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Abstract

Background: Prehospital trauma triage is essential to get the right patient to the right hospital. However, the national field
triage guidelines proposed by the American College of Surgeons have proven to be relatively insensitive when identifying severe
traumas.

Objective: This study aimed to build a prehospital triage model to predict severe trauma and enhance the performance of the
national field triage guidelines.

Methods: This was a multisite prediction study, and the data were extracted from the National Trauma Data Bank between
2017 and 2019. All patients with injury, aged 16 years of age or older, and transported by ambulance from the injury scene to
any trauma center were potentially eligible. The data were divided into training, internal, and external validation sets of 672,309;
288,134; and 508,703 patients, respectively. As the national field triage guidelines recommended, age, 7 vital signs, and 8 injury
patterns at the prehospital stage were included as candidate variables for model development. Outcomes were severe trauma with
an Injured Severity Score ≥16 (primary) and critical resource use within 24 hours of emergency department arrival (secondary).
The triage model was developed using an extreme gradient boosting model and Shapley additive explanation analysis. The model’s
accuracy regarding discrimination, calibration, and clinical benefit was assessed.

Results: At a fixed specificity of 0.5, the model showed a sensitivity of 0.799 (95% CI 0.797-0.801), an undertriage rate of
0.080 (95% CI 0.079-0.081), and an overtriage rate of 0.743 (95% CI 0.742-0.743) for predicting severe trauma. The model
showed a sensitivity of 0.774 (95% CI 0.772-0.776), an undertriage rate of 0.158 (95% CI 0.157-0.159), and an overtriage rate
of 0.609 (95% CI 0.608-0.609) when predicting critical resource use, fixed at 0.5 specificity. The triage model’s areas under the
curve were 0.755 (95% CI 0.753-0.757) for severe trauma prediction and 0.736 (95% CI 0.734-0.737) for critical resource use
prediction. The triage model’s performance was better than those of the Glasgow Coma Score, Prehospital Index, revised trauma
score, and the 2011 national field triage guidelines RED criteria. The model’s performance was consistent in the 2 validation
sets.

Conclusions: The prehospital triage model is promising for predicting severe trauma and achieving an undertriage rate of <10%.
Moreover, machine learning enhances the performance of field triage guidelines.

(J Med Internet Res 2024;26:e58740) doi: 10.2196/58740
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Introduction

Trauma is a universal health challenge that places a massive
burden on national economies. It causes 4.4 million deaths
annually, and an estimated 10% of all years lived with disability
[1,2]. The American College of Surgeons Committee on Trauma
(ACS-COT) recommends that severe trauma be treated at levels
1 and 2 trauma care facilities [3]. Patients with severe trauma
have approximately 25% lower mortality rates when treated at
levels 1 or 2 trauma centers than when treated at lower-level or
nontrauma centers [4]. Prehospital estimation of injury severity
is essential for prehospital triage. It is a critical step for
emergency medical service (EMS) providers in making decisions
regarding patient destination. Under- and overtriage are incorrect
triages. A low-sensitivity triage tool results in many
false-negative cases, indicating undertriage and a possible failure
in trauma first aid. Conversely, low specificity is associated
with a high rate of false-positive cases, indicating overtriage
[5].

The national field triage guidelines were initially developed by
ACS-COT in 1976 and revised in 2011 and 2021 [6,7]. The
national field triage guidelines have been widely implemented
in the United States and represent 1 of the few standardized
national protocols for EMS. It was developed based on
peer-reviewed research, resulting in biased estimates and
reduced generalizability [3,8]. A prospective national triage
guidelines validation study for identifying high-risk trauma
patients found that the guidelines were relatively insensitive in
identifying severely injured patients and those requiring early
critical resource use [9]. In addition, other triage tools, such as
the Glasgow Coma Score (GCS), Prehospital Index (PHI), and
revised trauma score (RTS), have not shown ideal predictive
performance [5,10-12]. Therefore, it emphasizes the need to
improve the prehospital triage tool [13].

Machine learning (ML) development has advanced rapidly in
the medical field, notably in trauma medicine, and has
demonstrated that the ML model’s predictive ability is
significantly better than that of the conventional trauma triage
tools for mortality outcomes, hospitalization, and critical care
admission [14,15]. Therefore, this study aimed to build a

prehospital triage model to predict severe trauma (pTEST) and
enhance the performance of the national field triage guideline.

