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Abstract
Background: More than 1 in 8 people potentially live with a mental health disorder, yet fewer than half receive treatment.
Poor mental health awareness may contribute to this treatment gap, and digital health technologies, like wearables and their
associated phone- and web-based applications, have the potential to reduce the mental health awareness gap due to their ease of
adoption, objective feedback, and high rate of engagement.
Objective: This study aimed to better understand the relationships between mental health and objective wearable-derived
metrics.
Methods: We examined the longitudinal results of monthly mental health surveys (Patient Health Questionnaire-2, General-
ized Anxiety Disorder 2-item, and Perceived Stress Scale) delivered over 13 months to 181,574 individuals wearing a device
(WHOOP, Inc.) that measures sleep, cardiorespiratory parameters, and physical activity (up to 307,860 survey responses and
7,942,176 days of total wear time). Generalized linear mixed models, cross-lag analyses, and intrapersonal scaling were used
to assess interpersonal and intrapersonal associations between wearable-derived metrics and mental health outcomes. Age,
gender, BMI, and time of year were used as covariates in the models.
Results: Interpersonal associations between wearable-derived metrics and mental health outcomes indicate that individuals
with better sleep characteristics (ie, longer sleep durations and more consistent wake and sleep times), higher heart rate
variabilities (HRV), lower resting heart rates (RHR), and higher levels of physical activity report lower levels of depression,
anxiety, and stress. Intrapersonal associations between wearable-derived metrics and mental health outcomes displayed similar
results as the between-person analyses, with higher HRVs, lower RHRs, and more physical activity generally coinciding
with improved mental health outcomes. However, intrapersonal wearable-derived sleep metric associations diverged from
the interpersonal association findings when specifically looking at sleep duration and depression, whereby increased sleep
durations within an individual were associated with higher levels of depression. In interpersonal analyses, the largest associa-
tion observed was between the Perceived Stress Scale scores and RHR, with a standardized coefficient of 0.09 (P<.001); in
intrapersonal analyses, the largest association observed was between the Patient Health Questionnaire-2 scores and summated
heart rate zones—a proxy for physical activity—with a standardized coefficient of −0.04 (P<.001). Cross-lagged models
demonstrated that higher levels of reported stress preceded higher RHRs, respiratory rates, and sleep duration variabilities, as
well as lower HRVs.
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Conclusions: Overall, this investigation reveals that numerous physiological variables measured by wearables are associated
with mental state in free-living environments. These findings underscore the potential of wearable-derived physiological and
behavioral monitoring to serve as objective complements to traditional subjective assessments in mental health research and
care. However, given the complex nature of mental health disorders, further research is needed to determine how these metrics
can be effectively integrated into clinical practice.
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Keywords: digital health; wearables; intrapersonal; interpersonal; physiology; mental health; longitudinal study; awareness;
digital health technologies; web-based applications; mHealth; mobile health; apps; applications; smartphones; mobile phone

Introduction
In 2019, the World Health Organization estimated that 1 in
8 people were living with a mental health disorder [1], with
the prevalence of anxiety and depression—the most common
mental health disorders—estimated to have increased by 26%
and 28%, respectively, during the COVID-19 pandemic [2].
Compounding these issues, fewer than half of individuals
living with mental illness receive treatment [3]. The societal
impact of untreated mental health issues extends beyond
individual well-being to encompass substantial economic
burdens as well [4], reinforcing the importance of treatment
for mental health disorders. One reason for widespread
undertreatment is poor mental health literacy [5], raising the
possibility that broadened access to mental health diagnos-
tic tools may help to reduce the burden of mental health
disorders.

A promising avenue for expanding awareness into
individual mental health status can be found in digital
technologies like smartphone apps and wearables. Although
digital technology adoption may be limited by digital literacy
and socioeconomic status [6,7], around half of all smart-
phone owners use a health and wellness app [8,9] and,
in a survey dispersed to a population reflective of the US
population, 44.5% (10,679/23,974) of respondents indicated
they owned a wearable device [10]. In addition, wearables
may track physiological measures, like sleep and cardiovascu-
lar parameters, that have been shown to associate with mental
health outcomes [11-15], suggesting wearables have the
potential to provide real-time feedback on physiological states
predictive of mental health status. Despite the prevalence
of research investigating the relationships between mental
health and physiological measures, little is known about how
wearable-derived measures may reflect mental health status in
free-living environments.

