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Abstract

Background: The health care industry must align with new digital technologies to respond to existing and new challenges.
Digital twins (DTs) are an emerging technology for digital transformation and applied intelligence that is rapidly attracting
attention. DTs are virtual representations of products, systems, or processes that interact bidirectionally in real time with their
actual counterparts. Although DTs have diverse applications from personalized care to treatment optimization, misconceptions
persist regarding their definition and the extent of their implementation within health systems.

Objective: This study aimed to review DT applications in health care, particularly for clinical decision-making (CDM) and
operational decision-making (ODM). It provides a definition and framework for DTs by exploring their unique elements and
characteristics. Then, it assesses the current advances and extent of DT applications to support CDM and ODM using the defined
DT characteristics.

Methods: We conducted a scoping review following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) protocol. We searched multiple databases, including PubMed, MEDLINE, and
Scopus, for original research articles describing DT technologies applied to CDM and ODM in health systems. Papers proposing
only ideas or frameworks or describing DT capabilities without experimental data were excluded. We collated several available
types of information, for example, DT characteristics, the environment that DTs were tested within, and the main underlying
method, and used descriptive statistics to analyze the synthesized data.

Results: Out of 5537 relevant papers, 1.55% (86/5537) met the predefined inclusion criteria, all published after 2017. The
majority focused on CDM (75/86, 87%). Mathematical modeling (24/86, 28%) and simulation techniques (17/86, 20%) were the
most frequently used methods. Using International Classification of Diseases, 10th Revision coding, we identified 3 key areas
of DT applications as follows: factors influencing diseases of the circulatory system (14/86, 16%); health status and contact with
health services (12/86, 14%); and endocrine, nutritional, and metabolic diseases (10/86, 12%). Only 16 (19%) of 86 studies tested
the developed system in a real environment, while the remainder were evaluated in simulated settings. Assessing the studies
against defined DT characteristics reveals that the developed systems have yet to materialize the full capabilities of DTs.

Conclusions: This study provides a comprehensive review of DT applications in health care, focusing on CDM and ODM. A
key contribution is the development of a framework that defines important elements and characteristics of DTs in the context of
related literature. The DT applications studied in this paper reveal encouraging results that allow us to envision that, in the near
future, they will play an important role not only in the diagnosis and prevention of diseases but also in other areas, such as efficient
clinical trial design, as well as personalized and optimized treatments.

(J Med Internet Res 2025;27:e55015) doi: 10.2196/55015
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Introduction

Background
Digital twins (DTs) are an emerging concept that has recently
attracted the attention of researchers and engineers. The
development of new technologies, such as virtual reality,
blockchain, and the Internet of Things (IoT), is considered a
key factor for progress in the DT research field [1]. However,
the role of the recent boost in digital transformation and
exponential growth in investments by giant tech companies
cannot be neglected [2]. DTs have their roots in the field of
engineering [3-6] but are quickly expanding to a wide range of
applications, such as city planning [7-9], energy [10,11], retail
[12,13], and health care [14,15]. Although DTs are an emerging
concept, they integrate well-established technologies as
underlying components. The origin of the DT goes back to the
1970s when NASA (National Aeronautics and Space
Administration) used the “twin” concept by creating simulated
environments (ie, mirrored systems) to monitor the spacecraft
in the Apollo 13 program [16,17]. Although this instance may
not be considered as an advanced DT today due to the lack of
data exchange to allow continuous or periodic “twinning” of
the digital to the physical [16,18], it represents a very good
example of the potential of DT and what DTs can empower in
various industries.

A DT of the city of Zurich, Switzerland [7], is a good example
of a DT application. In this project, spatial 3D data is transferred
to a DT to support urban planning decision-making, for example,
simulating climate change and noise issues within urban plans
[7]. Another example of a DT was built by Unilever PLC to
increase the flexibility and efficiency of their production process
[19]. They use DT systems to predict optimal process parameters
for new formulations, execute simulations to identify the best
operational conditions, and investigate complex what-if
scenarios. DT systems have also been applied in the field of
water management in Porto, Portugal [20], by creating a virtual
representation of the city water network. This DT was developed
to predict water quality and flooding issues, simulate and
analyze burst pipe scenarios, and ensure the resilience of water
infrastructure. The initial results revealed that the developed
DT reduced water-supply failures by about 30% and decreased
the time needed to repair burst pipes by 8% [20].

There have been several efforts to develop DTs for various
purposes in health care. Clinical decision-making (CDM) and
operational decision-making (ODM) are 2 of the most important
decision-making processes in health care settings. In this
context, CDM refers to the decisions made by health
professionals in regard to direct health care delivery (diagnosis,
test, intervention, etc) based on a patient’s health status and
related clinical conditions, while ODM refers to the decisions
made by managers and administrators after monitoring processes
related to operations, such as patient waiting times and hospital
revenue [21]. In subsequent sections of this paper, we present
a scoping literature review to provide an up-to-date overview
of the existing literature relevant to the application of DT
systems in health care and to gauge the extent of the designed
DT models for CDM and ODM purposes.

There have been several literature reviews on the applications
of DTs in health care from different perspectives.
Ahmadi-Assalemi et al [22] reviewed recent works in the field
of precision health care and discussed the key enabling
technologies (eg, IoT and cloud) of DTs. Hassani et al [2]
provided a literature review that discussed the value of DTs in
health care and proposed some key characteristics, including
dynamic, real-time, and bidirectional data connections. Armeni
et al [18] identified the opportunities as well as challenges
regarding DT implementations in health care (eg, security and
privacy, accessibility of the technology, and data collection and
management). Elkefi and Asan [23] conducted a systematic
review of studies that discussed the contribution of DTs to
improving user experience in health care (eg, safety management
or information management). They used digital twin and health
as keywords and 17 papers were included in their review. Sun
et al [1] provided a systematic review to explore the progress
of prominent research on DT technology in medicine. They
used the following terms: digital twin, medicine, digital health,
and virtual healthcare. This resulted in the inclusion of 22
papers in their study after the screening process. They showed
that the application of DTs to the cardiovascular system is an
attractive area. Sheng et al [24] used structural topic modelling
to analyze trends in DT+healthcare and their findings show
that technology integration and practical applications, for
example, IoT and artificial intelligence, are the main focus areas.
Katsoulakis et al [25] conducted a scoping review on DTs for
health. Using digital twin and health as search keywords, the
authors selected 85 papers in their analysis. They first
categorized the selected papers into 8 distinct categories based
on their purpose and content, for example, DTs for biomarker
and drug discovery as well as DTs in biomanufacturing. Then,
they discussed the challenges hindering developments in this
field, such as data privacy and security, computing
infrastructure, and data quality and accuracy.

