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Abstract

Background: Electronic health record (EHR) data are increasingly used in predictive models of posttraumatic stress disorder
(PTSD), but it is unknown how multivariable prediction of an EHR-based diagnosis might differ from prediction of a
more rigorous diagnostic criterion. This distinction is important because EHR data are subject to multiple biases, including
diagnostic misclassification and differential health care use resulting from factors such as illness severity.

Objective: This study aims to compare predictive models using the same predictors to predict an EHR-based versus sem-
istructured interview-based PTSD diagnostic criterion, quantify model performance discrepancies, and examine potential
mechanisms that account for performance differences.

Methods: We compared the performance of several machine learning models predicting EHR-based PTSD diagnosis to
models predicting semistructured interview-based diagnosis in a nationwide sample of 1343 US veterans who completed
Structured Clinical Interview for DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition) (SCID-5)
interviews and had clinic visit data extracted from the Veterans Affairs (VA) EHR. We developed 2 sets of predictive models
using 3 algorithms (elastic net regression, random forest, and XGBoost), with a nested cross-validation scheme consisting of
an initial train-test split and 10-fold cross-validation within the training set for each type of model. All models used a nearly
identical set of predictors including 29 EHR-based visit count variables and 8 demographic variables.

Results: Diagnostic concordance between EHR-based PTSD diagnosis and SCID-5-based PTSD diagnosis was 73.3%, with
17.8% false negatives and 8.9% false positives for EHR-based diagnosis. Models predicting EHR-based PTSD performed very
well (area under the receiver operating characteristic curve [AUC] .85-.9; Matthews correlation coefficient [MCC] .58-.69),
whereas those predicting interview-based PTSD performed only moderately well overall (AUC .71-.76; MCC .24-.28).
Sensitivity analyses showed that participants’ frequency of VA visits played a role in these differences, such that the density
of EHR data (proportion of nonzero visit counts across EHR variables) was more associated with EHR-based PTSD diagnosis
(b=—-0.18, SE 0.02, P<.001) than with SCID-5 interview—based PTSD diagnosis (b=—0.06, SE 0.01, P<.001).

Conclusions: Predictive models of PTSD built using only EHR data demonstrated inflated performance metrics relative to
models predicting diagnosis from a rigorous structured clinical interview. This performance discrepancy appears driven by
circular relationships between health care use patterns and EHR-based diagnosis that do not affect external diagnostic criteria.
Researchers building clinical prediction models should not assume that diagnosis in the EHR is a sufficient proxy for the true
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criterion of interest. Clinicians and researchers should be cautious in interpreting clinical prediction models using only EHR
data, as their real-world utility may be less than performance metrics suggest.
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Introduction

Mental health researchers have increasingly turned to large
datasets from electronic health record (EHR) systems in
hopes of gaining new insights into mental disorders. In
posttraumatic stress disorder (PTSD) research, multiple
studies have relied solely or primarily on EHR diagnostic
data to characterize the prevalence and correlates of PTSD
in different subpopulations [1-4] or to identify PTSD based
on existing EHR data [5-8]. In the context of the Veter-
ans Health Administration (VHA) system, where data on
PTSD are available and prevalent, using machine learning
or similar statistical techniques to identify PTSD among
veterans holds the promise of automating screening efforts,
decreasing administrative burden, and identifying veterans
whose mental health struggles might otherwise be missed in
routine care.

Despite this promise, biases in EHR data may limit the
conclusions that they facilitate [9,10]. In psychiatric research,
one source of bias lies in diagnostic misclassification [11].
Research with veterans enrolled in VHA has indeed demon-
strated that a considerable number of veterans are misclassi-
fied with respect to PTSD diagnostic status, in both directions
(ie, false positives and false negatives) [12-14]. Other biases
associated with EHR data arise from how patients inter-
act with health care systems. For example, patients with
more health problems are more likely to frequently visit
hospitals or clinics and therefore have fewer missing data;
poorer health is thus one of several variables identified in
past research that can result in biases that threaten models’
external validity [9,15,16].

Even as PTSD research increasingly relies on EHR-based
PTSD diagnostic codes, it is not known how differently
predictive analytic models might perform when using EHR
data to predict PTSD status in the EHR versus PTSD status
independent of the EHR, as determined by well-trained
diagnosticians using a well-validated diagnostic interview.
The aforementioned diagnostic discrepancies and differential
patterns of service use are among the sources of bias in EHR
data that may distort the results of predictive models.

In this study, we demonstrate the impact on predictive
performance when using EHR-based features to predict (1)
veteran PTSD status in the VHA EHR versus (2) veteran
PTSD status external to the EHR, as determined by trained
assessors using a standardized, psychometrically strong
diagnostic interview. We used data from the Project VALOR
(Veterans After-Discharge Longitudinal Registry) registry of
veterans across the United States to assess the performance of
multiple machine learning algorithms predicting independent,
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standardized clinical interview-diagnosed PTSD from 37
variables comprising visit-related EHR data and several
demographic variables. We contrasted the performance of
these diagnostic interview-based PTSD models with nearly
identical models predicting the presence of PTSD diagnosis
in the EHR, highlighting differences in predictive perform-
ance when the outcome is a high-quality criterion external
to the EHR (ie, diagnostic interview) versus when both the
outcome and the features (besides demographics) are internal
to the EHR. In this exploratory analysis, the comparison
of models predicting interview-based PTSD with those
predicting EHR-based PTSD elucidates potential differences
in predictive accuracy and underscores the importance of
using good diagnostic measures in model development.