In this investigation, we provided members of a com-
mercial wearable device (WHOOP, Inc.) with a monthly
survey that gauged depression, anxiety, and stress via the
Patient Health Questionnaire-2 (PHQ2), Generalized Anxiety
Disorder 2-item (GAD2), and Perceived Stress Scale (PSS),
respectively. We combined these mental health data with
physiological and behavioral data from the wearable device
– including measures of sleep, cardiorespiratory function,
and physical activity – to better understand the relation-
ships between mental health status and aspects of behav-
ior and physiology. Through this interdisciplinary approach,
we aimed to elucidate nuanced connections between mental

health status and wearable-derived sleep, cardiorespiratory,
and physical activity parameters to assess the potential utility
of wearable technology in advancing our understanding and
management of mental health issues.

Methods
Data Collection
Responses to mental health questionnaires were collected
via monthly surveys delivered through the WHOOP mobile
app to all interested WHOOP members over a 13-month
period, from March 2022 to April 2023. The mental health
assessment questions included the PHQ2 [16,17] (a ques-
tionnaire meant to gauge depression), the GAD2 [18] (a
questionnaire meant to gauge anxiety), and the PSS [19] (a
questionnaire meant to gauge perceived stress). The questions
and their responses are available as Multimedia Appendix
1. To account for the different response scales between the
PHQ2 or GAD2 and PSS, the PSS was linearly scaled from
0 to 6. The combined responses from the PHQ2, GAD2,
and PSS assessments were then summated as a measure
of overall mental state, and this score is referred to as the
combination score. The scores of the PHQ2, GAD2, and PSS
reflect severity or likelihood of a mental health disorder (eg,
scoring higher on PHQ2 means a greater likelihood of being
depressed or an increased severity of depression) [16,17,20].

A wrist-worn device (WHOOP strap version 3.0 and 4.0)
that continuously collects heart rate (via photoplethysmog-
raphy) and accelerometry (via 3-axis accelerometer) data
was used to calculate sleep, cardiorespiratory, and physi-
cal activity. Sleep measures included total sleep duration,
sleep efficiency, SD of sleep duration, sleep consistency,
SD of wake times, and SD of sleep times. Sleep consis-
tency is adapted from the sleep irregularity index and is
calculated as the percentage of concordance when individ-
uals are in the same state (sleep vs awake) at different
time points over a 4-day interval, with comparisons of
intervals further apart being assigned progressively lower
weights [21,22]. A higher sleep consistency value reflects
a lower variability in sleep-wake timing. Cardiorespiratory
measures included resting heart rate (RHR), average heart
rate variability (HRVav), coefficient of variation of heart rate
variability (HRVcv), and respiratory rate. RHR is calculated
as a weighted mean of heart rate during sleep. Heart rate
variability (HRV) is calculated as the weighted average of the
root-mean-square of successive differences of the interbeat
intervals during sleep. For RHR and HRV, higher weights
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were assigned to periods with a higher probability of slow
wave sleep and periods closer to the end of the sleep.
Respiratory rate is calculated as the median of respirations
per minute calculated via the interbeat intervals through-
out sleep. Heart rate zones (HRZs) were determined as a
percentage of the participant’s estimated maximal heart rate,
where zone 0<50% of maximal heart rate, zone 1=50%‐60%,
zone 2=60%‐70%, zone 3=70%‐80%, zone 4=80%‐90%,
and zone 5=90%‐100%. Physical activity measures inclu-
ded percent time spent in HRZ 1‐5, summated HRZs, and
physical activity level (total energy expenditure divided by
resting energy expenditure). Summated HRZ was calculated
as the time spent in each HRZ, in minutes, multiplied by
the corresponding factor for each zone and then summated.
Physical activity level was calculated as the total calories
expended divided by resting energy expenditure. Cardiovas-
cular, respiratory, and sleep measures derived throughout
sleep have been validated against gold standard polysomnog-
raphy measures and have been found to have a low degree of
bias and low precision errors (eg, <20 min bias and preci-
sion errors for sleep duration; 0.7 beats per min bias for
heart rate; 4.7 ms bias for HRV; and 1.8% bias for respira-
tory rate) [23-25]. More details on the methods for calculat-
ing wearable-derived metrics can be found in Multimedia
Appendix 2.
Data Filtering and Aggregation
Survey responses from individuals older than 21 years of age
were considered for this study. Each survey response from
the participant over the 13-month period was paired with the
wearable data from the 14 or 28 days preceding the survey
response. Furthermore, 14 days of wearable data leading up
to the response were used for the PHQ2 and GAD2 as the
questions required participants to reflect on how they felt over
the previous 2 weeks; 28 days of wearable data leading up to
the response were used for the PSS as the questions required
participants to reflect on how they felt over the previous
month. Except for the measures that pertained to variability,
the daily measures from the time leading up to completing a
survey were averaged via the mean. For measures pertaining
to variability, except for sleep consistency, the sample SD of
the daily measures over the relevant period of time was used.
Periods during which a user had recorded fewer than 7 days
of wearable data in either the 14- or 28-day period leading
up to completing their survey were excluded from analysis.
Participants were included if they selected man or woman
when asked to self-identify their gender. Extreme values were
clipped at 17 and 40 kg/m2 for BMI and at 70 years for age.
BMI was also examined by binning into classification ranges:
underweight (<18.5 kg/m2), healthy weight (≥18.5 kg/m2 and
<25 kg/m2), overweight (≥25 kg/m2 and <30 kg/m2), and
obese (≥30 kg/m2). As this investigation included participants
from both the northern and southern hemispheres, which
experience opposite seasons for a given date, we adjusted the
submit month of participants from the southern hemisphere
by shifting each submit month to 6 months forward. For
example, responses submitted in June from participants in the
southern hemisphere were adjusted to December to align the
seasons of the northern and southern hemispheres.