Methods

Recruitment
This multisite prediction study was conducted to predict trauma
severity during field triage. We developed, validated, and
reported our triage model following the TRIPOD (Transparent
Reporting of a Multivariable Model for Individual Prognosis
or Diagnosis) statement [16], as shown in Multimedia Appendix
1.

Ethical Considerations
The Naval Medical University Ethics Committee approved the
study protocol (reference number NMUEC2022-088). Our study
consisted of secondary analyses using the National Trauma Data
Bank (NTDB) with primary consent, and the data were
anonymized.

Source of Data and Patients
Data from the NTDB, the largest aggregation of trauma registry
data in the United States assembled by the ACS, were used in
this study [17]. In 2017, the ACS Trauma Quality Program
transitioned to a new technical vendor and redesigned the NTDB
infrastructure. The 2017 and 2018 NTDB datasets comprising
2,041,706 patients were used for pTEST model development,
hyperparameter tuning, and internal validation. The 2019 NTDB
dataset comprising 1,097,190 patients was used for the external
validation of the pTEST model.

Notably, all patients with injury, aged 16 years of age or older,
and transported by ground or aerial ambulance from the injury
scene to any trauma center were potentially eligible. Due to a
lack of crucial information on outcomes and predictors, we
excluded patients who died in the EMS, patients discharged
from the emergency department (ED) to another hospital, and
those without any EMS records or an Injury Severity Score
(ISS). In total, 960,443 and 508,703 participants were included
in the development and validation sets, respectively. Figure 1
shows the patient selection process.
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Figure 1. The flowchart of model development and validation. ED: emergency department; EMS: emergency medical service; ISS: Injury Severity
Score; NTDB: National Trauma Data Bank; pTEST: prehospital triage model to predict severe trauma.

Outcome and Predictors
Defining “severe trauma” is a challenge in prehospital triage
model development. It varies widely across studies. The
reference standard (primary outcome) of “severe injury” was
considered as an ISS ≥16 as the benchmark to evaluate triage
accuracy recommended by the ACS [7,18,19]. The ISS
calculated by anatomical criteria is assumed to be consistent
with the patient status on the scene and is associated with high
mortality [4,19]. However, it does not reflect resource use
directly; therefore, we included a composite resource-based
early critical resource use measure as the secondary outcome.
According to similar studies [9,18], early critical resource use
included intubation in the EMS or ED, discharge to the intensive
care unit from the ED, surgery for hemorrhage control,
interventional radiology procedures, cerebral monitoring, and
in-hospital death, all within 24 hours. A detailed definition of
severe trauma is provided in Multimedia Appendix 2.

According to a recent field triage protocol review in 2017 [10],
the significant predictors of a severely injured patient were age,
vital signs, injury patterns, and injury mechanism. In addition,
in the US National Guidelines for the Field Triage of Injured
Patients in 2011 and 2021 [6,7], age, vital signs, and injury
pattern measurements were the field triage’s top priorities. In
the 2011 national field triage guidelines, severely injured
patients who should be transported preferentially to the
highest-level trauma center were identified using the RED

criteria, which included 3 vital signs (GCS, systolic blood
pressure, and respiratory rate) and 8 injury patterns. During
field triage, time is essential, and the number and complexity
of hand-collected variables must be limited. Therefore, as the
US National Guideline for the Field Triage recommended and
recorded in the NTDB, we incorporated 16 candidate variables
in EMS for model development, including age at the time of
injury (AGEYEARS), GCS eye (EMSGCSEYE), GCS motor
(EMSGCSMOTOR), GCS verbal (EMSGCSVERBAL), systolic
blood pressure (EMSSBP), oxygen saturation
(EMSPULSEOXIMETRY), respiratory rate
(EMSRESPIRATORYRATE), pulse rate (EMSPULSERATE),
penetrating injuries (TCCPEN), chest wall instability
(TCCCHEST), long-bone fractures (TCCLONGBONE), crushed
extremity (TCCCRUSHED), amputation (TCCAMPUTATION),
pelvic fracture (TCCPELVIC), skull fracture
(TCCSKULLFRACTURE), and paralysis (TCCPARALYSIS).
The detailed definitions of candidate variables are listed in
Multimedia Appendix 3.