Methods

Participants

Participants were the subset of 1343 veterans from across
the United States who completed the clinical interview in
wave 2 of Project VALOR, a national registry of Army
and Marine Corps veterans deployed in service of Operation
Enduring Freedom (OEF) or Operation Iraqi Freedom (OIF).
In Project VALOR, women veterans were oversampled at
a 1:1 ratio, and veterans were sampled at a 3:1 ratio for
“probable PTSD,” defined by history of at least 2 instances
of a PTSD diagnosis by a mental health provider in the EHR.
For inclusion in VALOR, veterans must have had at least
one mental health evaluation at a VA facility. See Rosen et
al [17] for detailed recruitment procedures. There and in this
paper, we report how we determined our sample size, all data
exclusions (if any), all manipulations, and all measures in the
study.

Measures

Demographic Variables

Age, gender, sexual orientation, and race variables from
the Project VALOR study data are summarized in Table 1,
broken down by interview-based PTSD status. The demo-
graphic variables chosen are those typically readily available
in the VA EHR, making them plausible candidates for a
clinical prediction model using only EHR data. Participants
could indicate multiple racial categories using checkboxes.
Participants identified as 79% White (n=1054), 17% Black
(n=229), 3.4% Native American (n=45), 2.2% Asian (n=29),
and 12% Hispanic/Latino (n=166). The category “Native
Hawaiian or other Pacific Islander” was dropped in the
near-zero-variance modeling step because less than 1% of
participants (n=9) checked this box.
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Table 1. Demographics. For the age variable, P values are given for the Wilcoxon rank-sum test; for categorical variables, Pearson chi-squared test

was used when all expected cell counts were greater than 5; otherwise, Fisher exact test was used. Table constructed with the gtsummary R package

[18].

Overall SCID-5% PTSD-" SCID-5 PTSD+¢
Characteristics (N=1343) (n=360) (n=983) P value
Age (years) 05
Mean (SD) 40.65 (9.80) 39.94 (9.92) 4091 (9.75)
Median (IQR) 38 (32-48) 37 (32-47) 38 (32-48)
Missing 3 2 1
Gender, n (%) 08
Female 687 (51) 170 (47) 517 (53)
Male 656 (49) 190 (53) 466 (47)
Race and ethnicity, n (%)
Hispanic/Latino 166 (12) 38 (11) 128 (13) 21
Missing 9 1 8
Native American, n (%) 45 (3.4) 8(2.2) 37 (3.8) .16
Missing 1 0 1
Asian, n (%) 29 (2.2) 7(1.9) 22(2.2) T4
Missing 1 0 1
Black, n (%) 229 (17) 37 (10) 192 (20) <.001
Missing 1 0 1
White, n (%) 1054 (79) 310 (86) 744 (76) <.001
Missing 1 0 1
Sexual orientation, n (%) 98
Homosexual 53 (4) 14 (3.9) 39 (4)
Heterosexual 1233 (92) 333 (93) 900 (92)
Bisexual 34 (2.5) 8(2.2) 26 (2.7)
Other or I Don’t Know 17(1.3) 4(1.1) 13 (1.3)
Missing 6 1 5

4SCID-5: Structured Clinical Interview for DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition)

bpPTSD-: posttraumatic stress disorder negative.
CPTSD+: posttraumatic stress disorder positive.

PTSD Module of the Structured Clinical
Interview for DSM-5 (Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition)
(SCID-5)

The Structured Clinical Interview for DSM-5 (Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edi-
tion) (SCID-5) is a comprehensive semistructured diagnos-
tic interview assessing DSM-5 psychiatric disorders [19].
In this study, the SCID-5 was administered by telephone
by trained, doctoral-level assessors who attended regular
reliability meetings. As the primary outcome, this study used
a dichotomous PTSD diagnosis present either currently (at
wave 2 interview) or since wave 1. Reliability of the SCID-5
PTSD module was excellent (#=.82) for a randomly selected
subsample of 100 VALOR participants.

EHR Data

For all participants, EHR data were extracted from the VA
centralized health data repository. The EHR variables were
chosen on the basis of their clinical relevance for veterans in
the VA system. This represents a secondary use of these EHR
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variables, which were chosen and gathered for a separate
study and recoded for this study. These data comprised 3
sources: (1) 20 variables representing counts of visits with
outpatient mental health (OPMH) codes at VA (eg, psycho-
therapy, medication management, and psychological testing);
(2) 2 variables representing counts of visits in the emergency
department or urgent care (ED/UC) clinics coded with any
psychiatric diagnosis or a PTSD diagnosis specifically; and
(3) 7 variables representing counts of pharmacy dispensa-
tions of drugs across several categories (eg, opioid, benzo-
diazepines, and antidepressants). Throughout this paper, we
refer to pharmacy “visits” rather than ‘“dispensations” for
consistency with the other EHR variables, although pharmacy
variables technically represent drug dispensations. All EHR
variables were expressed as counts, from zero (no visits
or dispensations observed) to infinity. The 2 PTSD-relevant
variables comprised counts of visits (from OPMH or ED/UC)
where any PTSD diagnostic code was assigned (ICD-9
[International Classification of Diseases, Ninth Revision]
code 309.81 or ICD-10 [International Statistical Classifi-
cation of Diseases and Related Health Problems 10th
Revision] codes F43.10-F43.12). Dichotomization of PTSD
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variables for use as dependent variables is described below
in “Statistical Analysis.” A full list of EHR variables can be
found in Multimedia Appendix 1.