A subsample of individuals was used to understand
the intrapersonal relationships and the relationship between
physical activity, estimated via HRZs, and mental health
status. Eligibility for this subsample required that participants
responded to the survey at least 8 times and recorded more
than six 24-hour periods containing at least 1000 minutes
of data in the time frame leading up to each of the survey
responses.
Association Analysis
Generalized mixed linear models were used to examine the
relationships between mental health and age, gender, BMI,
and month of submission. In these models, the mental health
outcome was modeled as the dependent variable; age, gender,
BMI, and month of submission were treated as the independ-
ent variables; and each participant was treated as a random
effect. Natural cubic splines were used for BMI and month of
submission due to the nonlinear relationships these variables
displayed with mental health. Estimated marginal means for
age, gender, BMI, and month of submission were extrac-
ted from the models to provide estimates and variances for
plotting. To examine the effects of different BMI categories
and seasons on mental health, pairwise comparisons were
made using the emmeans package in R (R Core Team).

Generalized mixed linear models were also used to
examine the relationships between mental health responses
and wearable-derived metrics. In these models, mental health
outcomes were modeled as dependent variables, and the
wearable-derived metrics as the independent variable. Age,
gender, BMI, and the month of submission were used as
covariates in the model, and each participant was treated
as a random effect. For intrapersonal associations, wearable-
derived metrics were person-mean-centered. Natural cubic
splines were used for BMI and month of submission due
to the nonlinear relationships these variables displayed with
mental health and wearable-derived metrics. The raw and
standardized coefficients (β) from the models were extracted
to describe the relationship between wearable metrics and
mental health.
Cross-Lag Analysis
To examine the temporal relationships between mental health
outcomes and physiological variables, we conducted a lagged
analysis using structural equation modeling via the lavaan
package in R. For these models, both mental health out-
comes and physiological variables were centered within
each participant by subtracting their respective within-person
means. Lagged variables were generated for both mental
health outcomes and physiological variables by using the
immediate preceding mean person-centered observation. We
accounted for the nested structure due to repeated measures
within participants by using the built-in clustering function-
ality. To flexibly model time of year effects, natural spline
transformations with 3 degrees of freedom were applied to
the submission month. Demographic variables—such as age,
BMI, and gender—were assumed to be invariant over time
and modeled as such. BMI and age were further transformed
using natural splines (with 3 degrees of freedom) to cap-
ture potential nonlinear effects in the relationships with the
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outcomes. Autoregressive effects were modeled by regressing
each outcome on its own lagged value. Contemporaneous
covariance was addressed by allowing for residual correla-
tions between the mental health variable and physiological
variable at the same time point. Reciprocal influences were
examined by regressing the mental health variable on the
lagged physiological variable and vice versa, enabling an
exploration of bidirectional effects. Cross-lagged paths were
estimated within the structural equation model framework,
with standardized parameter estimates extracted to facilitate
interpretation of temporal relationships (simplified diagram of
cross-lag design in Multimedia Appendix 3).