Model Development
The pTEST model was developed using the extreme gradient
boosting model (XGBoost) and Shapley additive explanation
analysis (SHAP). XGBoost is a novel boosting tree-based
ensemble algorithm through which new models are created to
predict residuals or errors of prior models and then combined
to make a final prediction [20]. Recently, XGBoost has been
widely used in ML due to its outstanding prediction
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performance, ability to use continuous and categorical inputs,
lack of data preprocessing, imbalanced data handling capacity,
high internal optimization, and relatively modest computational
costs [21].

Patients in the development set from the 2017 and 2018 NTDB
datasets were randomly grouped into training (70%) and internal
validation (30%) sets for model development. Using a grid
search, a 10-fold cross-validation process was used on the
training set for hyperparameter tuning. The goal of
hyperparameter tuning is to find the values that lead to the
best-predicted performance. The optimal values of
hyperparameters were learning rate=0.04071151, minimum loss
reduction required to make a further partition=20.36485,
maximum tree depth=14, minimum sum of instance weights
needed in a leaf node=39, maximum number of boosting
iterations=1051, and subsample ratio of the training
instance=0.7763707, with the other hyperparameters set to
default. In addition to the training set, the model’s
reproducibility, transportability, and generalizability were
evaluated using internal and external validation sets.

Missing values are an essential concern in trauma triage because
there may not always be time to measure critical variables. The
absent proportions of the training, internal validation, and
external validation sets are shown in Multimedia Appendix 4,
with all variables, except pulse oximetry, missing below 6%.
XGBoost supports branch directions for predictors with missing
values, creating an advantage in real-world situations where
XGBoost can still achieve individual prediction without
complete prehospital data.

To gain insight into the risk prediction model, we investigated
different predictors’ contributions based on Shapley values
using SHAP, a game theory concept introduced in the 1950s
[22,23]. A predictor’s SHAP value can be positive or negative,
suggesting an increased or decreased probability of severe
trauma, respectively. In our study, the SHAP values were
visualized at global (dataset level) and local (patient-specific)
levels to investigate the predictors’ impact. XGBoost and SHAP
were implemented using the R (R Core Team) packages tidy
models and shapviz.

Statistical Analysis Methods
For the sample size calculation, the prevalence of events was
set at 17.8%, and the number of predictors was 16 based on the
development set. The area under the curve (AUC) of the optimal
prehospital triage model in a previous study was 0.68 [11], and
our pTEST model was expected to achieve an AUC of 0.7. At
least 1871 patients were required for model development or
validation using the R package pmsampsize [24].

Continuous data are presented as mean and SD, and categorical
data are presented as frequencies and percentages (%). The
2-tailed t test was used to evaluate the differences in continuous
data, which followed a normal distribution and variance
homogeneity; otherwise, the Wilcoxon rank-sum test was used.

The differences in categorical data were evaluated using the
Pearson chi-square test. The area under the receiver operating
characteristic curve was calculated to assess model
discrimination. The AUCs between models were compared
using the DeLong test. The best thresholds of the models were
determined by maximizing the Youden index, and performance
metrics, including sensitivity, specificity, accuracy, positive
predictive value (PPV), and negative predictive value (NPV),
were calculated. Performance metrics 95% CIs were calculated
using 500 bootstrap replicates. In addition, the pTEST model
is intended to identify severe trauma that requires high
sensitivity and NPV to rule it out. Sensitivity and specificity
are inversely proportional and a tradeoff needs to be made
between sensitivity and specificity. Therefore, the sensitivities
and NPV of the different models were compared using a 0.5
specificity as in the previous studies [25,26].

Our study defined the over- and undertriage rates. Overtriage
rate (1-PPV) is equal to the number of patients with negative
outcomes (ISS <16 or no critical resource use) predicted as
positive outcomes divided by the total number of predicted
positive outcomes. The undertriage rate (1-NPV) is equal to the
number of patients with positive outcomes predicted as negative
outcomes divided by the total number of predicted negative
outcomes.

In addition, a calibration plot and Brier score were generated
to assess how closely the predicted probability approximated
the actual probability. The clinical benefit of the models was
evaluated using a decision curve analysis method. The
discrimination, calibration, and clinical benefit of the pTEST
were compared with the GCS, PHI, RTS, and RED criteria of
the 2011 National Field Triage Guidelines. Statistical
significance was set at P<.05. All statistical analyses were
performed using the R software (version 4.3.1).