The EHR data spanned 2131 days total, up to 1950
days within-participant, and always before each participant’s
Project VALOR wave 2 PTSD assessment. In this timeframe,
most but not all participants (89.4%, n=1200) had at least
one observed visit in a VA clinic or pharmacy; 143 partic-
ipants had no observed visits, and thus all EHR variables
were coded as zero. The median number of unique visit dates
observed per participant was 116 (range 0-838).

Statistical Analysis

All analyses were conducted in R version 4.3 (R Core Team)
[20], using tidymodels [21] packages. Near-zero variance
EHR features (ie, predictors) were removed before model-
ing. Categorical demographic variables were dummy coded,
and all predictors were standardized before modeling. We
trained 2 sets of 3 algorithms. Each set shared nearly identical
features but differed with respect to the outcome variable,
which were: (1) PTSD diagnosis as assessed with the SCID-5
(“SCID-PTSD” models) and (2) any history of documented
PTSD diagnosis in the EHR within the timeframe descri-
bed previously in the “EHR Data” section (“EHR-PTSD”
models).

PTSD was coded dichotomously, with 0 for “No.” The
SCID-PTSD criterion was coded 1 for positive PTSD
diagnosis based on the SCID-5 (prevalence=73.2%). The
EHR-PTSD criterion was coded 1 if either of the 2 EHR-
based PTSD count variables (described previously in the
“EHR Data” section) indicated that a participant had a PTSD
diagnosis assigned at one or more visits (prevalence=64.3%).
This definition was based on the goal of discovering any
evidence of a PTSD diagnosis and on the concern that using a
higher cutoff could amplify confounding between the number
of visits and the presence of diagnosis. Because other studies
have used 2 or more diagnoses as the PTSD criterion, we also
examined model performance when the cutoff was 2+ PTSD
diagnoses as a sensitivity analysis. Performance metrics for
these models are in Multimedia Appendix 1.

Both sets of models comprised 3 classification algorithms:
(1) elastic net (regularized logistic) regression using the
glmnet package [22], (2) random forest using the ranger
package [23], and (3) gradient boosting using the XGBoost
package [24]. For each algorithm, multiple hyperparameters
were tuned with a grid search. See Multimedia Appendix 1
for hyperparameter tuning information and optimal hyper-
parameter combinations. Very small amounts of missing
demographics data (<2%) were handled with the recipes
package [25] using k-nearest neighbor imputation, a method
that performs well with mixed data types [26]. For both
outcomes, calibration for the best-performing algorithm—
that is, agreement between observed and model-predicted
probabilities—was assessed with logistic calibration curves
and integrated calibration index [27].

For all models, we used a nested cross-validation (CV)
strategy: first, we took an initial holdout (test) set of one-fifth
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of the data (n=270). In the remaining training set (n=1073),
we conducted 10-fold CV (repeated 10x) for each model,
using area under the receiver operating characteristic curve
(AUC) to select the optimal hyperparameter combination
for each model. Results focus on the predictive perform-
ance of these models in the holdout (test) data. In addition
to AUC, we present several other performance metrics for
the final models for transparency about multiple aspects of
performance. These include sensitivity, specificity, negative
predictive value (NPV), positive predictive value (PPV), and
the Matthews correlation coefficient (MCC). Also known as
the phi coefficient, the MCC (range —1 to 1) is a compre-
hensive measure that addresses several limitations of other
metrics [28] and can be interpreted similarly to a Pearson
correlation coefficient r (in fact, the Pearson correlation
coefficient calculated for 2 binary variables will equal the
MCCO).

In post hoc analyses, we examined the possibility
that EHR data sparsity—the proportion of zeroes across
a participant’s EHR-based variables—might be related to
differences in performance between models using EHR-based
versus interview-based outcomes. We reasoned that the
shared data source between the EHR-based PTSD outcome
and the EHR-based predictors may have subjected these data
to shared bias-generating mechanisms that may be partly
reflected in variability in the density of participants’ EHR
data. In contrast, the interview-based PTSD outcome should
not be subject to these mechanisms as much or at all, because
the SCID-5 data were gathered independently of EHR data or
health care use after initial sampling for Project VALOR. To
this end, we used (1) Welch ¢ tests, (2) multiple regression
analysis with data sparsity as the outcome, and (3) we reran
all machine learning models for both outcomes, importance-
weighted by data sparsity such that participants with more
densely populated EHR data were given more importance in
model fitting. The analyses were not preregistered. Further,
for purposes of transparency, our Multimedia Appendix 1
contains additional information about packages and functions
used, final model hyperparameters, and so on.

Ethical Considerations

Study procedures were approved by the Institutional Review
Board at the VA Boston Healthcare System and the Human
Research Protection Office of the U.S. Army Medical
Research and Materiel Command (Protocol 2739: “Project
VALOR: Trajectories of Change in PTSD in Combat-
Exposed Veterans”). Informed consent, including a descrip-
tion of study risks and benefits, was obtained from all study
participants. Participants provided consent for researchers
to access and retrieve data from their VA medical records
throughout the study and received $100 (USD) for the
completion of the questionnaire and assessment.
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Results

Overview

PTSD status in the EHR was discordant from the SCID-5
criterion in 358 (26.7%) of cases (17.8% false negatives

Crow et al

and 8.9% false positives) and concordant in the rest (55.4%
true positives and 17.9% true negatives). Figure 1 depicts
performance metrics for the SCID-PTSD (orange, dashed
lines) and the EHR-PTSD models (blue, solid lines).