This Paper
In this paper, we present a distinctive approach that distinguishes
our work from existing literature reviews. The key distinctions
are discussed herein. First, the health care industry and academia
use various definitions, necessitating research consolidation to
establish a unified understanding and ensure future research
builds on robust foundations. This study conducts a systematic
literature review and thematic analysis of 86 publications on
DTs and offers a comprehensive analysis of elements and
characterization of the concept, which is absent in existing
review papers. This explicit definition of DTs, along with the
identification of their elements and characteristics, enables
researchers to understand what distinguishes a DT as a unique
system, separate from other known ones. Second, DTs represent
a burgeoning research field, particularly in health care, prone
to misconceptions and misinterpretations. A significant gap in
the literature lies in distinguishing established models, such as
machine learning and 2D or 3D modeling from true DTs. This
paper pioneers an effort to clarify that not all papers claiming
to develop DTs genuinely do so. Our analysis reveals that some
are simply predictive models or simulations, branded under the
DTs trend. This trend risks undermining the integrity of the
research. Thus, this paper aims to educate readers on discerning
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authentic DTs, emphasizing the essential components required
for a system to qualify as such.

What Is a DT?

Overview
There are similarities between DTs and other related
technologies, such as simulation, predictive modeling, and 3D

modeling, which leads to apparent misconceptions about their
definition [2,26]. A summary of DT definitions that are found
in the literature is provided in Table 1. It shows the diverse
views of DTs across studies and domains. Table 1 also shows
the key points of DTs as defined by the respective authors to
facilitate the categorization of such diverse definitions and to
quickly identify their similarities or differences.

Table 1. Definitions of digital twins (DTs) and the key points in the literature.

ReferencesKey pointsDefinition of DT

[18,27-29]Virtual copyA DT of a human using sensors and other data sources to create an exact virtual copy of a human being

[30-34]Digital replicaA DT is a digital replica of an object, process, or system that can be used for various purposes

[35-38]Mimicking or mirroringA DT is an instance of the model that mimics a real patient

[25,39-41]SimulationA DT of a patient is a simulation of the patient’s trajectory that behaves identically to the patient in terms of
outcomes

[42]Virtual mappingA DT is deemed a virtual mapping of a physical entity where simulation clones the dynamic properties of
physical entities in the DT

[43-46]Digital representationA DT is a digital representation of a physical asset reproducing its data model, behavior, and communication
with other physical assets

[47,48]AvatarsIn newer computer tomographic systems, avatars are fitted as DTs into the surface information of the positioned
patients using machine learning

[49]Computer modelDTs are a technology where a personalized computer model is developed that is capable of describing the
physiological processes of a human body, tailored to the specific characteristics of a person

[50,51]Virtual modelThe DT is a virtual and dynamic model in the virtual space that is completely uniform and consistent with
its corresponding physical entity in the real space

[22,52]Digital modelThe concept of DTs has emerged to enable modeling and the fusion of individual physical artifacts with
digital models reflecting their status in real time

[53-56]Virtual model, bidirec-
tional data flow

DTs are virtual models that represent physical systems and their modifications in real time and there is a
bidirectional flow of data, from the physical system to the virtual system and vice versa

From Table 1, we can see that DTs are referred to as a virtual
copy, digital replica, mirror, simulation, virtual map, digital
representation, image, computer model, and digital and virtual
models of a physical entity that are used in different ways, for
example, simulating the patient trajectory, personalized
treatments, monitoring real-time status, and mirroring the
underlying biological systems. As can be observed, the
definitions focus on different features of DTs, dependent on the
application and purpose of the studies. As this domain could
benefit from a universal definition and common understanding
of DTs, we first discuss the known elements and underlying
characteristics of DTs and then synthesize these into a definition
and framework.

DT Architecture
In this section, we will first discuss the elements of DTs and
then the characteristics of DTs that distinguish them from other
similar technologies.

Real Entity

The aim of a DT is to create a virtual representation of physical
entities which is a foundational definition of DTs [57]. In the
context of manufacturing, various types of physical entities (eg,
vehicles, products, components, etc) and their “real-world”
existence have been studied and they are, needless to say,
physical. This is a common element in the application of DTs

in the field of manufacturing and health care [58]. In the health
care context, the patient or hospital environment is typically
considered the physical entity [2,15,18]. In ODM and CDM,
operational and clinical systems, processes and workflows could
also be a target of DTs, which may not be necessarily a
physically existing entity. Therefore, real entity (ie, real-world
entity) rather than physical entity could be a more generalized
terminology.

Virtual Representation

A DT fully describes its real entity from the microatomic level
to the macrogeometric level [59,60]. In general, a virtual
representation may represent a real entity using 1 or more of
the following 4 different dimensions: geometry (ie, the
geometric shape, such as size), physics (ie, the physical
characteristics and constraints), behavior (the dynamic behavior
and responsive mechanism to internal and external changes),
and rules (using historical data and domain experts to develop
logical abilities, such as reasoning, evaluation, and
decision-making) [61]. This representation of a real entity allows
broader applications beyond static digital visualizations, for
example, computer-aided design and 3D models.