Results

Patient Characteristics
Table 1 shows the patients’ baseline characteristics in the
training, internal validation, and external validation sets. In
these 3 sets, severe trauma proportions were 17.80%
(119,690/672,309), 17.80% (51,296/288,134), and 17.08%
(86,902/508,703), respectively, and critical resource use
proportions were 29.36% (177,570/604,806), 29.56%
(76,604/259,148), and 28.17% (129,551/459,843), respectively.
Notably, most variables showed statistically significant
differences among the 3 sets for large sample sizes, but the
differences were minimal. The demographic characteristics,
vital signs, and injury patterns of nonsevere and severe trauma
are listed in Multimedia Appendices 5-7, and the attributes of
noncritical and critical resource users are listed in Multimedia
Appendices 8-10. Severe trauma and critical resource users are
usually male, air-transported, taken to higher-level trauma
centers, and have extreme trauma patterns.
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Table 1. Baseline characteristics of the patients from the training set, internal validation set, and external validation set.

P valueExternal validation set
(n=508,703)

Internal validation set
(n=288,134)

Training set (n=672,309)Characteristics

<.001300,711 (59.12)172,821 (59.98)403,434 (60.01)Sex (male), n (%)

<.001Transport mode, n (%)

474,645 (93.30)266,622 (92.53)622,489 (92.59)Ground

33,346 (6.56)20,911 (7.26)48,464 (7.21)Helicopter

712 (0.14)601 (0.21)1356 (0.20)Fixed-wing

<.001Trauma center level, n (%)

206,563 (54.39)118,199 (55.72)275,723 (55.75)Level 1

142,433 (37.50)77,005 (36.30)179,419 (36.28)Level 2

30,819 (8.11)16,944 (7.99)39,397 (7.97)Level 3

<.00117,658 (3.47)11,319 (3.93)26,987 (4.01)TCCPENa (yes), n (%)

.893216 (0.63)1825 (0.63)4295 (0.64)TCCCHESTb (yes), n (%)

.0023213 (0.63)1867 (0.65)4598 (0.68)TCCLONGBONEc (yes), n (%)

<.0012712 (0.53)1374 (0.48)3188 (0.47)TCCCRUSHEDd (yes), n (%)

.58613 (0.12)372 (0.13)832 (0.12)TCCAMPUTATIONe (yes), n (%)

.075852 (1.15)3346 (1.16)7495 (1.11)TCCPELVICf (yes), n (%)

.044087 (0.80)2237 (0.78)5127 (0.76)TCCSKULLFRACTUREg (yes), n (%)

.0033077 (0.60)1887 (0.65)4379 (0.65)TCCPARALYSISh (yes), n (%)

<.00186,902 (17.08)51,296 (17.80)119,690 (17.80)ISSi score (≥16), n (%)

.00210,886 (2.37)6441 (2.50)14,714 (2.45)Surgery for hemorrhage control (yes), n (%)

<.0015819 (1.27)3563 (1.38)8527 (1.42)Cerebral monitor (yes), n (%)

.593848 (0.84)2182 (0.85)5154 (0.86)Interventional radiology procedures (yes), n
(%)

<.001105,670 (21.06)61,384 (21.58)142,422 (21.46)Discharge to the ICUj from EDk (yes), n (%)

<.0016371 (1.25)3987 (1.38)9303 (1.38)In-hospital death within 24 hours (yes), n (%)

<.00149,779 (9.79)31,080 (10.79)72,755 (10.82)Intubation in the EMSl or ED (yes), n (%)

<.001129,551 (28.17)76,604 (29.56)177,570 (29.36)Critical resource use (yes), n (%)

<.00162,194 (12.23)37,448 (13.00)87,577 (13.03)RED criteria (yes), n (%)

<.00154.40 (21.77)53.22 (21.84)53.12 (21.86)Age (years), mean (SD)

<.001140.74 (28.62)139.92 (28.42)139.89 (28.37)EMSSBPm (mm Hg), mean (SD)

<.00190.34 (20.41)90.58 (20.29)90.58 (20.31)EMSPULSERATEn (n/minute), mean (SD)

.0818.46 (4.82)18.44 (4.79)18.42 (4.73)EMSRESPIRATORYRATEo (n/minute),
mean (SD)

<.00196.19 (5.44)96.26 (5.48)96.26 (5.50)EMSPULSEOXIMETRYp, mean (SD)