Figure 1. Performance metrics for primary SCID- and EHR-PTSD models. SCID corresponds to models whose outcome was PTSD (yes/no)
based on the SCID-5 semistructured diagnostic interview. EHR corresponds to models whose outcome was PTSD (yes/no) based on any history of
diagnosis in the Veterans Affairs electronic health record in the timeframe examined (Methods). Each panel represents a performance metric and

each row within a panel represents a separate model. For each model,

estimates are separated for the training and holdout (test) data. Although

the test data are the primary focus, we also depict performance in the training data (de-emphasized with increased transparency) to illustrate the
variability in performance in the holdout data, even when repeated 10-fold cross-validation was used in the training data. The “null model” is for
comparison; it represents a simple baseline that always predicts the modal response on the outcome (in this case, PTSD-positive). Orange color and
dashed lines correspond to SCID-PTSD models, blue and solid lines to EHR-PTSD models. NPV: negative predictive value; PPV: positive predictive
value; ROC_AUC: area under the receiver operating characteristic curve. XGBoost corresponds to extreme gradient boosting machines (xgboost R

package); Rand.Forest corresponds to random forests (ranger R package);

Elas.Net corresponds to elastic net logistic regression (glmnet R package).
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For comparison, the “null” model at the bottom of each facet
simply always predicted the mode (in this case, PTSD-posi-
tive). Examining performance in the test set (circles) revealed
some clear patterns. Most notably, the EHR-PTSD mod-
els outperformed the SCID-PTSD models for nearly every
type of model on nearly every performance metric; model
performance was mediocre when predicting SCID-PTSD,
driven by low specificity and NPV. The tree-based models
(XGBoost and random forest) generally performed better than
the elastic net models, although this difference was small
on most metrics. Across SCID- and EHR-PTSD models,
sensitivity was notably higher than specificity: all models
were better at identifying the presence of their respective
PTSD criterion than its absence. Considering high sensitiv-
ity scores, this suggests a relatively high proportion of false
positives in these model predictions, a problem that was less
severe in the EHR-PTSD models. In the sensitivity analyses,
setting the EHR-PTSD criterion to 2 visits with a PTSD
diagnostic code (rather than one), model performance was
similar (or slightly better) compared to the primary EHR-
PTSD models (refer to Multimedia Appendix 1 for specific
performance metrics).
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Information about model calibration and variable
importance is detailed in Multimedia Appendix 1.

Analysis of Model Performance
Discrepancies

In a post hoc analysis examining the possibility that the
better performance of the EHR-PTSD models relative to
the SCID-PTSD models may relate to the number of visits
observed in the EHR (ie, the density or sparsity of data for
a given participant), we found that there were significant
associations between EHR data sparsity (proportion of zeroes
among each participant’s EHR variables) and PTSD status.
Among participants with a PTSD diagnosis in the EHR,
the proportion of zeroes was 0.65 (SD 0.16), significantly
lower than the proportion among those without a history of
PTSD diagnosis in the EHR, mean 0.89 (SD 0.14), Welch
11101.9=28.69, P<.001. The data sparsity difference was less
pronounced among those with (mean 0.69 [SD 0.18]) versus
without (mean 0.86 [SD 0.14]) a PTSD diagnosis on the
SCID-5, Welch 1g37.98=17.69, P<.001. Multiple regression
analysis showed EHR-PTSD (b=-0.18, SE 0.02, P<.001)
was a stronger predictor of data sparsity than SCID-PTSD
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(b=-0.06, SE 0.01, P<.001) in a model that also included
their interaction (b=—0.05, SE 0.02, P=.02). This model,
which explained 39.3% of the variance in data sparsity,
suggested that participants positive for either indicator of
PTSD, but especially EHR-PTSD, had more populated EHR
data, F3,1339=290.07, P<.001. When all models were rerun

Crow et al

with importance weights (where participants with denser
EHR data were given greater importance in model fitting),
EHR-PTSD models were virtually unchanged, whereas the
SCID-PTSD models performed slightly more poorly overall.
This is depicted in Figure 2.

Figure 2. Performance metrics for SCID- and EHR-PTSD models weighted by data sparsity. SCID corresponds to models whose outcome was PTSD
(yes/no) based on the SCID-5 semistructured diagnostic interview. EHR corresponds to models whose outcome was PTSD (yes/no) based on any
history of diagnosis in the Veterans Affairs electronic health record in the timeframe examined (Methods). Only the estimates from the holdout (test)
data are depicted here, for parsimony. NPV: negative predictive value; PPV: positive predictive value; ROC_AUC: area under the receiver operating
characteristic curve. XGBoost corresponds to extreme gradient boosting machines (xgboost R package); Rand.Forest corresponds to random forests
(ranger R package); Elas.Net corresponds to elastic net logistic regression (glmnet R package).
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Discussion Secondary analyses probing possible reasons for the
performance discrepancy between models with SCID-5
I T interview—based versus EHR-based PTSD criterion revealed
Principal Findings