The significance threshold for all analyses was set to
0.001.
Ethical Considerations
Participants consented to their anonymized data being used
for research purposes. Since data were not identifiable and
were stored on a secure server, this study was deemed exempt
from institutional review board oversight by Advarra’s

Institutional Review Board (Columbia, Maryland). Partici-
pants did not receive compensation for their participation in
this study.

Results
Description of the Study and Sample
A total of 181,574 individuals were considered for eligibility,
and, after excluding due to either gender and data availabil-
ity, 172,283 individuals were deemed eligible for the PSS
analysis and 170,320 were considered eligible for the PHQ2,
GAD2, and combined score analyses. Among the subset of
individuals included in mental health and physical activity
association analyses, 3197 participants were included for the
PSS, and 3196 were included participants for the PHQ2,
GAD2, and combination score analysis (Figure 1). The
number of days included in each analysis and demographic
information for each subgroup are provided in Table 1.

Figure 1. Flowchart of study design. After initial inclusion criteria based on gender and age, inclusion was individually assessed for the Patient
Health Questionnaire-2, Generalized Anxiety Disorder 2-item, or combination score analyses and the Perceived Stress Scale analyses, which required
at least 7 days of metrics. Mental health assessments were independently filtered due to the number of days included in each assessment, whereby the
Patient Health Questionnaire-2, Generalized Anxiety Disorder 2-item, combination score analyses were based on 14 days' worth of metrics leading
in, while the Perceived Stress Scale analyses were based on 28 days' worth of metrics leading in. For the intrapersonal and physical activity analyses,
data were further filtered to remove participants that had responded to the survey less than 8 times and to remove participants that had less than 7
days of metrics where a participant wore the strap for more than 1000 minutes over a 24-hour period. combo: combination score; GAD2: Generalized
Anxiety Disorder 2-item; MH: mental health; PHQ2: Patient Health Questionnaire-2; PSS: Perceived Stress Scale.

Table 1. Characteristics of study participants.

Characteristic

GAD2a, PHQ2b, or comboc PSSd

Interpersonal
(N=170,320e)

Intrapersonal
(N=3196e)

Interpersonal
(N=172,283e) Intrapersonal (N=3197e)

Total days of metrics, n 4,123,851 468,841 7,942,176 933,161
Average days of data leading up to
survey, mean (SD)

13.2 (1.5) 13.8 (0.3) 24.7 (5.1) 27.4 (0.8)

Number of times responded to
survey, mean (SD)

1.84 (1.79) 10.68 (1.52) 1.83 (1.78) 10.68 (1.52)
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Characteristic

GAD2a, PHQ2b, or comboc PSSd

Interpersonal
(N=170,320e)

Intrapersonal
(N=3196e)

Interpersonal
(N=172,283e) Intrapersonal (N=3197e)

Gender, n (%)
  Women 56,745 (33) 1174 (37) 57,455 (33) 1174 (37)
  Men 113,575 (67) 2022 (63) 114,828 (67) 2023 (63)
Age, mean (SD) 37.39 (10.36) 40.71 (10.80) 37.36 (10.36) 40.71 (10.80)
BMI, mean (SD) 26.35 (10.42) 25.61 (4.08) 26.40 (10.38) 25.72 (4.15)

aGAD2: Generalized Anxiety Disorder 2-item.
bPHQ2: Patient Health Questionnaire-2.
ccombo: combination score.
dPSS: Perceived Stress Scale.
eSum.