Communication Channels

A bidirectional data connection which is one of the main
components of DT systems acts as a communication channel

J Med Internet Res 2025 | vol. 27 | e55015 | p. 3https://www.jmir.org/2025/1/e55015
(page number not for citation purposes)

Riahi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


between the real entity and its virtual counterpart. The nature
of this data connection between the real entity and its virtual
representation may be interpreted differently. One perspective
is that the data flow between the real and virtual product is fully
integrated in a way that the real product is controlled by its
virtual version and a change in one of them alters the status of
the other [62]. An alternative view is that the connection from
the real to the virtual product is continuous in a way that the
status of the real product is continuously transferred to the
virtual product, while the connection of the virtual product to
the real one is rather a flow of information and processes that
may be applied to the actual object [63]. Regardless of the
differences, this live connection is considered one of the main
differentiators between DTs and traditional modeling exercises
[58].

Computational Models

DTs use computational models that leverage gathered data to
analyze, understand, monitor, and predict a system’s state and
behavior. These models (eg, simulations, machine-learning
implementations, and business logic) are the core of DTs [64].
Thus, a crucial step when building DTs is to create high-fidelity
models that provide recommendations and capture the
corresponding real entity’s geometry, physical properties,
behaviors, and rules. The multimodel aspects allow the
consideration of scenarios that exceed the descriptive capabilities
of any single model.

Feedback Mechanism

DTs perform through a closed loop between real and virtual
entities. This feedback mechanism is a crucial element of a DT,
which could be automated, semiautomated, or
human-in-the-loop decision-making depending on several
factors, for example, the application, the DT’s performance,
and the trust level between the DT and stakeholders. Although
an automated DT is ideal, in a decision support system,
especially in the context of health care where human lives are
involved, the decision-making process is risk-oriented and

requires a high level of frequent monitoring, consultation, and
expertise. Thus, similar to other decision support algorithms,
DTs may just provide suggestions and recommendations (eg,
a better course of treatment) to decision makers rather than
issuing orders. In this situation, the decision maker has the
authority to accept or reject any offered suggestions and provide
feedback to the virtual entity for further clarifications and
improvements that enhance accuracy.

Knowledge Base

The DT is typically considered as a system that is data-driven
and thrives on data. A lot of data is captured about the real entity
in the development of the virtual representation. This collection
of data grows as computational models are run, feedback is
provided, resulting decisions are applied to the real entity, and
the virtual representation is updated to represent the current
state of the real entity. All of this data together constitute a
knowledge base that can be used to inform future computational
models and related feedback and decision-making processes.

User Interface

One of the advantages of DTs is their ability to handle and
manage high information loads in a repetitive manner and
provide feedback to decision makers. Considering the scale of
their deployment, DTs may have various users (ie, stakeholders),
and retrieving and displaying the necessary information for the
right user may be challenging [65]. Therefore, a user interface
(eg, dashboard, mobile app, etc) allows DTs to represent
information in an insightful basis for decision-making and
provide information to all users from varied perspectives. The
dashboard may be viewed as a control room that provides users
(ie, decision makers) a level of interaction to monitor the
real-time state of the entities under investigation and view the
results of desired experiments. In other words, users can interact
with the DT through the user interface.

Considering the already explained elements, DTs have unique
characteristics, as presented in Textbox 1.

Textbox 1. Unique characteristics of digital twins (DTs).

• Ongoing updates of virtual representations: a continuous data connection normally is the case when Internet of Things (eg, body sensors) are the
source of data collection. However, health data is normally collected from multiple sources, such as electronic health records, laboratory results,
and medical images and there is a delay related to capturing those data. As the nature of this connection is to enable a DT to reflect any changes
in the state of the real entity in near real time, depending on the application, the frequency of data updates in a DT may vary from seconds to
hours or days.

• Close to reality: synchronization is one of the key features of a DT, which is about making sure the virtual representation presented via a DT and
the actual counterpart mirror each other as closely as possible. Therefore, building a virtual representation with a high degree of similarity,
particularly functional similarity, ensures that when multimodel modeling is carried out on the virtual representation, it responds in the same way
we would expect the real entity to respond.

• Ability for feedback to inform decision-making: one of the important aspects of DTs is their ability to analyze and notify findings to a decision
maker through an always-active feedback loop. In other words, because DTs have a full knowledge of the real entity’s historical performance
and an accurate understanding of its future potential, it helps an end user to make an effective decision, for example, by considering multidimensional
factors and nonlinear trade-offs that are challenging in reality.

• Multifunctionality: one of the unique aspects of the DTs is their ability to study (eg, simulate and predict) multiple physical properties and the
interactions between them. This allows DTs to have many utilizations at the same time, for example, to optimize a process, continuously predict
future states (eg, failures), simulate fixes and modifications to identify possible response actions, provide real-time monitoring, support the
decision-making process, and provide realistic environments for virtual tests [17].
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Our Definition and Framework
A universal and general definition of a DT is a
knowledge-driven system that creates a close-to-reality virtual
representation (twin) of a real entity (eg, clinical and operational
processes). With the help of high-fidelity computational models
(eg, simulation, prediction, and 3D modeling) and ongoing

updates between virtual and real entities through a feedback
mechanism, DTs inform decision makers (eg, administrators
and clinicians) via user interfaces, to gain awareness of
anticipated problems and gain an improved understanding of
potential risks, challenges, and influences. The DT framework
is shown in Figure 1.

Figure 1. The proposed universal digital twin (DT) framework.

In this framework, 2 environments (ie, real and virtual) are
connected through data and a flow of information and processes
(eg, dashboard). DTs integrate multiple approaches (eg,
simulation, machine learning, and virtual reality) to create a
virtual representation of the corresponding real entity. The
multifunctionality of the DT provides user-care applications
that are shared with the corresponding expert (eg, clinician,
nurse, or administrative team) and may be transferred to the
actual entity. The remainder of this paper provides a
comprehensive review of the current advances and extent of
DT applications to support clinical and ODM using this
framework and the defined DT characteristics.

Methods

Guideline
We reported the review conducted in this study following the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
guidelines [66] (Multimedia Appendix 1).