In this study of a large sample of U.S. veterans, multi-
ple machine learning models using features from the EHR
demonstrated limited accuracy in predicting PTSD diag-
nosed through structured interview conducted by well-trained
assessors. Alternatively, the models performed very well
when replacing the outcome with PTSD status in the EHR.
This discrepancy held true regardless of algorithm type and
regardless of whether the threshold for the dichotomous
EHR-PTSD outcome was any (1+) PTSD diagnosis docu-
mented versus a minimum of 2. These predictive models
of PTSD based solely on EHR data thus produced overop-
timistic performance estimates relative to models predicting
a rigorous PTSD criterion external to the EHR (ie, diagnos-
tic interview). Past research has established that psychiatric
diagnosis in the EHR is often discrepant from, not inter-
changeable with, an external criterion [11-13]. Our results
suggest that this extends into multivariable models: outputs
from clinical prediction models of these diagnostic indicators
are likewise not interchangeable.
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that the presence of PTSD diagnosis (from either source) was
associated with more populated EHR data (ie, fewer zeroes
across the set of EHR variables for a given participant), likely
because PTSD is associated with increased health care use
[12,29]. Compared with SCID-5-based PTSD, EHR-based
PTSD was especially strongly related to EHR data sparsity.
We take this as evidence for a stronger circular relation-
ship between health care use and EHR-based diagnosis,
relative to interview-based diagnosis, and we believe this
may be partially driving the observed performance differen-
ces between EHR-PTSD versus SCID-PTSD models.

In other words, the EHR-based PTSD outcome variable
is implicitly capturing information about clinical service use
that is also captured in the EHR-based predictors in the
model, but is not captured in the external, interview-based
SCID-5 measure of PTSD. Thus, our results are consistent
with a circular process in which having PTSD increases the
use of clinical services, and increased service use, in turn,
increases the likelihood of being diagnosed with PTSD. But
this circularity is only reflected in the EHR-PTSD models:
frequently using VA services increases the chance that PTSD
will be screened and diagnosed (regardless of actual PTSD
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status), and a PTSD diagnosis in the chart will be associated
with increased visits due to the services made available to
individuals with a diagnosis. This circularity is less reflec-
ted in the SCID-PTSD models because this more rigorous
diagnosis should be only indirectly related to the frequency
of VA service use (or ideally negatively correlated for
individuals who recover as a function of receiving treat-
ment). This would explain why weighting the models based
on data sparsity barely affected the EHR-PTSD outcome,
which already captured information about visit frequency,
but substantially affected the SCID-PTSD outcome, which
did not already capture such information. This circularity is
also evident in the pattern of correlation among the study
variables, as shown in the correlation matrix in Multimedia
Appendix 1. There, we observed a pattern in which nearly all
EHR variables were correlated with other EHR variables at
least weakly, whereas they were correlated less strongly (if at
all) with the non-EHR-based demographic variables.

Our findings complement those from past research
highlighting several sources of bias in EHR data, including
those related to missingness and nonrepresentativeness. For
example, sicker patients generally use more services and thus
have more data [9,16,30], and recent research on veterans’
health care use confirms that mental distress is among the
conditions overrepresented in the VA EHR [31]. Our study
also extends past work on diagnostic inaccuracies in the
EHR [11-13] by highlighting problems that affect not only
estimates of PTSD prevalence and its correlates but also
results of multivariable predictive models, which may be
prone to unrealistic performance estimates due to diagnostic
inaccuracies, service use-related biases, or both.

Our results and the conclusions we draw from them should
be tempered by some important considerations. First, our
sample was one of convenience with an intentional overre-
presentation of female veterans and veterans with PTSD.
Although we are not certain about how oversampling for
PTSD-positive cases in Project VALOR might have affected
model performance, it is possible that oversampling for
PTSD may have increased the predictive ability of the

Crow et al

EHR-PTSD models by increasing the chance that correlates
and comorbidities of EHR-based PTSD were present in the
EHR data. It is thus unlikely to expect that either of our
models would perform particularly well in randomly-sam-
pled real-world data, but we do not believe that this over-
sampling strategy can account for the substantive finding
in this study, that is, the robustness of the discrepancy
we observed between EHR-based and SCID-based PTSD
prediction models. However, we were not able to test
this directly using sampling weights, because the sampling
weights (and the data used to produce them) were not
available to us. Second, we were unable to make definitive
conclusions about how widespread a problem the overopti-
mistic performance estimates in the EHR-PTSD models are,
because the VALOR study was not designed to specifically
address this issue. The ideal study design would randomly
sample users of VA health care services and then assess using
clinical interview to draw definitive conclusions about the
specific impacts on predictive performance of (1) the circular
relation between PTSD status in the EHR and VA service
use and (2) the discrepancy between EHR-PTSD status and
SCID-PTSD status. Notwithstanding these considerations, the
Project VALOR data also represent a relative study strength
given that high proportions of PTSD-positive cases and
female participants allow better estimates related to these
variables.

Conclusions

The current work sounds a cautious note regarding sole
reliance on EHR data for clinical prediction models in mental
health research. Using EHR-coded diagnoses for predictive
models may exaggerate performance and thus limit the
validity of models whose predictors and outcome share a
common source (the EHR) that is subject to the effect
of unobserved confounders. Linking prediction to rigorous
diagnostic criteria is ideal and may be integral in some
contexts. Though interviews are burdensome to collect, they
reflect the nuanced reality of PTSD much more accurately
than the EHR data alone. For the foreseeable future, it appears
unlikely that a quick, digital proxy will be any replacement.