Associations Between Mental Health and
Age, Gender, BMI, and Time of Year
Self-reported mental health scores decreased with age
(indicating better mental health) across all mental health
outcomes (Figure (a) in Multimedia Appendix 4; PHQ2:
P<.001, standardized β coefficient=−0.019; GAD2: P<.001,
standardized β coefficient=−0.023; PSS: P<.001, standar-
dized β coefficient=−0.019; combined: P<.001, standardized
β coefficient=−0.06). On average, males reported better
mental health on their assessments than females (Figure (a)
in Multimedia Appendix 4). Mental health scores shared a
nonlinear relationship with BMI, whereby mental health was
worse at the upper (ie, obese) and lower (ie, underweight)
extremes as compared with a healthy or overweight BMI
(Figure (b) in Multimedia Appendix 4; all P<.001). Mental
health scores also displayed a seasonal pattern, whereby
individuals reported worse depression in the Fall as com-
pared with all other seasons and worse stress in the Fall as
compared with Spring and Winter (Figure (c) in Multimedia
Appendix 4; all P<.001). Pairwise comparisons among BMI
groups and seasons can be found in Multimedia Appendix
5. Due to the associations observed between demographics

and seasonality with mental health outcomes, we incorporate
demographics and seasonality as covariates in our models
examining the relationships between physiological variables
and mental health outcomes.
Wearable Derived Metrics Associate With
Mental Health Assessments

Sleep Metrics
When compared between persons, higher amounts of sleep
duration, sleep efficiency, and sleep consistency were
associated with better mental health, whereas higher levels
of variance in sleep duration, time of waking, and time of
falling asleep were associated with worse mental health, as
assessed by reported scores on the depression, anxiety, stress,
and combined scales (Figure 2A). When compared within
persons, reductions in sleep efficiency and sleep consistency
were associated with worse mental health outcomes (Figure
2B). Notably, increased sleep duration within individuals was
associated with worse scores on the depression assessment
and better scores on the anxiety and stress assessment (Figure
2B).
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Figure 2. Inter- and intrapersonal associations between sleep and mental health. (A) Interpersonal and (B) intrapersonal associations between sleep
and mental health. For both (A) and (B), the top left graph reflects the associations with depression (Patient Health Questionnaire-2), the top right
graph reflects associations with anxiety (Generalized Anxiety Disorder 2-item), the bottom left graph reflects associations with stress (Perceived
Stress Scale), and the bottom right graph reflects associations with overall mental health, assessed by taking the summation of the Patient Health
Questionnaire-2, Generalized Anxiety Disorder 2-item, and Perceived Stress Scale assessments (combination score). Graphs are generated using
standardized coefficients, and error bars reflect 95% CIs. The tables below the graphs in (A) and (B) display the raw coefficients (β) along with the
parameters’ associated P value for each sleep metric association with each mental health outcome. combo: combination score; GAD2: Generalized
Anxiety Disorder 2-item; Min: minute; Pct: percentage; PHQ2: Patient Health Questionnaire-2; PSS: Perceived Stress Scale.

Cardiorespiratory Metrics
For both inter- and intrapersonal associations, higher HRVav
values were associated with better mental health outcomes
(Figure 3A and 3B). Furthermore, for both inter- and

intraperson associations, lower values of RHR, HRVcv, and
respiratory rate were associated with better mental health
(Figure 3A and 3B).