Search Strategy
The search was performed through 8 scientific databases,
including PubMed, MEDLINE, Scopus, Web of Science,
Embase, CINAHL, Cochrane, and gray literature databases in
June 2024. As DTs for clinical and ODM within the health care

domain is a very new area of research, we included most of the
academic databases and gray literature databases (eg, Google
Scholar and OpenGrey) with no date restrictions.

To ensure relevant studies were captured in our search process,
besides digital twin*, we provided a list of search terms of which
at least 1 needed to be mentioned within the title, abstract, or
keywords, such as patient, hospital, Intensive Care Unit or ICU,
surgery, clinic, and emergency. The following search terms
were used with Boolean operators and wildcards: digital twin*
AND hospital* OR *patient* OR health* OR ICU* OR ward*
OR emergence* OR surger* OR ambulance* OR clinic* OR
general practi* OR doctor* OR nurs*. The search strings used
for all databases are shown in Multimedia Appendix 2.

Eligibility Criteria
To identify research papers aligned with our aims, publications
had to meet the following criteria: (1) they had to describe the
development of a DT model for health care, (2) they had to
focus on CDM or ODM in health care (excluding papers focused
on medical devices), (3) they had to propose a DT model with
experiments, (4) any publication date was considered, (5) only
peer-reviewed original research papers were included, and (6)
only articles written in English were considered. Papers
proposing ideas and frameworks or describing the capabilities
of DTs without applications were excluded. Papers published
as literature reviews, editorials, and conference posters were
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excluded; duplicated papers and conference papers later
published as extended journal papers were also excluded.

Data Extraction and Data Analysis
A web-based tool for systematic or scoping reviews, called
Rayyan [67], was used to conduct all stages of the screening
process. We developed a standardized data extraction form in
Microsoft Excel to tabulate specific information. From the
included studies (ie, after performing title, abstract, and full-text
screening against exclusion and inclusion criteria), the following
data were extracted: the country of the first author, publication
type, DT characteristics, the environment that DTs were tested
within, the sample size, the service, the target area, the main
underlying method used in the DTs, the type of data collected
to build DTs, the International Classification of Diseases, 10th
Revision (ICD-10) codes, and a summary of included studies.
Most included studies are presented in the following section,
while the rest are provided in Multimedia Appendix 2.

The ICD coding consists of 22 chapters (1 to 22), each covering
specific disease areas and courses of treatment. While the papers
included in our review did not explicitly provide ICD-10 codes,
we classified them based on the specific disease areas and
corresponding courses of treatment mentioned in the studies.
For each paper, we first identified the main focus (ie, target
area) and then mapped it to the relevant ICD-10 code, starting
from the most specific level and tracing it to the highest chapter
level. For example, if a study focused on prostate cancer, it
would be assigned the ICD-10 code C61 (malignant neoplasm
of the prostate), which is part of chapter 2, “Neoplasms.”

In addition, in our qualitative synthesis, we systematically
assessed the characteristics of DT implementations based on
the developed framework, focusing on ongoing updates of
virtual representations, closeness to reality, and the ability for
feedback to inform decision-making. We examined the studies
for discussions on the frequency and methods of data updates
from real-world entities, considering various sources of data.
We noted potential delays in data capture that could affect the
real-time functionality of the DT. To evaluate how closely the
virtual representation mirrored the actual entity, we examined
the validation methods and metrics used to measure functional
similarity, ensuring the DT could reliably represent real-world
outcomes. We also considered the number and integration of
models within each DT, as using multiple model types can
enhance accuracy. We examined the mechanisms for ongoing
feedback loops within the DTs, focusing on their ability to
analyze historical performance and guide future decisions. This
included identifying decision-support tools and user interfaces
designed to help decision makers act on feedback. We also

assessed whether a closed-loop system existed, where the DT
actively influences decisions in the real twin. In addition, we
explored how feedback is presented to various stakeholders,
ensuring that insights from the DT effectively support informed
decision-making in clinical and operational contexts. In
assessing multifunctionality, we analyzed the range of problems
the DTs were designed to address, exploring the distinct
functions they served within health care. This involved
evaluating the extent to which each DT tackled multiple facets
of health care challenges, such as diagnosis, treatment planning,
and monitoring. By adopting this structured approach, we
ensured a consistent evaluation across studies, capturing the
presence of these key characteristics.

Two reviewers collaborated in designing this form to capture
the relevant variables effectively. Each reviewer independently
extracted data from the included studies, followed by discussions
to resolve any discrepancies. In instances where the reviewers
could not reach an agreement, a third reviewer was consulted
to extract the necessary data for those specific cases.

To synthesize the collated data, we used descriptive statistics
to present frequencies and proportions for various characteristics
of the included studies. Moreover, we provided a more in-depth
qualitative synthesis of findings in the Results section. This
qualitative synthesis highlights the nuances of the studies, such
as the effectiveness of DT implementations, identified barriers
and challenges, and insights into the broader implications for
health care practice. The data analysis was performed using
both Microsoft Excel and R software.

Results

Selection of Articles
A total of 5537 research papers were retrieved in the first step
through all the given search databases. After screening titles
and abstracts and removing duplicates, 815 (15%) papers were
selected for full-text review. Considering the inclusion criteria,
86 (11%) out of 815 papers were selected for further analysis
(ie, CDM: 75/86, 87% and ODM: 11/86, 13%). A total of 729
(89%) papers failed to meet the criteria. Around 34% (246/729)
of these papers focused on providing ideas or frameworks and
described the potential or capabilities of DTs which was the
main reason for their exclusion. Moreover, 49% (355/729) of
the papers were not relevant to the scope of this paper, for
example, privacy and ethical aspects of DTs in health care, and
big data and technology infrastructure required for DT
implementations. The review process and results are shown as
a PRISMA-ScR diagram in Figure 2.
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Figure 2. Flow diagram of the selection process of papers. CDM: clinical decision-making; DT: digital twin; ODM: operational decision-making.