Acknowledgments

The study was funded by the U.S. Department of Defense (W81XWH-08-2-0102, W81XWH-08-2-0100). EL was supported
by the VA Boston Medical Informatics Fellowship as well as the AE Foundation for part-time research support at McLean
Hospital. TMK was supported by the National Institute of Mental Health (T32MHO019836). KLH was supported by the U.S.
Department of Veterans Affairs (Clinical Sciences Research and Development Service) under Career Development Award
#1IK2CXx002629. The views expressed in this article are those of the authors and do not necessarily reflect the position or
policy of the Department of Veterans Affairs or the United States government.

Data Availability

The datasets generated or analyzed during this study are not publicly available due to Veterans Health Administration (VHA)
regulations and the sensitive nature of patient health records. Data may be made available to qualified VA investigators
from the corresponding author, subject to the execution of a data use agreement. Further, for purposes of transparency, our
Multimedia Appendix contains additional information about packages and functions used, final model hyperparameters, and so
on. Code used for all analyses will be made available [32].

Authors’ Contributions

TMC, EL, KLH, MLC, and BPM contributed to the conceptualization of the study. TMC, EL, KLH, and MLC were
responsible for data curation. Formal analysis was conducted by TMC and EL. TMK and BPM acquired funding and led the

https://www .jmir.org/2025/1/e63352 J Med Internet Res 2025 | vol. 27 163352 | p. 7

(page number not for citation purposes)


https://www.jmir.org/2025/1/e63352

JOURNAL OF MEDICAL INTERNET RESEARCH Crow et al

investigation. The methodology was developed by TMC, EL, KLH, MLC, and BPM. Project administration was carried out
by TMC and BPM. TMK and BPM provided resources and supervision. Visualization was performed by TMC and EL. The
original draft of the manuscript was prepared by TMC, EL, KLH, MLC, and BPM, and it was reviewed and edited by TMC,
EL, and BPM.

Conflicts of Interest
None declared.

Multimedia Appendix 1

Supplemental tables and figures for EHR-based machine learning models for PTSD prediction.
[PDEF File (Adobe File), 2269 KB-Multimedia Appendix 1]

References

1. Corr TE, Schaefer EW, Hollenbeak CS, Leslie DL. One-year postpartum mental health outcomes of mothers of infants
with neonatal abstinence syndrome. Matern Child Health J. Mar 2020;24(3):283-290. [doi: 10.1007/s10995-019-02839-
9] [Medline: 31925632]

2. Kulas JF, Rosenheck RA. A comparison of veterans with post-traumatic stress disorder, with mild traumatic brain injury
and with both disorders: understanding multimorbidity. Mil Med. Mar 1, 2018;183(3-4):e114-e122. [doi: 10.1093/
milmed/usx050] [Medline: 29514340]

3. Shipherd JC, Lynch K, Gatsby E, Hinds Z, DuVall SL, Livingston NA. Estimating prevalence of PTSD among veterans
with minoritized sexual orientations using electronic health record data. J Consult Clin Psychol. Oct
2021;89(10):856-868. [doi: 10.1037/ccp0000691 ]

4.  Hall KS, Beckham JC, Bosworth HB, Sloane R, Pieper CF, Morey MC. PTSD is negatively associated with physical
performance and physical function in older overweight military Veterans. J Rehabil Res Dev. 2014;51(2):285-295. [doi:
10.1682/JRRD.2013.04.0091] [Medline: 24933726]

5.  Zafari H, Kosowan L, Zulkernine F, Signer A. Diagnosing post-traumatic stress disorder using electronic medical record
data. Health Informatics J. Oct 2021;27(4):14604582211053259. [doi: 10.1177/14604582211053259]

6. Kaczmarek E, Salgo A, Zafari H, Kosowan L, Singer A, Zulkernine F. Diagnosing PTSD using electronic medical
records from canadian primary care data. Presented at: NSysS '19: Proceedings of the 6th International Conference on
Networking, Systems and Security; Dec 17-19, 2019:23-29; Dhaka Bangladesh. Dec 17,2019.[doi: 10.1145/3362966.
3362982]

7. Singer A, Kosowan L, Muthumuni D, et al. Characterizing primary care patients with posttraumatic stress disorder using
electronic medical records: a retrospective cross-sectional study. Fam Pract. Aug 14,2024;41(4):434-441. [doi: 10.1093/
fampra/cmac139]

8. Harrington KM, Quaden R, Stein MB, et al. Validation of an electronic medical record-based algorithm for identifying
posttraumatic stress disorder in U.S. veterans. J Trauma Stress. Apr 2019;32(2):226-237. [doi: 10.1002/jts.22399]
[Medline: 31009556]

9.  Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the healthcare system:
retrospective observational study. BMJ. 2018;361:k1479. [doi: 10.1136/bmj.k1479]

10. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic
health record data. JAMA Intern Med. Nov 1,2018;178(11):1544-1547. [doi: 10.1001/jamainternmed.2018.3763]
[Medline: 30128552]

11.  Wright AGC, Levinson CA, Crowell SE. Characterizing and coding psychiatric diagnoses using electronic health record
data. JAMA Psychiatry. Sep 14, 2022. [doi: 10.1001/jamapsychiatry.2022.2733] [Medline: 36103171]

12. Harper KL, Ellickson-Larew S, Bovin MJ, Keane TM, Marx BP. Discrepancies between electronic records and clinical
interview diagnosis of PTSD: differences in mental health care utilization. Psychol Serv. Aug 2022;19(3):463-470. [doi:
10.1037/ser0000560] [Medline: 34081524]