Figure 3. Inter- and intrapersonal associations between cardiorespiratory metrics and mental health. (A) Interpersonal and (B) intrapersonal
associations between sleep and mental health. For both (A) and (B), the top left graph reflects the associations with depression (Patient Health
Questionnaire-2), the top right graph reflects associations with anxiety (Generalized Anxiety Disorder 2-item), the bottom left graph reflects
associations with stress (Perceived Stress Scale), and the bottom right graph reflects associations with overall mental health, assessed by taking the
summation of the Patient Health Questionnaire-2, Generalized Anxiety Disorder 2-item, and Perceived Stress Scale assessments (combination score).
Graphs are generated using standardized coefficients, and error bars reflect 95% CIs. The tables below the graphs in (A) and (B) display the raw
coefficients (β) along with the parameters’ associated P value for each sleep metric association with each mental health outcome. AV: average; BPM:
beats per minute; combo: combination score; CV: coefficient of variation; GAD2: Generalized Anxiety Disorder 2-item; HRV: heart rate variability;
PHQ2: Patient Health Questionnaire-2; PSS: Perceived Stress Scale; RHR: resting heart rate; RMSSD: root-mean-square of successive differences;
RPM =Respirations per minute.
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HRZs
For interpersonal associations (Figure 4A), spending a greater
percent of time in zone 0 was associated with worse levels
of depression, stress, and overall mental health; spending
a greater percent of time in zone 1 was associated with
better outcomes only for depression; and spending more
time in zones 2‐4 and having higher physical activity levels
were associated with better outcomes on the depression,
anxiety, stress, and combined mental health assessments. For
interpersonal associations (Figure 4B), an increased percent

of time in zone 0 was associated with worse levels of
depression, stress, and overall mental health; more percent
of time in zone 1 was associated with better outcomes for
depression and overall mental health; more percent of time
in zone 5 was only associated with better levels of depres-
sion; and more percent of time in zones 2‐4 and being more
physically active, as determined by summated HRZs and
physical activity levels, both of which were associated with
better levels of depression, anxiety, and stress.

Figure 4. Inter- and intrapersonal associations between physical activity measures and mental health. (A) interpersonal and (B) intrapersonal
associations between physical activity and mental health. For both (A) and (B), the top left graph reflects the associations with depression (Patient
Health Questionnaire-2), the top right graph reflects associations with anxiety (Generalized Anxiety Disorder 2-item), the bottom left graph reflects
associations with stress (Perceived Stress Scale), and the bottom right graph reflects associations with overall mental health, assessed by taking the
summation of the Patient Health Questionnaire-2, Generalized Anxiety Disorder 2-item, and Perceived Stress Scale assessments (combination score).
Graphs are generated using standardized coefficients, and error bars reflect 95% CIs. The tables below the graphs in (A) and (B) display the raw
coefficients (β) along with the parameters’ associated P value for each sleep metric association with each mental health outcome. AU: arbitrary units;
combo: combination score; GAD2: Generalized Anxiety Disorder 2-item; HR: heart rate; PHQ2: Patient Health Questionnaire-2; PSS: Perceived
Stress Scale; Pct: percentage.

Cross-Lagged Analysis Between Physiological
Variables and Mental Health
To better understand the temporal relationships between
mental health and physiological metrics, we leveraged
structural equation models that examined both the impact of
mental health state on a physiological variable and the impact
of a physiological variable on mental health state. None of
the lagged effects of physiological variables on mental health

metrics reached significance (Multimedia Appendix 6). The
effect of lagged mental state on physiological variables only
reached significance when examining the effect of preced-
ing stress on HRVav, respiratory rate, and RHR, whereby a
higher reported stress level preceded lower HRVav and higher
SDs in sleep, respiratory rate, and RHR (Figure 5A). Effects
of preceding physiological metrics on stress failed to reach
significance (Figure 5B).
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Figure 5. Cross-lagged analysis between Perceived Stress Scale and select cardiorespiratory and sleep metrics. (A) Effect of preceding perceived
stress on following physiological metric. (B) Effect of preceding physiological metric on following perceived stress response. Error bars represent
95% CIs; “-->” in titles of graphs indicates the preceding variable in the temporal relationship. AV: average; HRV: heart rate variability; RHR:
resting heart rate; PSS: Perceived Stress Scale.

Discussion
Principal Findings
We conducted a comprehensive longitudinal analysis on
the inter- and intrapersonal relationships between wearable-
derived metrics and mental health outcomes. We find that
responses to mental health surveys differ depending on age,
gender, BMI, and time of year. After controlling for these
demographic and seasonal variables, better mental health
outcomes were found in individuals who had (1) longer sleep
durations; (2) higher sleep efficiencies and HRVavs; (3) lower
variation in their sleep patterns; (4) lower RHRs, HRVcvs,
and respiratory rates; (5) and spent more time being phys-
ically active. Regarding intrapersonal observations, better
mental health outcomes coincided with increases in sleep
efficiency, sleep consistency, HRVav, and physical activity
and decreases in RHR, respiratory rate, and HRVcv. Notably,
changes in sleep duration displayed distinct associations with
mental health outcomes when examined intra- or interper-
sonally, whereby an increase in sleep duration within an
individual was associated with worse depression scores
yet better anxiety and stress scores. Overall, this informa-
tion extends our understanding of the intricate connections
between physiological data and mental well-being, providing
valuable insights for health care professionals, researchers,
and policy makers aiming to enhance mental health interven-
tions and personalized care strategies.