Characteristics of Included Articles
Papers identified through our review reflect the current upward
trend of publications in the DT research area as all screened and

included studies were published after 2017 as shown in Figure
3. This figure also reveals the difference in research interest
among researchers between CDM (more popular) and ODM.

Figure 3. Number of papers on digital twin technology that were screened and included for the review. CDM: clinical decision-making; ODM:
operational decision-making.
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Analysis of the distribution of the papers by the first author’s
country shows that the United States (17/86, 20%), China
(11/86, 13%), and India (10/86, 12%) are the countries with the
highest number of published studies. Other countries, including
France, Germany, the United Kingdom, South Korea, Austria,
Australia, Netherlands, Italy, and Canada contributed to DT
research with at least 2 papers each. Out of the 86 papers
included, 65 (76%) were published as journal papers and the
rest were conference publications.

Data plays an important role within DTs as it allows the physical
and virtual entities to communicate together. Besides a small
number of studies (5/86, 9%) that used synthetic [40,54,68,69]
or randomly generated data [50], most studies used data
collected from real entities. Furthermore, analyzing the results
shows that the data collected through medical images (eg,

magnetic resonance imaging and computed tomography scans)
are rich sources to build DT models for various purposes, for
example, the His-Purkinje System [31], human vertebra [70],
breast cancer [71], tibial plateau fracture [72], the tibiotalar joint
[48], knee joint [52], patients with liver tumors [73,74], and the
human brain [75].

For further analysis, a summary of the included papers along
with their DT and health-related features is provided in Table
2. In this table, we have included characteristics that are featured
in the DTs (refer to column “DT characteristics”) based on the
information reported in the article.

In Table 2, the CDM-based papers were categorized based on
the targeted areas of the human body using the ICD-10 codes.
Textbox 2 provides the details of all the chapters in ICD-10.
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Table 2. The main features of the studied papers (N=86).

Main methodICD-10b codeServiceEnvironmentDTa characteristicsAuthors

Clinical decision-making

MMeChapter 18Optimizing treatment—dCTRcGillette et al [31]

SimulationChapter 2Efficient clinical trial—CTRQi and Cao [76]

NNfChapter 10Early diagnosis—CTRChakshu and Nithiarasu [45]

MLgChapter 9Optimizing treatment—CTRDoste et al [40]

RLjChapter 21Personalize treatmentSimulatedOGUh, CTR, ATFiLai et al [68]

RLChapter 2Optimizing treatmentSimulatedOGU, CTR, ATFTardini et al [77]

MLChapter 4Personalize treatmentDeployedOGU, CTR, ATFShamanna et al [78]

MMChapter 21Early diagnosisDeployedOGU, CTR, MFkSilfvergren et al [49]

MLChapter 4Personalize treatmentDeployedOGU, CTR, ATFShamanna et al [79]

3D modelsChapter 11Optimizing treatment—CTRHwang et al [80]

SimulationChapter 1Early prevention—CTRLal et al [81]

3D modelsChapter 19Knowledge sharing—CTRCho et al [82]

MLChapter 4Personalize treatment—OGU, CTR, ATFShamanna et al [83]

NNChapter 9Early diagnosis—CTRChakshu at al [54]

NNChapter 19Early prevention—CTRAhmadian et al [70]

MMChapter 11Early preventionSimulatedOGU, CTR, ATFGolse et al [84]

NNChapter 19Early prevention—CTR, MFAhmadian et al [85]

MMChapter 2Personalize treatment—CTRWu et al [71]

MLChapter 221Accurate prognosis—CTRTalukder et al [86]

NNChapter 2Personalize treatment—CTRBatch et al [87]

SimulationChapter 19Optimizing treatment—CTRAubert et al [72]

NNChapter 19Personalize treatment—CTRHernigou et al [48]

NNChapter 1Optimizing treatmentDeployedOGU, CTR, ATFTai et al [88]

NNChapter 11Early prevention—CTRPalaniappan and Surendran [55]

MMChapter 19Early preventionDeployedOGU, CTR, ATFChen [52]

SimulationChapter 13Early prevention—CTRBaena et al [89]

NNChapter 21Knowledge sharingSimulatedOGU, ATFBarbiero et al [35]

MMChapter 9Early preventionSimulatedOGURoy et al [90]

NNChapter 9Early preventionSimulatedOGUAllen et al [39]

MLChapter 9Early prevention—Hussain et al [91]

MMChapter 2Early diagnosisSimulatedOGUMeraghni et al [32]

MLChapter 21Early preventionDeployedOGU, CTR, ATFScheuermann et al [92]

MMChapter 9Early prevention——Semakova et al [93]

BNlChapter 20Early prevention——Ossai and Wickramasinghe [94]

NNChapter 9Early prevention——Martinez-Velazquez et al [27]

MMChapter 9Early diagnosis——Chakshu et al [56]

MMChapter 2Optimizing treatmentDeployedOGU, CTR, ATFShi et al [73]

MLChapter 2Early diagnosis——Kim et al [95]

NNChapter 21Real-time monitoringSimulatedOGUManocha et al [38]

Mechanistic modelChapter 11Optimizing treatment—CTRVenkatapurapu et al [36]
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Main methodICD-10b codeServiceEnvironmentDTa characteristicsAuthors

MMChapter 27Early diagnosisSimulatedOGU, CTRWu et al [69]

MMChapter 21Personalize treatment—CTRZhou et al [96]

MMChapter 1Personalize treatment—CTRLauzeral et al [74]

MLChapter 6Accurate prognosis—CTRWan et al [75]

3D modelsChapter 19Knowledge sharing—CTRHernigou et al [51]

MMChapter 9Optimizing treatmentSimulatedOGU, CTRAzzolin et al [97]

MMChapter 21Optimizing treatment—CTRAng et al [98]

MMChapter 9Early diagnosis—CTRvan Osta et al [99]

MMChapter 9Optimizing treatment—CTRKardampiki et al [100]

OptimizationChapter 21Real-time monitoringDeployedOGU, CTR, ATFJiang et al [101]

