JOURNAL OF MEDICAL INTERNET RESEARCH Dai et al

Original Paper

Evaluating a Natural Language Processing—Driven, Al-Assisted
International Classification of Diseases, 10th Revision, Clinical
Modification, Coding System for Diagnosis Related Groups in a
Real Hospital Environment: Algorithm Development and Validation
Study

Hong-Jie Dai*??, PhD; Chen-Kai Wang"*°, MSc; Chien-Chang Chen®, PhD; Chong-Sin Liou®, MSc; An-Tai LU/,
MS; Chia-Hsin Lai*, BS; Bo-Tsz Shain', BS; Cheng-Rong Ke', BS; William Yu Chung Wang?, PhD; Tatheer Hussain
Mir!, MS; Mutiara Simanjuntak®, MS; Hao-Yun Kao”, PhD; Ming-Ju Tsai'”, MD, PhD; Vincent S Tseng*, PhD

1 ntelligent System L ab, College of Electrical Engineering and Computer Science, Department of Electrical Engineering, National Kaohsiung University
of Science and Technology, Kaohsiung, Taiwan

National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan

SCenter for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan

4Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

5Advanced Technology Laboratory, Chunghwa Telecom Laboratories, Taoyuan, Taiwan

6Electromagnetic Sensing Control and Al Computing System L aboratory, Department of Electrical Engineering, College of Electrical Engineering and
Computer Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

School of Post-Baccal aureate Medicine, Kaohsi ung Medical University, Kaohsiung, Taiwan
8\Waikato Management School, University of Waikato, Hamilton, New Zealand
9Department of Healthcare Administration and Medical Informatics, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan

pivision of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan

" these authors contributed equally

Corresponding Author:

Ming-Ju Tsai, MD, PhD

Division of Pulmonary and Critical Care Medicine
Department of Internal Medicine

Kaohsiung Medical University Hospital, Kaohsiung Medical University
No 100, Tzyou 1st Road

Sanmin District

Kaohsiung, 80756

Taiwan

Phone: 886 73121101 ext 4660035

Email: mjt@kmu.edu.tw

Abstract

Background: International Classification of Diseases codes are widely used to describe diagnosis information, but manual
coding relies heavily on human interpretation, which can be expensive, time consuming, and prone to errors. With the transition
from the International Classification of Diseases, Ninth Revision, to the International Classification of Diseases, Tenth Revision
(ICD-10), the coding process has become more complex, highlighting the need for automated approaches to enhance coding
efficiency and accuracy. Inaccurate coding can result in substantial financial losses for hospitals, and a precise assessment of
outcomes generated by anatural language processing (NL P)—driven autocoding system thus assumesacritical rolein safeguarding
the accuracy of the Taiwan diagnosis related groups (Tw-DRGS).

Objective: This study aims to evaluate the feasibility of applying an International Classification of Diseases, Tenth Revision,
Clinical Madification (ICD-10-CM), autocoding system that can automatically determine diagnoses and codes based on free-text
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discharge summaries to facilitate the assessment of Tw-DRGs, specifically principal diagnosis and major diagnostic categories
(MDCs).

Methods: By using the patient discharge summaries from Kaohsiung Medical University Chung-Ho Memorial Hospital
(KMUCHH) from April 2019 to December 2020 as a reference data set we developed artificial intelligence (Al)—assisted
|CD-10-CM coding systems based on deep | earning model s. We constructed aweb-based user interface for the Al-assisted coding
system and deployed the system to the workflow of the certified coding specialists (CCSs) of KMUCHH. The data used for the
assessment of Tw-DRGswere manually curated by a CCSwith the principal diagnosis and MDC was determined from discharge
summaries collected at KMUCHH from February 2023 to April 2023.