<.0013.82 (0.63)3.81 (0.65)3.81 (0.65)EMSGCSEYEq, mean (SD)

.024.61 (0.93)4.60 (0.95)4.60 (0.95)EMSGCSVERBALr, mean (SD)

<.0015.75 (0.94)5.73 (0.97)5.73 (0.97)EMSGCSMOTORs, mean (SD)

<.00114.17 (2.36)14.12 (2.43)14.12 (2.44)EMSTOTALGCSt, mean (SD)

<.001207.68 (1355.03)207.75 (400.72)189.94 (150.35)Total time spent in ED (minutes), mean (SD)
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P valueExternal validation set
(n=508,703)

Internal validation set
(n=288,134)

Training set (n=672,309)Characteristics

.0016.21 (8.38)6.21 (8.51)6.20 (9.67)Length of stay (days), mean (SD)

<.0019.55 (8.20)9.69 (8.32)9.69 (8.37)ISS score, mean (SD)

.261.31 (2.22)1.32 (2.23)1.32 (2.23)PHIu score, mean (SD)

.04511.74 (0.86)11.73 (0.89)11.73 (0.88)RTSv score, mean (SD)

aTCCPEN: penetrating injuries.
bTCCCHEST: chest wall instability.
cTCCLONGBONE: long-bone fractures.
dTCCCRUSHED: crushed extremity.
eTCCAMPUTATION: amputation.
fTCCPELVIC: pelvic fracture.
gTCCSKULLFRACTURE: skull fracture.
hTCCPARALYSIS: paralysis.
iISS: Injury Severity Score.
jICU: intensive care unit.
kED: emergency department.
lEMS: emergency medical service.
mEMSSBP: systolic blood pressure.
nEMSPULSERATE: pulse rate.
oEMSRESPIRATORYRATE: respiratory rate.
pEMSPULSEOXIMETRY: oxygen saturation.
qEMSGCSEYE: Glasgow Coma Score eye.
rEMSGCSVERBAL: Glasgow Coma Score verbal.
sEMSGCSMOTOR: Glasgow Coma Score motor.
tEMSTOTALGCS: Glasgow Coma Score total.
uPHI: Prehospital Index.
vRTS: revised trauma score.

Model Performance
For predicting severe trauma, we compared the performance
metrics of the other models at the same specificity fixed at a
moderate number of 0.5. The pTEST model showed a higher
sensitivity of 0.799 (95% CI 0.797-0.801), a lower undertriage
rate of 0.080 (95% CI 0.079-0.081), and a lower overtriage rate
of 0.743 (95% CI 0.742-0.743) in the training set (Table 2). In
addition, for critical resource use prediction fixed at a specificity
of 0.5, the pTEST model showed a higher sensitivity of 0.774

(95% CI 0.772-0.776), lower undertriage rate of 0.158 (95% CI
0.157-0.159), and lower overtriage rate of 0.609 (95% CI
0.608-0.609) than the other models in the training set
(Multimedia Appendix 11). We validated the pTEST model
performance using 2 validation sets and obtained consistent
results (Table 2 and Multimedia Appendix 11). The model
performance metrics for predicting severe trauma and critical
resource use at the best thresholds with the maximum Youden
index are listed in Multimedia Appendices 12 and 13,
demonstrating a higher pTEST Youden index than other models.
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Table 2. Model performance metrics for predicting severe trauma fixed at a specificity of 0.5.

Youden in-
dex

Overtriage rate (1-
PPV), AUC (95% CI)

Undertriage rate (1-
NPV), AUC (95% CI)

Accuracy, AUC (95%
CI)

Sensitivity (95% CI)SpecificityPrediction tool

Training set

1.2990.743 (0.742-0.743)0.080 (0.079-0.081)0.553 (0.553-0.554)0.799 (0.797-0.801)0.500pTESTa

1.1820.774 (0.774-0.775)0.119 (0.119-0.120)0.532 (0.532-0.532)0.682 (0.680-0.684)0.500GCSb

1.2110.772 (0.771-0.772)0.107 (0.107-0.108)0.536 (0.536-0.537)0.711 (0.709-0.713)0.500PHIc

1.1340.791 (0.791-0.792)0.132 (0.132-0.133)0.523 (0.523-0.523)0.634 (0.632-0.636)0.500RTSd