NLPmChapter 5Real-time monitoringDeployedOGU, CTR, ATFKobayashi et al [102]

SimulationChapter 21Personalize treatment—CTRFörster et al [103]

NNChapter 28Personalize treatment—CTRFu et al [104]

MMChapter 28Knowledge sharing—CTRGillette et al [105]

OptimizationChapter 4Optimizing treatmentDeployedOGU, CTR, ATFGoodwin et al [106]

MLChapter 21Early diagnosis——Yuan et al [107]

MMChapter 28Optimizing treatmentDeployedOGU, CTRAlcaraz et al [108]

SimulationChapter 19Optimizing treatmentDeployedOGU, ATFShu et al [109]

NNChapter 19Real-time monitoring—CTR, MFSarp et al [110]

MMChapter 11Personalize treatment—CTRDemir et al [111]

MMChapter 21Optimizing treatment—CTRKoopsen et al [112]

MLChapter 4Early diagnosis—CTRBatagov et al [113]

MLChapter 4Personalize treatmentDeployedOGU, CTR, ATFJoshi et al [114]

Graph-based net-
work

Chapter 2Early diagnosis—CTRGrieb et al [115]

MLChapter 4Optimizing treatment—CTR, MFZhang et al [116]

NNChapter 17Early prevention—CTRRouhollahi [117]

SimulationChapter 9Early prevention—CTRSerra et al [118]

NNChapter 4Early diagnosis—CTRChahal [119]

3D modelsChapter 28Optimizing treatmentDeployedOGU, CTR, ATFUyttendaele et al [120]

MMChapter 9Optimizing treatment—CTRLožek et al [121]

NNChapter 4Optimizing treatmentDeployedOGU, CTR, ATFThamotharan et al [122]

SimulationChapter 4Personalize treatment—CTRCappon et al [123]

MMChapter 28Personalize treatment—CTR, ATFSalvador et al [124]

MMChapter 9Optimizing treatment—CTR, ATFDubs et al [125]

MLChapter 28Real-time monitoring—OGU, CTR, ATFKhan et al [126]

Operational decision-making

Simulation—Real-time monitoringSimulatedOGU, ATFKarakra et al [50]

Simulation—Facility management—CTRAugusto et al [127]

Simulation—Efficiency improvementDeployedOGU, CTR, ATFPilati et al [53]

Simulation—Efficiency improvementSimulatedOGUMaïzi and Bendavid [128]

Simulation—Real-time monitoringSimulatedOGU, ATFKarakra et al [129]

Simulation—Efficiency improvement——Possik et al [30]
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Main methodICD-10b codeServiceEnvironmentDTa characteristicsAuthors

Simulation—Knowledge sharing——Chen et al [42]

Simulation—Medical resource alloca-
tion

—CTR, ATF, MFZhong et al [41]

Optimization—Medical resource alloca-
tion

SimulatedOGU, CTR, ATFRitzinger et al [37]

Simulation—Facility management—CTRBasaglia et al [130]

3D models—Facility management—CTRZackoff et al [131]

aDT: digital twin.
bICD: International Classification of Diseases, 10th Revision.
cCTR: close to reality.
dNot available.
eMM: mathematical modeling.
fNN: neural network.
gML: machine learning.
hOGU: on-going updates.
iATF: ability to feedback.
jRL: reinforcement learning.
kMF: multifunctional.
lBN: Bayesian network.
mNLP: natural language programming.

Studies included in this review covered more than half (14) of
all 22 chapters. Chapter 19 (“Diseases of the circulatory
system”; 14/86, 16%) and chapter 21 (“Factors influencing
health status and contact with health services”; 12/86, 14%)
include the most studies, followed by chapter 4 (“Endocrine,
nutritional, and metabolic diseases”; 10/86, 12%). These
findings demonstrate the diversity of health care areas where
DT models have been applied.

In terms of health care services in the included studies, for CDM,
optimizing treatment (20/86, 23%), early prevention (16/86,
19%), and personalized treatment (15/86, 17%) are the 3 main
service areas studied in the included papers, while for ODM,
facility management (3/86, 3%) and efficiency improvement
(3/86, 3%) are the most popular areas.

Regarding the main computational approach used in the
proposed DTs, mathematical modeling (24/86, 28%), for
example, moving least square and physiological models is the
most common method followed by simulation techniques, for
example, discrete event simulation (17/86, 20%) and neural
network-based algorithms, for example, deep convolutional
neural networks and graph neural networks, (17/86, 20%).
Unsurprisingly, simulation-based models, such as discrete event
simulation (9/11, 81%) are the most popular method used for
ODM (as they can allow decision makers to investigate “what
if” scenarios by quantifying the impact of potential changes in
the operational settings [132]. The detailed distribution of
disease areas, services, and computational methods in the
included papers are provided in the Multimedia Appendix 3.

The following was also observed for these included studies: out
of 86, only 32 (37%) studies demonstrated ongoing updates of
virtual representations in their developed system, although it is
the most fundamental characteristic of a DT. Among those 32
studies, 16 (50%) tested the developed system in a simulated
environment, and the remainder were tested in real
environments. Of the 4 defined characteristics of DTs,
multifunctionality is a characteristic that was found to be lacking
in most of the studies (81/86, 94%). Among the included papers,
all studies missed at least one of the DT’s characteristics, and
therefore, did not materialize all 4 characteristics of DT.

Although none of the studies had all the desired DT
characteristics, the reported impact of the deployed DTs offers
promising insight into their effectiveness. For example, a
DT-based program for patients with type 2 diabetes helped all
12 insulin-dependent patients who attended the program to stop
insulin injections and helped 38 out of 56 to stop taking
metformin [79]. A DT technology used for assisting a surgeon
with real-time performance of thermal ablation (a treatment to
destroy tumor cells) provided significantly better results
compared to other existing methods [73]. A DT for estimating
the risk of posthepatectomy liver failure (a leading cause of
postoperative death) was developed by modeling blood
circulation and estimating 2 important determinants of the
disease that could not be predicted before the development of
the DT [84].
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Textbox 2. Chapters in the International Classification of Diseases, 10th Revision.