13. Holowka DW, Marx BP, Gates MA, et al. PTSD diagnostic validity in Veterans Affairs electronic records of Iraq and
Afghanistan veterans. J Consult Clin Psychol. Aug 2014;82(4):569-579. [doi: 10.1037/a0036347] [Medline: 24731235]

14.  Morgan MA, Kelber MS, O’Gallagher K, Liu X, Evatt DP, Belsher BE. Discrepancies in diagnostic records of military
service members with self-reported PTSD: healthcare use and longitudinal symptom outcomes. Gen Hosp Psychiatry.
2019;58:33-38. [doi: 10.1016/j.genhosppsych.2019.02.006] [Medline: 30849678]

15. Rusanov A, Weiskopf NG, Wang S, Weng C. Hidden in plain sight: bias towards sick patients when sampling patients
with sufficient electronic health record data for research. BMC Med Inform Decis Mak. Jun 11, 2014;14(1):51. [doi: 10.
1186/1472-6947-14-51] [Medline: 24916006]

16.  Vassy JL, Ho YL, Honerlaw J, et al. Yield and bias in defining a cohort study baseline from electronic health record
data. J Biomed Inform. Feb 2018;78:54-59. [doi: 10.1016/].jbi.2017.12.017] [Medline: 29305952]

https://www .jmir.org/2025/1/e63352 J Med Internet Res 2025 | vol. 27 1 e63352 | p. 8
(page number not for citation purposes)


https://jmir.org/api/download?alt_name=jmir_v27i1e63352_app1.pdf
https://jmir.org/api/download?alt_name=jmir_v27i1e63352_app1.pdf
https://doi.org/10.1007/s10995-019-02839-9
https://doi.org/10.1007/s10995-019-02839-9
http://www.ncbi.nlm.nih.gov/pubmed/31925632
https://doi.org/10.1093/milmed/usx050
https://doi.org/10.1093/milmed/usx050
http://www.ncbi.nlm.nih.gov/pubmed/29514340
https://doi.org/10.1037/ccp0000691
https://doi.org/10.1682/JRRD.2013.04.0091
http://www.ncbi.nlm.nih.gov/pubmed/24933726
https://doi.org/10.1177/14604582211053259
https://doi.org/10.1145/3362966.3362982
https://doi.org/10.1145/3362966.3362982
https://doi.org/10.1093/fampra/cmac139
https://doi.org/10.1093/fampra/cmac139
https://doi.org/10.1002/jts.22399
http://www.ncbi.nlm.nih.gov/pubmed/31009556
https://doi.org/10.1136/bmj.k1479
https://doi.org/10.1001/jamainternmed.2018.3763
http://www.ncbi.nlm.nih.gov/pubmed/30128552
https://doi.org/10.1001/jamapsychiatry.2022.2733
http://www.ncbi.nlm.nih.gov/pubmed/36103171
https://doi.org/10.1037/ser0000560
http://www.ncbi.nlm.nih.gov/pubmed/34081524
https://doi.org/10.1037/a0036347
http://www.ncbi.nlm.nih.gov/pubmed/24731235
https://doi.org/10.1016/j.genhosppsych.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30849678
https://doi.org/10.1186/1472-6947-14-51
https://doi.org/10.1186/1472-6947-14-51
http://www.ncbi.nlm.nih.gov/pubmed/24916006
https://doi.org/10.1016/j.jbi.2017.12.017
http://www.ncbi.nlm.nih.gov/pubmed/29305952
https://www.jmir.org/2025/1/e63352

JOURNAL OF MEDICAL INTERNET RESEARCH Crow et al

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Rosen RC, Marx BP, Maserejian NN, et al. Project VALOR: design and methods of a longitudinal registry of post-
traumatic stress disorder (PTSD) in combat-exposed veterans in the Afghanistan and Iraqi military theaters of operations.
Int J Methods Psychiatr Res. Mar 2012;21(1):5-16. [doi: 10.1002/mpr.355] [Medline: 22095917]

Sjoberg D, Whiting K, Curry M, Lavery J, Larmarange J. Reproducible summary tables with the gtsummary package. R
J.2021;13(1):570. [doi: 10.32614/RJ-2021-053]

First MB. Structured clinical interview for the DSM-5 (SCID). In: The Encyclopedia of Clinical Psychology. John Wiley
& Sons, Ltd; 2015:1-6. [doi: 10.1002/9781118625392] ISBN: 978-1-118-62539-2

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical
Computing; 2023. URL: https://www.R-project.org/ [Accessed 2023-07-09]

Kuhn M, Wickham H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse
principles. tidymodels. 2020. URL: https://www.tidymodels.org [Accessed 2023-07-09]

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat
Softw. 2010;33(1):1-22. [Medline: 20808728]

Wright MN, Ziegler A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat
Softw. Mar 31,2017;77:1-17. [doi: 10.18637/jss.v077.i01]

Chen T, He T, Benesty M, et al. xgboost: extreme gradient boosting. 2023. URL: https://cran.r-project.org/web/
packages/xgboost/index.html [Accessed 2023-07-09]

Kuhn M, Wickham H, Hvitfeldt HE. recipes: Preprocessing and feature engineering steps for modeling. 2023. URL:
https://cran.r-project.org/web/packages/recipes/index.html [Accessed 2023-07-09]