Interpretations of Findings
Mental health exhibited seasonal variation, though the clinical
meaningfulness of these fluctuations is uncertain. Some
individuals report seasonal changes in mood that surpass
clinically significant thresholds, such as those observed in
seasonal affective disorder [26,27]. Several factors may
contribute to these seasonal mood variations, including
reduced sun exposure leading to changes in hormone levels
(eg, melatonin and serotonin), as well as alterations in
physical activity or sleep patterns [28,29]. In addition, it is
noteworthy that seasonal variations have also been observed
in cardiovascular metrics such as RHR, HRV, and even blood
pressure [30]. Whether these seasonal changes in physiology
or mood can be tempered by lifestyle modification remains
uncertain but is an intriguing area of further exploration
[31,32].

Individuals who slept more and had lower levels of
variation in their sleep metrics displayed better scores on
mental health assessments. This finding was corroborated by
within-person analyses showing that increases in both sleep
duration and consistency are linked with lower stress and
anxiety levels. However, an interesting divergence in within-
and between-person findings appears when we examine
depression: while greater sleep duration was associated with
lower scores of depression scores between individuals, higher
depressive scores were associated with less sleep within
person. One possible explanation for the differences observed
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in between- and within-person analyses may be due to
lower amounts of sleep increasing the risk of depression
[33], which would be reflected in interpersonal observations.
Conversely, increases in sleep durations have been shown to
be symptoms of depression [34], potentially when depression
is incident with higher levels of inflammation [35], which
would be reflected in intrapersonal observations. Overall, the
opposing between- and within-person associations between
sleep duration and depression demonstrate the importance of
measuring the change in biometrics as an addition to single or
sporadic measures of biometrics.

In both inter- and intrapersonal analyses, higher and more
stable HRV and lower RHR values were associated with more
favorable mental health profiles. The coincident changes in
mental state and cardiovascular measures may stem from
their interactions with the autonomic nervous system. It has
been shown that individuals with higher levels of depres-
sion, anxiety, or stress tend to exhibit increased sympathetic
output or diminished parasympathetic activity [36]. Regard-
less of the underlying mechanism, the link between RHR and
mental health outcomes is well-established. For instance, a
large-scale longitudinal study of over 1 million adolescent
men found that a higher RHR is linked with an increased
risk of psychiatric disorders [37]. Similarly, reduced HRV
has been documented in psychiatric conditions such as
depression, substance abuse, anxiety, and schizophrenia [38].
Although less extensively studied, day-to-day fluctuations in
HRV, indexed by HRVcv, represent an important measure of
autonomic balance with both physiological and psychological
implications [39]. The association of higher HRVav or lower
RHR and HRVcv with reduced depression, anxiety, and stress
levels in our study contributes to a growing body of literature
that supports the utility of tracking the cardiovascular system
with wearables, as changes to these cardiorespiratory metrics
may coincide with changes in mental health status.

Our results suggest that the relationship between exer-
cise and mental health may depend upon exercise intensity.
For example, the percentage of time spent in the highest
intensity of exercise, zone 5, is only associated with better
mental health outcomes for intrapersonal associations with
depression, whereas total time spent being physically active
(as determined by physical activity levels) is consistently
associated with better mental health outcomes. Meta-analy-
ses looking into the effect of interventional high-intensity
exercise on mental health indicate that high-intensity exercise
generally improves mental well-being [40-42]; however,
too much high-intensity exercise without adequate recovery
can lead to overtraining, and overtraining has been shown
to be detrimental to mental health [43,44]. Meanwhile,
we consistently observed that lower intensity exercise or
general physical activity associates with improved mental
health outcomes, which aligns with findings from previous
investigations [45]. Interestingly, when comparing mental
health benefits of moderate-to-vigorous continuous training
(at an intensity likely to be well below HRZ 5) versus
high-intensity interval training (HIIT; at an intensity likely
to reach HRZ 5), moderate-to-vigorous continuous training
led to significant improvements in positive affect and mental

well-being over control and HIIT; furthermore, HIIT failed
to improve mental health either from baseline or compared
with control conditions [46]. Nevertheless, future research is
warranted to better understand the potential dose-effect of
high-intensity exercise on mental health.