• Chapter 1: Certain infectious and parasitic diseases

• Chapter 2: Neoplasms

• Chapter 3: Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism

• Chapter 4: Endocrine, nutritional and metabolic diseases

• Chapter 5: Mental and behavioural disorders

• Chapter 6: Diseases of the nervous system

• Chapter 7: Diseases of the eye and adnexa

• Chapter 8: Diseases of the ear and mastoid process

• Chapter 9: Diseases of the circulatory system

• Chapter 10: Diseases of the respiratory system

• Chapter 1: Diseases of the digestive system

• Chapter 12: Diseases of the skin and subcutaneous tissue

• Chapter 13: Diseases of the musculoskeletal system and connective tissue

• Chapter 14: Diseases of the genitourinary system

• Chapter 15: Pregnancy, childbirth and the puerperium

• Chapter 16: Certain conditions originating in the perinatal period

• Chapter 17: Congenital malformations, deformations and chromosomal abnormalities

• Chapter 18: Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified

• Chapter 19: Injury, poisoning and certain other consequences of external causes

• Chapter 20: External causes of morbidity and mortality

• Chapter 21: Factors influencing health status and contact with health services

• Chapter 22: Codes for special purposes

Discussion

Principal Findings
The main finding of this study is that while DT systems in health
care have shown promising results across multiple areas, they
still do not fully incorporate all the desirable characteristics of
a comprehensive DT. Nonetheless, DTs are making significant
advances in clinical and ODM processes, particularly in areas
such as cardiovascular disease, diabetes, cancer, orthopedics,
and emergency department operations. The ability to integrate
multiple techniques and technologies, such as big data, cloud
computing, communication, virtual reality, blockchain, IoT,
simulation, prediction, and optimization helps to create a
digitally enabled environment for DTs to encapsulate and
provide solutions for complex and multidisciplinary problems
that were difficult to deal with using traditional methods. Key
examples of such solutions include real-time monitoring,
treatment optimization, risk factor early intervention, efficient
clinical trial design, and improving operational efficiency.

The results of this study showed that the development and
deployment of DTs within health care settings still lack maturity.
Our review of the literature revealed a lack of a common
definition and some inconsistency in the use of the term digital
twin. Consequently, the focus of this study was shifted toward
defining a DT and its underlying elements to support a common

understanding and suggest a framework for designing and
developing DTs. Building a DT is a complex process in terms
of modeling, functionality, domain specificity, and data
connectivity process. Therefore, research articles on DTs need
to be transparent about their purpose (ie, functionality), the
virtual representation that is being created, the data (eg, the
frequency of data update, what data elements need to pass from
the real entity to the virtual representation and vice versa), the
feedback mechanism (eg, what are the outputs, who is receiving
that feedback information, etc), and the computational models
used (eg, the accuracy of the models and justification for the
model's selection). This transparency helps any developed DTs
be understandable and their potential for translation be gauged.

Assessing the identified studies against the defined
characteristics of DTs revealed that while there are emerging
applications of DTs for CDM and ODM, current efforts were
not mature enough to include all desired features. As shown in
Table 2, most of the reviewed studies did not include ongoing
updates of virtual representations in their developed systems.
Although they may not materialize a major characteristic of a
DT, that is, fed by live data and synchronized with real-life
events, they are proof-of-concept studies that provide evidence
for the appetite for DTs in health care. One of the main aspects
of DTs that is lacking in the included studies is the
multifunctionality and scale of the proposed DTs. Studying the
input and output data of the developed DTs revealed that they
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are mostly designed with a single purpose although DTs are
designed to create a complete virtual description of a real entity
that is accurate at both the micro and macrolevels. The size of
the samples used in the included studies shows that the
developed DTs are still in experimental stages, and to fully
embrace DT technologies, they need to move from custom
expert-driven implementations to accessible robust
implementations at scale [133].

As DTs are an emerging research area, especially in health care,
it is not surprising to witness misconceptions,
misunderstandings, and misrepresentations. It has been discussed
that DTs are closely related to other research areas, such as 2D
or 3D modeling, system simulation, and digital prototyping and
this is a big factor in this confusion [2,26]. Reviewing some of
the definitions of DTs over the years provides insight into their
growth and development. Considering the fact that researchers
are still trying to adopt DT concepts and technologies from
manufacturing to health care and figure out how DTs can be
implemented in such complex systems, it is understandable that
there are still a few steps to go in designing, building, and
executing a true DT system within a health care setting.
Reviewing the selected papers in this study revealed that DT
applications in health care are still in a transformative stage
moving from offline systems, for example, digital models and
simulations without any real-time connection with the real entity,
toward DTs encompassing the aforementioned characteristics,
and there is improved awareness of what separates DTs from
similar technologies as interest in this field grows.

While none of the reviewed studies possesses all desired DT
characteristics, the current state of the deployed models suggests
that DTs have the potential for substantial impact once fully
developed. They also showcase the versatility of DTs in CDM
and ODM applications, from screening, diagnosing, detecting
disease, and personal treatment to clinical trial design and
optimizing hospital operations. While interest in the applications
of DTs in health care is evident, the key focus area might be in
understanding how health care operations could benefit from
DT use. Developing DTs for designing clinical trials exemplifies
how they provide personalized health care by allowing
patient-specific responses to therapies to be simulated and
treatment plans to be optimized [76]. Nevertheless, the impact
of DTs can be extended to population health by providing
insights into disease patterns and treatment efficacy across
varied populations. Economically, they reduce costs related to
traditional clinical trials, such as participant recruitment and
logistics, and also position organizations at the forefront of
innovation, attracting investment and fostering industry growth.
Socially, virtual testing minimizes risks to human participants
and enhances trial transparency, as well as addressing disparities
by generating inclusive data that accurately represents diverse
demographic groups. Thus, DTs promise significant
advancements, offering broader societal and economic benefits.