Jadhav A, Pramod D, Ramanathan K. Comparison of performance of data imputation methods for numeric dataset. Appl
Artif Intell. Aug 24,2019;33(10):913-933. [doi: 10.1080/08839514.2019.1637138]

Austin PC, Steyerberg EW. The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of
logistic regression models. Stat Med. Sep 20, 2019;38(21):4051-4065. [doi: 10.1002/sim.8281] [Medline: 31270850]
Chicco D, Jurman G. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric
for assessing binary classification. BioData Min. Feb 17,2023;16(1):4. [doi: 10.1186/s13040-023-00322-4] [Medline:
36800973]

Johnson EM, Possemato K. Correlates and predictors of mental health care utilization for veterans with PTSD: a
systematic review. Psychol Trauma. Nov 2019;11(8):851-860. [doi: 10.1037/tra0000461] [Medline: 30998061]

Getzen E, Ungar L, Mowery D, Jiang X, Long Q. Mining for equitable health: assessing the impact of missing data in
electronic health records. J Biomed Inform. Mar 2023;139:104269. [doi: 10.1016/}.jbi.2022.104269] [Medline:
36621750]

Fink DS, Stohl M, Mannes ZL, et al. Comparing mental and physical health of U.S. veterans by VA healthcare use:
implications for generalizability of research in the VA electronic health records. BMC Health Serv Res. Dec 9,
2022;22(1):1500. [doi: 10.1186/s12913-022-08899-y] [Medline: 36494829]

Misleading-ptsd-ehr-results. GitHub. URL: https://github.com/teecrow/misleading-ptsd-ehr-results [Accessed
2025-08-20]

Abbreviations

AUC: area under the receiver operating characteristic curve

CV: cross-validation

ED/UC: emergency department or urgent care

EHR: electronic health record

ICD-10: International Statistical Classification of Diseases and Related Health Problems 10th Revision
ICD-9: International Classification of Diseases, Ninth Revision

MCC: Matthews correlation coefficient

NPV: negative predictive value

OEF: Operation Enduring Freedom

OIF: Operation Iraqi Freedom

OPMH: outpatient mental health

PPV: positive predictive value

PTSD: posttraumatic stress disorder

SCID-5: Structured Clinical Interview for DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition)

VALOR: Veterans After-Discharge Longitudinal Registry

VHA: Veterans Health Administration

https://www jmir.org/2025/1/e63352 J Med Internet Res 2025 | vol. 27 163352 | p. 9

(page number not for citation purposes)


https://doi.org/10.1002/mpr.355
http://www.ncbi.nlm.nih.gov/pubmed/22095917
https://doi.org/10.32614/RJ-2021-053
https://doi.org/10.1002/9781118625392
https://www.R-project.org/
https://www.tidymodels.org
http://www.ncbi.nlm.nih.gov/pubmed/20808728
https://doi.org/10.18637/jss.v077.i01
https://cran.r-project.org/web/packages/xgboost/index.html
https://cran.r-project.org/web/packages/xgboost/index.html
https://cran.r-project.org/web/packages/recipes/index.html
https://doi.org/10.1080/08839514.2019.1637138
https://doi.org/10.1002/sim.8281
http://www.ncbi.nlm.nih.gov/pubmed/31270850
https://doi.org/10.1186/s13040-023-00322-4
http://www.ncbi.nlm.nih.gov/pubmed/36800973
https://doi.org/10.1037/tra0000461
http://www.ncbi.nlm.nih.gov/pubmed/30998061
https://doi.org/10.1016/j.jbi.2022.104269
http://www.ncbi.nlm.nih.gov/pubmed/36621750
https://doi.org/10.1186/s12913-022-08899-y
http://www.ncbi.nlm.nih.gov/pubmed/36494829
https://github.com/teecrow/misleading-ptsd-ehr-results
https://www.jmir.org/2025/1/e63352

JOURNAL OF MEDICAL INTERNET RESEARCH Crow et al

Edited by Javad Sarvestan; peer-reviewed by Chenyu Li, Yuanchia Chu; submitted 17.06.2024; final revised version
received 07.07.2025; accepted 10.07.2025; published 27.08.2025

Please cite as:

Crow TM, Lin E, Harper KL, Crowe ML, Keane TM, Marx BP

Misleading Results in Posttraumatic Stress Disorder Predictive Models Using Electronic Health Record Data: Algorithm
Validation Study

J Med Internet Res 2025,;27:e63352

URL: hitps://www . jmir.org/2025/1/e63352

doi: 10.2196/63352

© Thomas M Crow, Eric Lin, Kelly L Harper, Michael L Crowe, Terence M Keane, Brian P Marx. Originally published
in the Journal of Medical Internet Research (https://www.jmir.org), 27.08.2025. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of
Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original
publication on https://www .jmir.org/, as well as this copyright and license information must be included.

https://www jmir.org/2025/1/e63352 J Med Internet Res 2025 | vol. 27 163352 | p. 10
(page number not for citation purposes)


https://www.jmir.org/2025/1/e63352
https://doi.org/10.2196/63352
https://www.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://www.jmir.org/
https://www.jmir.org/2025/1/e63352

	Misleading Results in Posttraumatic Stress Disorder Predictive Models Using Electronic Health Record Data: Algorithm Validation Study
	Introduction
	Methods
	Participants
	Measures
	Statistical Analysis
	Ethical Considerations

	Results
	Overview
	Analysis of Model Performance Discrepancies

	Discussion
	Principal Findings
	Conclusions