Results: Both the reference data set and real hospital data were used to assess performance in determining |CD-10-CM coding,
principal diagnosis, and MDC for Tw-DRGs. Among al methods, the GPT-2 (OpenAl)-based model achieved the highest F;-score,
0.667 (F4-score 0.851 for the top 50 codes), on the KMUCHH test set and a slightly lower F;-score, 0.621, in real hospital data.
Cohen k evaluation for the agreement of MDC between the models and the CCS revealed that the overall average k value for
GPT-2 (k=0.714) was approximately 12.2 percentage points higher than that of the hierarchy attention network (k=0.592). GPT-2
demonstrated superior agreement with the CCS across 6 categories of MDC, with an average k value of approximately 0.869
(SD 0.033), underscoring the effectiveness of the developed Al-assisted coding system in supporting the work of CCSs.

Conclusions: An NLP-driven Al-assisted coding system can assist CCSsin ICD-10-CM coding by offering coding references
viaauser interface, demonstrating the potential to reduce the manual workload and expedite Tw-DRG assessment. Consistency
in performance affirmed the effectiveness of the system in supporting CCSsin ICD-10-CM coding and the judgment of Tw-DRGs.

(J Med Internet Res 2024,26:€58278) doi: 10.2196/58278
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Introduction

Background

The International Classification of Diseases (ICD) [1],
established by the World Health Organization, is a crucia
medical classification system that defines the universe of
diseases, disorders, injuries, and other related health conditions.
Sinceitsfirst publicationin 1893, the ICD hasbecome awidely
adopted standard across various health carefacilities and settings
globally, providing consistency and accuracy in disease
diagnosis and classification. In 1992, the World Health
Organization published the International Classification of
Diseases, Tenth Revision (ICD-10), which has since been widely
adopted worldwide [2,3]. Many countries extended and
customized the ICD-10 classification system for their
country-specific reporting purposes, such as International
Classification of Diseases, Tenth Revision, Clinical Modification
(ICD-10-CM) inthe United States, International Classification
of Diseases, Tenth Revision, Canadian Modification in Canada,
International Classification of Diseases, Tenth Revision,
German Modification in  Germany, and International
Classification of Diseases, Tenth Revision, Australian
Madification that is followed by Australia as well as 15 other
countriesincluding Ireland, Singapore, and Saudi Arabia.

The ICD-10-CM is an ICD system that classifies patients
according to the type of illness, severity, and the location of the
disease that was developed to describe more clinical details
with the increasing number of diagnoses and procedural codes
applied in payment methodologies [4,5]. As a result, the
|CD-10-CM coding task hasbecomeacrucial elementin various
fields, such as disease surveillance [6], hedth services
management [7], and clinical research [8]. For the National
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Health Insurance Administration (NHIA) in Taiwan,
ICD-10-CM holds immense significance by serving as a
standardized coding system for the statistical analysisof disease
diagnosis, surgical treatment for patients admitted to hospital,
and payment of health insurance. In 2016, the NHIA in Taiwan
followed the global trend and transitioned from the International
Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM), to ICD-10-CM, which expanded the number of
codes available. Previously, the ICD-9-CM contained
approximately 14,000 diagnosis codes, while the ICD-10-CM
had approximately 69,000 diagnosis codes [5]. The NHIA is
currently using the 2014 version of ICD-10-CM, which consists
of approximately 71,900 diagnosis codes. Nowadays, many
medical ingtitutions are relying on licensed certified coding
specidlists (CCSs) to manualy assign ICD-10 codes to
inpatients. These coders spend a significant amount of time
reviewing various medical materialsto accurately diagnose and
code each patient’s condition. Due to the complexity of the
ICD-10 structure and coding rules, the task of coding is
significantly more labor-intensive and time-consuming than
ICD-9, even when performed by a skilled CCS who typically
dedicates approximately 30 minutes per case on average. In
response to these challenges, investigators [9-11] have applied
both rule-based al gorithms and machine |earning methods, such
as recurrent neural network, long short-term memory, and
bidirectional encoder representationsfrom transformers (BERT),
to classify patients with specific conditions. However, the
performance of these approaches remains limited.