1.1200.788 (0.788-0.789)0.141 (0.141-0.142)0.521 (0.521-0.522)0.620 (0.619-0.621)0.500RED criteria

Internal validation set

1.2940.744 (0.743-0.745)0.082 (0.081-0.083)0.552 (0.552-0.553)0.794 (0.791-0.798)0.500pTEST

1.1820.774 (0.773-0.775)0.120 (0.119-0.120)0.532 (0.532-0.533)0.682 (0.680-0.685)0.500GCS

1.2100.772 (0.771-0.773)0.108 (0.106-0.109)0.536 (0.536-0.537)0.710 (0.707-0.714)0.500PHI

1.1330.791 (0.791-0.792)0.132 (0.132-0.133)0.523 (0.523-0.523)0.633 (0.631-0.636)0.500RTS

1.1200.788 (0.788-0.789)0.141 (0.141-0.142)0.521 (0.521-0.522)0.620 (0.619-0.622)0.500RED criteria

External validation set

1.2940.753 (0.753-0.754)0.078 (0.077-0.079)0.550 (0.550-0.551)0.794 (0.792-0.797)0.500pTEST

1.1810.783 (0.782-0.783)0.115 (0.115-0.116)0.531 (0.530-0.531)0.681 (0.679-0.683)0.500GCS

1.2090.781 (0.780-0.782)0.103 (0.103-0.104)0.535 (0.534-0.535)0.709 (0.706-0.711)0.500PHI

1.1330.799 (0.799-0.800)0.127 (0.126-0.128)0.522 (0.522-0.522)0.633 (0.631-0.635)0.500RTS

1.1160.798 (0.797-0.798)0.137 (0.136-0.137)0.520 (0.520-0.520)0.616 (0.615-0.618)0.500RED criteria

apTEST: prehospital triage model to predict severe trauma.
bGCS: Glasgow Coma Score.
cPHI: Prehospital Index.
dRTS: revised trauma score.

In Figure 2, pTEST AUCs for severe trauma prediction were
0.755 (95% CI 0.753-0.757), 0.751 (95% CI 0.749-0.754), and
0.750 (95% CI 0.749-0.752) in training, internal validation, and
external validation sets, respectively, and the AUCs for
predicting critical resource use were 0.736 (95% CI
0.734-0.737), 0.732 (95% CI 0.730-0.734), and 0.733 (95% CI
0.732-0.735), respectively, demonstrating better discrimination
ability than GCS, PHI, RTS, and RED criteria. Multimedia

Appendix 14 depicts the pTEST model predicted outcome
probability as a waterfall plot. The calibration curves in
Multimedia Appendix 15 show that the severe trauma predicted
probability and pTEST critical resource use agreed with the
proportion observed using the smallest Brier score. In
Multimedia Appendix 16, pTEST provides a consistently higher
net benefit across a broad range of risk thresholds (10%-100%)
than the 2 default strategies and other models.
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Figure 2. The ROC curves of 5 models. (A) Predicting severe trauma in the training set. (B) Predicting severe trauma in the internal validation set. (C)
Predicting severe trauma in the external validation set. (D) Predicting critical resource use in training set. (E) Predicting critical resource use in the
internal validation set. (F) Predicting critical resource use in the external validation set. AUC: area under the curve; GCS: Glasgow Coma Score; PHI:
Prehospital Index; pTEST: prehospital triage model to predict severe trauma; ROC: receiver operating characteristic; RTS: revised trauma score.

Model Interpretation
As shown in the SHAP summary plots (Figure 3A), the
contributions of the variables to the pTEST model for severe
trauma prediction were evaluated using the average absolute
SHAP values; the top 5 important variables were
EMSGCSVERBAL, EMSSBP, EMSRESPIRATORYRATE,
EMSGCSMOTOR, and EMSPULSEOXIMETRY. Figure 3B
lists the impact of the different variables illustrated by the SHAP
values for severe trauma prediction. Figure 3C shows each
variable’s SHAP values versus measured values. Figure 3B, C