The significant associations observed in our between- and
within-person analyses but not in our cross-lagged models
may be due to the temporal dynamics of physiological
and psychological interactions. The mental health question-
naires (GAD2, PHQ2, and PSS) assessed symptoms over the
previous 2‐4 weeks, and we aligned physiological variables
with these same multiweek windows. However, psycholog-
ical and physiological processes are often intertwined on
much shorter timescales. Empirical evidence suggests that
stress and related physiological responses (such as sleep and
cardiovascular changes) are tightly linked in the short term,
typically over days or even hours [47-50]. For instance, acute
psychosocial stress can immediately disrupt sleep (transient
“acute” insomnia), an effect that generally resolves once
the stressor is removed [51]. Conversely, a single night of
poor sleep can heighten stress levels and autonomic arousal
(eg, elevated heart rate) the following day, whereas a good
night’s sleep has the opposite effect [47]. These observa-
tions underscore the reciprocal, short-lived nature of stress-
sleep interactions reported in the literature [52]. Because our
analyses spanned up to 4 weeks – a time frame designed
to capture recent stress exposure – any acute bidirectional
effects would presumably be contained within this assess-
ment window and potentially explain why we failed to
observe more temporal relationships. Future studies using
high-frequency, real-time assessments may provide further
insight into the dynamic nature of these associations and help
disentangle acute versus chronic effects.
Limitations
Our findings should be interpreted in the context of this
investigation’s limitations. First, selection bias may be
present [53], as individuals who can afford commercial
wearable devices likely represent a higher socioeconomic
status. In addition, filtering for compliance within the HRZ
analyses may select for a subgroup that differs from the
general population. To mitigate the impact of these poten-
tial biases, we leveraged a large sample size and conducted
within-person analyses. Second, our findings may be subject
to recall bias since participants were asked to reflect on their
mental health over the previous 2 weeks or month at the time
of completing surveys. To address this, future studies could
incorporate ecological momentary assessments, allowing for
real-time data collection to minimize recall inaccuracies.
Third, events or environmental factors not measured in
our study may influence the relationship between mental
health and wearable data. To partly mitigate this limitation,
we leveraged data from a large and diverse sample span-
ning multiple countries, potentially reducing the impact of
localized events or environmental factors. Fourth, we did not
control for menstrual phase when analyzing cardiovascular
or survey data in female participants, which may intro-
duce variability. Future studies could incorporate menstrual
cycle tracking to control for physiological variations related
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to menstrual phases. Fifth, this investigation specifically
measured stress, anxiety, and depression using the PSS,
GAD2, and PHQ2 scales and did not examine other men-
tal health disorders such as bipolar disorder or post-trau-
matic stress disorder. We refrained from including additional
diagnostic surveys to avoid increasing participant burden
and reducing study retention. However, future research may
benefit from incorporating broader diagnostic measures or
clinical evaluations to more comprehensively capture mental
health outcomes.
Conclusion
Leveraging a large sample size, longitudinal design, and
continuous second-by-second data, this study provides

valuable insights into the relationships between weara-
ble-derived physiological metrics and mental health out-
comes. The associations observed across multiple biometric
indicators suggest that wearables hold promise as comple-
mentary tools in mental health monitoring. As our under-
standing of the dynamic interplay between physiological
and psychological states continues to evolve, this research
adds to the growing body of evidence that wearables can
help elucidate the intricate relationship between mental
states and physiological processes. Future research should
further explore how wearables can be leveraged in real-
time assessments and adaptive interventions to enhance
early detection, prevention, and treatment of mental health
conditions.
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