By contrast, to control the rising health care costs, health
authorities in many countries have implemented the diagnosis
related group (DRG) payment system. The NHIA in Taiwan
hasimplemented the Taiwan DRG (Tw-DRG) payment systems
since 2010 [12] to consolidate related DRGs for the purpose of
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determining payment standards [13]. Tw-DRGs are classified
by major diagnostic categories (MDCs) that depend on the
assigned | CD-10-CM codes. Consequently, accurate |CD-10-CM
coding is critical for the accurate generation of Tw-DRGs, as
coding errors can lead to inappropriate treatment options,
delayed reimbursement processes, and significant financial
losses for hospitals [14,15]. Factors including incomplete
information, incorrect dataentry, and insufficient coder expertise
can lead to inaccurate coding [16]. In addition, errors may also
arise from incorrect human perception [17], the complex
technical nature of the work [ 18], and human fatigue from heavy
workloads [19]. While natura language processing
(NLP)—driven autocoding systems have the potential to enhance
the quality of the manual coding results and expedite code
assignment, it is imperative to assess their accuracy to ensure
cost savings for the hospitals [20]. In summary, precise coding
according to the ICD-10-CM system is essential for accurately
categorizing Tw-DRGs, as any fault in this process can lead to
misclassification and subsequently impact health care
reimbursements.

Study Overview

In this study, we devel oped 2 deep learning—based models, the
hierarchical attention network (HAN) and the GPT-2 (OpenAl),
inthe manner of multi-label supervised learning for ICD-10-CM
coding. The former is a conventional classification model, and
the latter is categorized as a generative model.

Tofacilitate the coding processin thereal hospital environment,
we established an NLP-driven ICD-10-CM autocoding system.
This system includes a user-friendly visual interface to display
the predicted coding results, Cls, and relevant medical record
keywords. We integrated the system into the coding procedure
protocolled at Kaohsiung Medical University Chung-Ho
Memorial Hospital (KMUCHH) to assist the workflow of
clinical codersto expedite the efficiency of disease coding. We
then compared the consistency of the principa diagnosis and
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MDC coding between the autocoding system and the data
curated by the CCS.

Methods
Data Set and Task Definition

Data Collection and Preparation

This study used a total of 136,841 unstructured discharge
summaries of patients who were hospitalized, recorded in the
KMUCHH from April 1, 2019, to December 31, 2020, as the
primary data source for the development of the ICD-10-CM
coding system. After deploying the developed system in the
workflow of the KMUCHH CSS, we collected an additional
data set containing 2632 discharge cases processed by the system
from February 2023, to April 2023, to assess the performance
of the ICD-10-CM coding system in the real hospital
environment and the feasibility of assisting the process of
Tw-DRGs. The original data set contains 15,756 discharge
cases. After excluding 7541 (47.86%) non-Tw-DRGs cases and
5583 (35.43%) with incomplete electronic medical records
(EMRs), a data set of 2632 (16.7%) discharge cases was used
for our evaluation.

To maximizethe amount of dataavailablefor thetraining phase
of our system, we composed a test set by selecting the latest
1000 discharge summaries from the raw data sorted by time
stamp. The remaining summaries were then allocated for use
as the training set. During the training phase, we randomly
sampled 5% (6842/136,841) of the discharge summariesto form
the validation set consisting of 6842 summaries. As depicted
in Table 1, atotal of 129,000 (94.27%) of 136,841 discharge
summaries were assigned to the training set (comprising atotal
of 567,957 ICD-10-CM codes, with 11,494 (2.02%) being
unique), 6842 (5%) discharge summaries were assigned to the
validation set (with a total of 36,205 codes, including 4038,
11.15% unique ones), and 1000 (0.73%) discharge summaries
were included in the test set with atotal of 10,412 codes and
1482 (14.23%) of them being unique.
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Table 1. Prevalence of the 2014 International Classification of Diseases, Tenth Revision, Clinical Modification codes used in the compiled data set
consisting of 136,841 discharge summaries.