Challenges and Barriers to Implementing DTs in
Health Care

Overview
Alongside the promising opportunities, the application of DTs
faces several challenges and concerns that could impede their
full potential. As with other systems involving the exchange of
health information, data security and integrity are essential for
preserving patient privacy and ensuring high-fidelity models
can be created. To implement DTs widely, significant
investments are needed in both digital and physical
infrastructure, including scalable cloud computing and
high-performance computing for storing and processing the vast
amounts of generated data and running complex simulations,
and IoT devices with reliable networking for real-time data
gathering and supporting rapid data transfer. Such a system
upgrade will be particularly challenging due to the need to
integrate DTs with existing legacy systems that often lack
standardization and interoperability. To facilitate this
transformation, it is essential to mitigate these challenges by
establishing standardized data formats, communication
protocols, and data exchange mechanisms that enhance efficient
information flow across systems [134]. Besides, DTs’validation
should be first established for an end user to trust the feedback,
similar to how predictive performance and clinical validation
of artificial intelligence and machine learning models are
assessed before use.

There are some other unique aspects related to health care that
make the implementation of a DT model challenging but
compelling. One important property of DTs is having real time,
live, and continuous data flow. However, health data normally
is sourced from multiple collections, such as electronic health
records, laboratory results, and medical images and there is a
delay related to capturing those data. For example, the results
of blood tests may take up to 24 hours to be ready or care
providers may update coding within a patient record at the end
of their stay in the hospital. Capturing accurate data is, in fact,
another challenge. Today, the health care industry contributes
approximately 30% of the data worldwide and by 2025, it is
expected to reach close to 5000 digital device interactions per
person per day [135]. This deluge provides an opportunity for
developing data-driven models, such as DTs; however,
assembling these data from various sources which are normally
stored in different formats remains a significant challenge, along
with the accuracy of underlying patient-level data stored within
datasets. Moreover, the collection and storage of extensive data
raises significant data privacy and security concerns, particularly
given the sensitive nature of patient information. Solutions
involve implementing robust security measures like encryption
and access controls to ensure the protection of data during
sharing and analysis [18,25,134,136].

Another big difference in DT applications in health care
compared to other industries is human involvement, which raises
a myriad of ethical issues. It has been discussed that a DT based
on a virtual representation of a human may be created in such
a way that the virtual version acts on behalf of the actual person
and directly affects the person [137]. Therefore, not only does
the digital model need informed consent, but also the person
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needs to be granted adequate control over their digitally-twinned
representation. Trust is another important consideration along
the path of the development of DTs in health care. Because of
the high level of sensitivity working with health data, DTs as
an emerging technology not only need reliable results but also
the trust of health care providers.

Future Directions and Policy Considerations for DTs in
Health Care
With the rapid growth of DT models, driven by global
investments in underlying technologies, such as IoT, and their
potential to outperform traditional methods [138], the application
of DTs in clinical and ODM is poised to accelerate in the
foreseeable future. Effective policy improvement, such as
enforcing interoperability standards, providing funding and
incentives for technological upgrades, updating data privacy
laws, and establishing clear artificial intelligence and machine
learning regulatory frameworks will be crucial in facilitating
this transmission.

Limitations and Strengths
This study has several limitations. First, the scoping review was
limited only to papers published in English. Second, the search
process was restricted only to original papers with the term
digital twin included in either the title, abstract, or keywords
which may have resulted in excluding other closely relevant
studies that may not have used this term. Third, in the inclusion
criteria, we focused on DT applications within ODM and CDM;
however, this may have led to excluding a portion of DT
applications in other health domains, such as medicine and drug
discovery. Fourth, this study reviewed a wide range of DT
applications in health care delivery without critically assessing
their reporting quality. Therefore, more detailed quantitative
analyses can be considered as future research activities that are
beyond the scope of this work. Fifth, while our search strategy
was comprehensive, some relevant studies indexed under
different terminology or metadata, such as MeSH terms, may
have been unintentionally missed. Finally, there are articles
published between the completion of the search process (June
2024) and the publication of this study that we were not aware
of and therefore were not included in this review.

Despite the challenges and limitations highlighted earlier, it is
important to acknowledge the strengths of our work. This study

offers a comprehensive framework for defining the key
characteristics of DTs in health care, providing an essential
resource for future research and practical applications. Our
review not only outlines the current advancements in DT
technology but also pinpoints critical gaps between present
capabilities and their full potential, especially in clinical and
ODM. The proposed framework serves as a guide for researchers
and health care providers in developing DT systems, offering
a reference for incorporating all the desirable characteristics of
a comprehensive DT to effectively implement and use these
technologies. Considering the rapid development of DTs, our
review is both timely and highly relevant for researchers and
health care practitioners. We adopted a deliberately broad scope,
encompassing studies from diverse clinical settings and health
care disciplines to ensure a comprehensive understanding of
DT applications. By incorporating both academic and gray
literature, our findings are further strengthened, offering a solid
basis for those working to develop and implement DT systems.

Conclusions
The application of DTs in health care is exponentially growing
and it is expected to play a major role in decision-making
processes at both operational and clinical levels. This scoping
review presents a broad overview of currently developed DT
technologies, and the key findings can be summarized as
follows: before this study, a common definition of DTs was
missing, and researchers often confused other approaches with
DTs. In this study, we provided a detailed description of DT
elements and characteristics and synthesized these into a
universal definition and architecture for DTs for clinical and
operational decision support. Second, most prior work has not
materialized a major characteristic of DTs: although
bidirectional data connection between a real entity and the
corresponding virtual one is a fundamental element of a DT,
the ongoing update characteristic is lacking in most of the
included papers. Third, the implementation of DTs is still in its
infancy. Only 19% of the included studies tested the developed
DT in a real environment and 95% of them were designed with
a single-purpose functionality. Further study is warranted to
explore the potential of DTs, for example, integrating ongoing
updates into DT models, evaluating practical implementations
in health care settings (ie, assessing effectiveness, feasibility,
and scalability), and enhancing versatility for broader
functionality and seamless integration.
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