intelligence (AI) algorithm usage over the years. ABT: Adaptive Boosting; ANN: artificial neural network; BP: backpropagation;
CAE: convolutional autoencoder; CNN: convolutional neural network; DT: decision tree; FC: fully connected (layer); GRU: gated recurrent unit; KNN:
K-nearest neighbors; LDA: linear discriminant analysis; LGB: light gradient boosting machine; LR: logistic regression; LSTM: long short-term memory;
MLP: multilayer perceptron; NB: naive Bayes; NN: neural network; QDA: quadratic discriminant analysis; RF: random forest; SVM: support vector
machine; XGBoost: Extreme Gradient Boosting.

Discussion

Principal Findings
This scoping review explored the features of wearable AI
technology used for sleep disorders. Consistent with previous
reviews [73,74], we observed a positive trend in the adoption
of wearable technology, reflecting a growing interest in sleep
disorder research. The majority of studies were conducted in
Asia (19/46, 41%), nearly twice as many as those in North
America (12/46, 26%) and Europe (13/46, 28%). The gap
between Asia and North America-Europe may be multifaceted.
Contributing factors could include regional differences in sleep
patterns [75-79] and the availability and affordability of WDs
in Asia. Most studies focused on the middle-aged population
(mean age 45 years), reflecting the higher prevalence of sleep
disorders such as insomnia, sleep apnea, and restless leg
syndrome in this group [80].

Key findings include the dominance of wearable AI in sleep
apnea research (39/46, 85%). This can be attributed to the high
prevalence of sleep apnea [81], its detrimental health effects
[82], the limitations of existing diagnostic techniques [83], and
advancements in wearable technology, which have made sleep
apnea a primary focus for the development of innovative
wearable monitoring systems [25]. Commercially available
WDs (30/46, 65%) were predominantly used due to their
accessibility, affordability, and ease of use [84,85], reflecting
a shift away from prototypes seen in previous studies [86].
Wrist-worn devices and accelerometer sensors were the most
commonly utilized technologies (34/46, 74%), often combined
with photoplethysmography sensors to enhance sleep staging

accuracy [87]. Another key finding of this review is that, despite
the availability of well-known sleep wearables such as the
Actiwatch and Belun Ring, relatively few studies used these
devices. This may be due to their high cost or their specialized
design and marketing for specific sleep disorders.

More than two-thirds of the studies used AI for sleep disorder
screening and diagnosis, highlighting its value as a diagnostic
tool due to its scalability, ability to identify high-risk individuals,
and capacity to detect sleep disorders from wearable sensor data
[88,89]. CNNs were the most commonly used AI models (17/46,
37%), likely due to the nature of wearable data, which are
collected from raw sensors and require extensive preprocessing,
including feature engineering and data cleaning. CNNs are
well-suited for this task as they excel in handling complex data,
extracting key features, modeling nonlinear relationships, and
performing effectively on large data sets [90]. As shown in
Multimedia Appendix 7, from 2013 to 2023, there has been a
growing diversity in AI algorithms, with CNN, long short-term
memory, and random forest remaining the most commonly used.
The increasing adoption of ensemble and hybrid AI methods
suggests a trend toward enhancing model performance. Data
for AI models were predominantly sourced from closed data
sets (39/46, 85%), with studies either recruiting their own
participants or utilizing precollected hospital data. This
preference may stem from privacy and ethical concerns, as these
data sets often contain sensitive personal and physiological
information, requiring additional safeguards and regulatory
compliance for public sharing. The primary data types used for
AI model development included respiratory data (25/46, 54%),
heart rate (22/46, 48%), and body movement (17/46, 37%), as
these are crucial for identifying the underlying causes of sleep
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disorders [43,91,92]. Respiratory rate was frequently utilized
due to its critical role in detecting sleep apnea, the primary focus
of most studies. Clinical assessments, particularly PSG (28/46,
61%), were the most commonly used reference standards for
validation. PSG involves placing multiple sensors to monitor
brain and heart activity, eye movements, muscle activity, blood
oxygen levels, breathing patterns, body movements, snoring,
and other noises, making it a widely preferred method for its
accuracy and comprehensive assessment in sleep studies. Half
of the studies validated their AI models using train-test split
and K-fold cross-validation methods. K-fold cross-validation
is especially effective at capturing data variability and is
well-suited for smaller data sets, which are common in wearable
studies [93]. However, the train-test split method was equally
utilized. This preference may stem from its simplicity, ease of
implementation, unbiased performance estimation, flexibility
with data set size, and alignment with established best practices.