shows that the higher the EMSGCSVERBAL score, the lower
the probability of severe trauma (“negative” impact). Similarly,
AGEYEARS, EMSGCSEYE, EMSGCSMOTOR, and
EMSPULSEOXIMETRY negatively contributed to the predicted
probability. In contrast, 8 injury patterns contributed positively
to the predicted probability. The SHAP summary and
dependence plots of the pTEST model for critical resource use
prediction are shown in Multimedia Appendix 17. The
personalized feature attributes for 2 representative patients with
and without severe trauma in the training set are provided in
Multimedia Appendix 18.
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Figure 3. The global model explanation for predicting severe trauma by the SHAP method in the training set. (A) SHAP summary bar plot of the
average SHAP value for each variable. (B) SHAP summary dot plot. In each variable, a dot is made for each single patient, representing the SHAP
value of this variable. The colors of the dots demonstrate the actual values of the features, and the dots are stacked vertically to show density. (C) SHAP
dependence plot. Each dependence plot shows the association between the actual value and the SHAP value of the variable, and each dot represents a
single patient. AGEYEARS: age at the time of injury; EMSGCSEYE: Glasgow Coma Score eye; EMSGCSMOTOR: Glasgow Coma Score motor;
EMSGCSVERBAL: Glasgow Coma Score verbal; EMSSBP: systolic blood pressure; EMSPULSEOXIMETRY: oxygen saturation;
EMSRESPIRATORYRATE: respiratory rate; EMSPULSERATE: pulse rate; SHAP: Shapley additive explanation analysis; TCCPEN: penetrating
injuries; TCCCHEST: chest wall instability; TCCLONGBONE: long-bone fractures; TCCCRUSHED: crushed extremity; TCCAMPUTATION:
amputation; TCCPELVIC: pelvic fracture; TCCSKULLFRACTURE: skull fracture; TCCPARALYSIS: paralysis.

Subgroup Analysis
In Multimedia Appendix 19, subgroup analyses were performed
according to age, sex, transport mode, trauma type, and
prehospital time. The pTEST model AUCs for severe trauma
prediction in patients 60 years of age or older were relatively
low at 0.717 (95% CI 0.714-0.720), 0.712 (95% CI 0.708-0.717),
and 0.710 (95% CI 0.707-0.714) in the 3 sets, respectively. The
AUCs in patients with penetrating injuries were relatively high
at 0.815 (95% CI 0.810-0.820), 0.810 (95% CI 0.802-0.817),
and 0.810 (95% CI 0.805-0.816) in the 3 sets, respectively. The
high proportion of severe trauma in helicopter-transported
patients (approximately 41%) led to a high undertriage rate
(>0.2) and a low overtriage rate (<0.5). Multimedia Appendix
20 illustrates the pTEST model performance in critical resource
use prediction in different subgroups.

Discussion

Principal Findings
In this multisite, large-sample study, we present a prehospital
trauma triage tool, pTEST, for severe trauma prediction in EMS.
To our knowledge, this is the first study combining ML with
national triage guidelines. The pTEST performed optimally in
internal and external validations. In addition, its diagnostic
accuracy was evaluated using anatomical and resource-based
outcomes, and the resource-based outcome is a better alternative
to determine the need for specialized trauma care [27].
Furthermore, the pTEST was developed based on national triage
guidelines, a globally adopted standard in many organizations.
Therefore, the pTEST model can be conveniently applied in
EMS practice and may have global relevance.
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Comparison With Previous Studies
Consistent with previous studies [8], we also demonstrated the
poor performance of the RED criteria from the national triage
guidelines. Globally, all triage guidelines are based on a criteria
checklist, including vital signs, injury type, and mechanism of
injury [7,28,29]. These guidelines are simplistic—patients
meeting any 1 of the criteria should be transported to the
highest-level trauma center. In reality, there was an interaction
among variables and nonlinear effects of continuous variables
(Figure 3C). XGBoost, as a nonlinear ensemble method, can
train a more accurate classifier from several weak classifiers
and has other benefits, such as dealing with missing values and
interaction, avoiding overfitting, and accelerating the training
speed by parallel calculation [30]. Our study incorporated
XGBoost into national field triage guidelines and developed
the pTEST model to enhance performance. The pTEST model
included age, 7 vital signs, and 8 injury patterns. We did not
perform further variable selection because these variables are
the most important in the national field triage guidelines, and
the overall number is moderate for field triage. The pTEST
model did not achieve an undertriage rate of <5% or an
overtriage rate of <35%, as the ACS Committee on Trauma
targeted. However, 2 aspects must be noted. First, the definition
of the undertriage rate by the ACS is different from that used
in our study. For example, the undertriage rate in ACS is equal
to the number of patients with ISS ≥16 transported to a low-level
trauma center or nontrauma center divided by the total number
of patients transported to a low-level trauma center or nontrauma
center [19]. In contrast, the undertriage rate in our study is equal
to the number of patients with ISS ≥16 predicted as ISS <16
divided by the total number of patients predicted ISS <16. In
the national field triage guideline, the patients predicted as ISS
<16 can be transported to a low-level or nontrauma center. If
the patients with predicted ISS <16 and ≥16 are transferred to
low and high-level trauma centers, respectively, then the
undertriage rate in our study is the same as that in ACS, but this
is unlikely in practice. Second, the under- and overtriage rates
are affected by severe trauma proportion. Since most (>90%)
of our study population came from level 1 and 2 trauma centers,
the severe trauma proportion was approximately 18%, resulting
in undertriage rate overestimation and overtriage rate
underestimation. Based on previous studies with good sample
representativeness [9], we assumed that the proportion of severe
trauma was 3%. Keeping the sensitivity (0.794) and specificity
(0.5) of the pTEST model and the sample size (n=508,703) in
the external validation set unchanged, the under- and overtriage
rates were 1.26% and 95.3%, respectively, in the external
validation set (Multimedia Appendix 20), meeting the ACS
undertriage rate target.