Chapters Blocks Definitions Codesin training set Codesinvalidation set Codesin test set
(n=567,957), n (%) (n=36,205), n (%) (n=10,412), n (%)

| A00-B99 Certaininfectiousand parasitic diseases 35,708 (6.29) 2233 (6.17) 341 (3.28)

I C00-D48 Neoplasms 82,248 (14.48) 4838 (13.36) 827 (7.94)

11 D50-D89 Diseases of the blood and blood-form- 17,347 (3.05) 1281 (3.54) 168 (1.61)
ing organsand certain disordersinvolv-
ing the immune mechanism

\Y E00-E90 Endocrine, nutritional, and metabolic 63,545 (11.19) 4077 (11.26) 301 (2.89)
diseases

\Y, F00-F99 Mental and behavioral disorders 8835 (1.56) 565 (1.56) 289 (2.78)

VI G00-G99 Diseases of the nervous system 13,236 (2.33) 835 (2.31) 395 (3.79)

VII HOO-H59 Diseases of the eye and adnexa 8520 (1.5) 421 (1.16) 661 (6.35)

VI H60-H95 Diseases of the ear and mastoid process 1304 (0.23) 120 (0.33) 193 (1.85)

IX 100-199 Diseases of the circulatory system 82,005 (14.44) 5066 (13.99) 636 (6.11)

X J00-J99 Diseases of the respiratory system 31,233 (5.5) 2091 (5.78) 285 (2.74)

XI K00-K93 Diseases of the digestive system 48,827 (8.6) 3098 (8.56) 514 (4.94)

X1l L00-L99 Diseases of the skin and subcutaneous 7469 (1.32) 488 (1.35) 372 (3.57)
tissue

X MO0-M99 Diseases of themusculoskeletd system 20,312 (3.58) 1296 (3.58) 1191 (11.44)
and connective tissue

X1V NOO-N99 Diseases of the genitourinary system 39,504 (6.96) 2498 (6.9) 328 (3.15)

XV 000-099 Pregnancy, childbirth, and the puerperi- 3887 (0.68) 255 (0.70) 394 (3.78)
um

XVI PO0-P96 Certain conditions originating inthe 4297 (0.76) 271 (0.75) 202 (1.94)
perinatal period

XVII Q00-Q99 Congenital malformations, deforma- 2918 (0.51) 171 (0.47) 315 (3.03)
tions, and chromosomal abnormalities

XVIII R00-R99 Symptoms, signs, and abnormal clinical 24,544 (4.32) 1636 (4.52) 392 (3.76)
and laboratory findings, not elsewhere
classified

XIX S00-T98 Injury, poisoning, and certain other 20,850 (3.67) 1783 (4.92) 1661 (15.95)
consequences of external causes

XX V01-Y98 External causes of morbidity and mor- 11,791 (2.08) 711 (1.96) 530 (5.09)
tality

XXI Z00-299 Factorsinfluencing health statusand 39,577 (6.97) 2471 (6.83) 417 (4)

contact with health services

|CD-10-CM Coding Task Formulation

The ICD-10-CM coding task presented in this study aims to
develop an NL P autocoding system for generating |ICD-10-CM
codes from a patient’s discharge summary. An 1CD-10-CM
code consists of 3 to 7 characters, and each code begins with
an aphabetic character that signifies the relevant classification
chapter. Thefirst 3 charactersin the code designate the category
of the diagnosis, while the subsequent 3 characters correspond
to the related etiology. The seventh character provides the
related extensions. As shown in Table 1, there are 21 chapters
in ICD-10-CM. The ground-truth ICD-10-CM codes for the

https://www.jmir.org/2024/1/e58278

compiled 13,6841 discharge summaries were annotated by
specialized CCSsat KMUCHH, culminating in agrand total of
11,653 unique codes. Textbox 1 displays an example of the
discharge summary from the KMUCHH. The output of the
coding system for each summary encompasses a main code
along with multiple other codes, thereby formulating the task
as amulti-labeling classification problem. Within our data set,
the unique count for main codes and other codes is 5835 and
10,393, respectively. Moreover, the generated main codes will
serve as the principa diagnosis, while the other codes will be
used as secondary diagnoses in the Tw-DRGs estimation
process.
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Textbox 1. An example of the discharge summary from Kaohsiung Medical University Chung-Ho Memoria Hospital.

Chief complaint:

Acute urine retention after discharge today
Impression on Admission:
Acute urine retention.
Bladder stone s/p op.
Hypertension.