Comparison With Prior Work
Our findings align with previous reviews [73,74], which reported
an increasing use of wearable technology in sleep disorders
research. However, unlike prior reviews that highlighted a focus
on prototypes [86], we observed a significant shift toward
commercially available devices, driven by technological
advancements and affordability. Consistent with earlier studies
[18,94], wrist-worn devices were the most commonly used,
likely due to their portability and cost-effectiveness. While
accelerometer-based wearables remained prevalent [95], this
review highlights an emerging trend of integrating additional
sensors, such as photoplethysmography, to enhance
accuracy—an aspect less evident in earlier reviews. Furthermore,
the increasing adoption of ensemble and hybrid AI methods
represents a recent development in wearable AI applications
for sleep disorders.

Strengths
This review comprehensively assessed wearable AI technologies
for sleep disorders, offering insights into their applications,
regional trends, and preferences for sensors and algorithms. A
key strength of this review is its focus on noninvasive WDs
deployed in studies. By including research spanning a decade
(2013-2023), we captured evolving trends in wearable
technology and AI methodologies. Additionally, an extensive
search across 7 diverse databases (eg, MEDLINE, Embase,
IEEE Xplore) encompassing psychological, biomedical,
technological, and interdisciplinary research ensured a
comprehensive analysis.

Limitations
First, this scoping review focused solely on WDs worn on the
body, excluding nonwearable, implanted, and handheld devices
(such as smartphones and carry-on sensors); near-body sensors
(eg, Bluetooth transmitters); and devices requiring clinical
intervention. As a result, the generalizability of our findings to
such devices may be limited. However, by narrowing the scope,
we ensured a focused review of wearable AI applications that
are accessible and user-friendly. Second, we excluded studies
that examined AI applications for detecting sleep quality or
sleep staging without directly addressing sleep disorders, as

well as those forecasting the outcomes of interventions for sleep
disorders. Future reviews could broaden the scope to include
these areas, providing a more holistic understanding of wearable
AI applications in sleep research. Third, only studies published
in English were included, which may have led to the omission
of relevant research in other languages. Fourth, this review
focused solely on the features of WDs and AI models and did
not evaluate the efficacy or performance of wearable AI, as this
was beyond its scope. Systematic reviews and meta-analyses,
which assess quality and validate performance, are needed for
such evaluations. Fifth, the rapidly evolving nature of wearable
AI technology may mean that some recent advancements were
not captured. Frequent updates to scoping reviews and
systematic reviews can ensure timely insights into this dynamic
field.

Future Directions

Practical Implications
To improve overall patient care and outcomes, AI applications
in sleep disorders must extend beyond diagnosis and screening.
While these areas are crucial, expanding AI use to include
predicting sleep disorders, delivering personalized interventions
or treatments, and providing tailored recommendations could
unlock its full potential. Researchers should explore the
capabilities of advanced models, such as large language models
(LLMs), in sleep medicine. Investigating these areas will not
only advance sleep medicine but also contribute to the
refinement of LLMs, as their applications in health care are still
evolving. A significant research gap remains, requiring thorough
evaluation and validation, along with the active involvement of
medical professionals in shaping the development and clinical
implementation of these tools.