The pTEST model and the national field triage guidelines in
subgroup analyses were particularly insensitive among older
adults [9]. Possible explanations include different physiological
responses to injury [31], medication use that potentially worsens
injury [32], high prevalence of frailty, and comorbidities [33].
Previous studies have explored elderly-specific triage criteria
[15,34,35]. The pTEST model performed better for penetrating
traumas. Notably, several studies have found that penetration
is a strong severe trauma predictor, and severely penetrated

injured patients are more easily recognized [10]. The undertriage
rate was high in patients transported using helicopters. Patients
with a high proportion of severe trauma, such as those
experiencing large-scale casualties, should be transferred to
high-level trauma centers without field triage to reduce the
undertriage rate.

Previous studies have reported controversial results regarding
the use of ML in medical prediction issues [36]. Overall, in
studies with a limited number of predictors, ML does not
demonstrate advantages over traditional models, such as logistic
regression [37], whereas, for studies with many predictors,
advanced ML may have an advantage [38]. A recent review,
including 14 studies, demonstrated that the predictive ability of
ML-based models was significantly better than that of
conventional trauma triage tools for outcomes of mortality,
hospitalization, and critical care admission, and XGBoost was
the most commonly used ML algorithm [14]. In this study, the
relatively large number of predictors and sufficient amount of
data tended to favor ML applications. We built the pTEST model
using XGBoost but did not evaluate other ML methods. We
believe an excellent model can be created using a large sample
size, an advanced ML method, and robust hyperparameter
tuning. In addition, we minimized the risk of chance findings
and overfitting by avoiding exploring other modeling strategies.

Limitations
This study had some limitations. First, most of our study
population were from level 1 and 2 trauma centers, and the
proportion of patients with severe trauma (approximately 18%)
was significantly higher than that of all prehospital trauma
patients (approximately 3%) [9]. However, unlike PPV and
NPV, the sensitivity, specificity, and AUC of the pTEST model
were not affected by the proportion of severe trauma, and the
high sensitivity, specificity, and AUC objectively reflect the
pTEST model’s good performance. In addition, some emergency
resources may be unavailable in low-level trauma and nontrauma
centers [39], and samples from high-level trauma centers make
it possible to evaluate the pTEST model with critical resource
use as the end point. Second, the pTEST model was not
developed into a software application, as in other studies [40],
because software development requires adaptation to existing
information systems in EMS, which is a complex project.
However, in the future, EMS providers can develop software
based on available data and programs. Third, the 2017-2019
NTDB data followed the 2011 national field triage guidelines,
and the latest guidelines have been revised in 2021. An
additional “active bleeding” has been added to high-risk trauma
types [7]. The new guidelines will take several years to be
implemented, and our model must be further validated and
updated as necessary.

Conclusions
We constructed a prehospital triage model, pTEST, to predict
severe trauma and achieved an undertriage rate of <10%.
Moreover, our study demonstrated that ML is a promising
method for enhancing field triage guidelines performance. In
the future, we will validate our pTEST model using populations
from different countries and casualty backgrounds. In addition,
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software must be developed to increase user convenience of the pTEST model in the EMS.
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