Despite extensive literature on significant differences in sleep
patterns between males and females, most of the reviewed
studies did not account for these variations. Notable differences
include sleep duration, with females requiring approximately
20 minutes more sleep per night than males [96], and sleep
architecture, as females generally exhibit a higher percentage
of slow-wave sleep and spend more time in stage 3 non–rapid
eye movement sleep than males [97]. Additionally, certain sleep
disorders exhibit gender-based differences in prevalence; for
example, obstructive sleep apnea is more common in males,
whereas restless legs syndrome and insomnia are more prevalent
in females [96,98,99]. Future studies should account for these
gender differences and related factors when developing machine
learning models for diagnosing, predicting, or monitoring sleep
disorders using WDs. AI applications should incorporate
gender-specific diagnostics, predictive analytics for disorder
risk, and targeted interventions, such as personalized sleep
hygiene recommendations or treatment efficacy monitoring.
Gender data can also be leveraged in federated learning to
develop globally resilient models. Addressing these variations
ensures that AI-powered sleep disorder solutions are both
equitable and effective. Gender-specific algorithms could
enhance the accuracy and applicability of WDs, leading to
improved personalized care. Prioritizing this aspect in both data
collection and model training is essential to ensure fair and
effective solutions for all users.
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Notably, none of the AI models used in the included studies
were integrated into the WDs themselves. Given current
technological advancements, we recommend that major
manufacturers incorporate AI modules within these devices
using TinyML and federated learning. This approach would
enable continuous monitoring and real-time alerts for irregular
patterns, benefiting both patients and their care providers. These
changes would not only provide manufacturers with a
competitive edge but also increase acceptance rates among the
general population and enhance self-awareness. Additionally,
AI models heavily rely on data—the larger the data set, the
better the model’s generalizability. This review noted that most
studies used proprietary (closed-source) data sets, with only a
few utilizing open-source data. To foster accessibility,
collaboration, and innovation among researchers, there is a need
for more open-source data sets. Such data sets not only enhance
scientific integrity by enabling reproducibility and validation
of findings but also support researchers with limited resources.
This approach would encourage more interdisciplinary research
and facilitate the development of more robust AI/machine
learning models. Therefore, researchers are encouraged to
publish their data sets in open-source databases while ensuring
proper consent and thorough deidentification of data to protect
privacy.

In the included studies, the ground truth for sleep disorders was
primarily determined through clinical assessment, with PSG
being the most commonly used method. While PSG remains
the gold standard for sleep assessment, its complex setup and
high costs limit its feasibility for regular testing, which is crucial
for AI model optimization. Researchers should explore more
flexible, accessible, and cost-effective alternatives for long-term
monitoring, especially in nonclinical settings. This could include
leveraging well-established standard devices or integrating
automated scoring systems.

Research Implications
This review explored the general application of wearable AI in
sleep disorders without conducting an in-depth performance
evaluation. To thoroughly assess AI performance, systematic
reviews and meta-analyses are needed. Each sleep disorder
should have a dedicated systematic review analyzing the AI

technologies proposed as solutions. Researchers could also
investigate popular sleep-tracking devices such as Fitbit, Oura
Ring, Whoop, and Garmin, comparing their accuracy and user
acceptance in sleep monitoring. Further scoping and systematic
reviews on sleep disorders will help researchers, wearable
companies, and developers better identify the specific needs of
their target population, particularly in relation to AI algorithms.

This review identified significant regional disparities in research
trends. To foster collaboration and address global health needs,
greater transparency in WD adoption across regions is essential.
Establishing practical standards for WD development would
enhance biosignal measurement accuracy, improve algorithmic
performance, and advance research. Collaborative efforts are
crucial to bridging these gaps and ensuring the global
applicability of findings.

While sleep apnea is undeniably one of the most prevalent sleep
disorders, this review found that relatively few studies focused
on other significant conditions. Many sleep disorders remain
underdiagnosed or misdiagnosed, leading to inadequate
treatment and prolonged distress. Expanding research beyond
sleep apnea would improve our understanding of sleep
physiology and neurobiology, potentially driving breakthroughs
in diagnosis and treatment for multiple conditions.

Conclusions
Noninvasive wearable AI devices hold significant potential for
detecting and monitoring sleep disorders. Our review highlights
a growing global research trend in this area. However, to
comprehensively assess the performance of wearable AI, further
systematic reviews are needed to statistically synthesize study
results. Additionally, more research should explore wearable
AI applications beyond sleep apnea. Future AI developments
should extend beyond diagnosis and screening to include
predicting sleep disorders, delivering personalized interventions,
and providing tailored recommendations. Advanced AI models,
such as generative AI and LLMs, should be explored in line
with current technological trends. Manufacturers should
integrate these models into WDs to enhance functionality and
user experience. Additionally, studies should provide sufficient
details on findings and model architectures to facilitate
comprehensive systematic reviews and meta-analyses.
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