Discharge Diagnosis:
--underlying--

#Acute urine retention.
#Hypertension.
#Hyperlipidemia

History on Admission:

This 71 y/o male has history of hypertension and under regular medical control. He was just discharged from our ward bladder stone and accepted
surgical intervention (Endoscopic cystolithotripsy) in last admission. Thistime, he ...

Data Preprocessing

During the preprocessing stage, delimiters (eg, “ --underlying--"
shown in Textbox 1) and prefix symbols (such as “#") in the
unstructured discharge summaries were filtered out.
Subsequently, the clinica NLP toolkit was leveraged to
preprocess the summaries by applying sentence splitting and
tokenization [21].

Deep Learning Models

As an effective approach to the coding task, we formulated it
asamulti-label supervised learning problem and applied 2 deep
learning—based methodsto the compiled dataset. Thefirst model
isgrounded in HAN, aneural network architecture specifically
crafted to tackle the complexities of modeling hierarchical
structures within text data [22]. HAN leverages attention
mechanisms to capture fine-grained information at both the
document and sentence levels. The second model isagenerative
network built upon GPT-2; a causal language model released
by OpenAl which was pretrained on large-scale text data[23].
The architecture is also featured with an attention mechanism
that enables it to comprehend and generate natural language.
HAN was selected for its capacity to provide high readability
and interpretability of text through visualization [24]. It
leverages hierarchical text representation and attention
mechanisms to effectively highlight important words and
sentences at multiple levels of the text. This enhances the
interpretability of the model to allow a better understanding of
its internal workings and gain insights into the model's
decision-making processwith astrengthened trust in its outputs
[25]. Furthermore, considering the growing significance of
generative artificial intelligence (Al) in research and landing

https://www.jmir.org/2024/1/e58278

applications, large language models such as GPT-2 are poised
to bring about significant transformation in clinical medicine
and health care and will be ubiquitousin thesefields. However,
concerns regarding data sensitivity, inference speed, hardware
requirements, as well as the ease of deployment and difficulty
of maintenance of the system are paramount [26]. In light of
these considerations, we opted for the GPT-2 model due to its
balance of performance and practicality in our rea clinical
environment setting.

Our HAN implementation adheres to the original network
architecture and is tailored specifically for the multi-labeling
classification task of 1CD-10-CM codes. The customization
involvesthe application of afully connected layer to transform
the attention results of HAN into the desired number of target
ICD codes asillustrated in Figure 1. The process beginsin the
embedding layer, where we use pretrained global vector
embeddings containing 300D vectors trained on a corpus of 6
billion tokens [27] to extract essential information from the
textual data. Following the embedding layer, we execute
word-level and sentence-level encoding procedures, which use
an attention mechanism to capture crucial words and sentences
within the text. Subsequently, we implement afully connected
layer to generate a set of 11,653 unique ICD-10-CM codes.
Finally, the output values are transformed into a range between
0 and 1 using asigmoid layer, which represents the probability
of the ICD code being related to the summary. Thelossfunction
used for the HAN model is the cross-entropy loss defined in
Equation (1), which measures the sum of the negative
log-likelihood of the probabilities of the actual labels. A large
deviation between and the actual label cause a greater valuein
the loss and thus is penalized more during training.
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Figure 1. Architecture of the hierarchical attention network implementation in this study. |CD-10-CM: International Classification of Diseases, 10th

Revision, Clinical Modification.

ICD-10-CM-code-1--- ICD-10-CM-code-n

Sigmoid

Fully
Connected

— Z;’Li logp+ (1 —Li)log(1—p) (1)

For inference, a threshold is set to assign the main code and
other codes to the document based on the estimated label
probability set following equations 2 and 3.

argmax(p) (2)

{p:p=tforp € P} (3)
As shown in the aforementioned equations, the threshold t is
applied to determine the predicted probability ? for ICD-10-CM
codes, with the code having the highest probability selected as
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the ICD-10-CM main code. The main codeis subsequently used
as the principal diagnosis in the Tw-DRG process. After
conducting multiple experiments, we set the threshold t in
equation (3) as 0.5 as it has been determined that this setting
achieves a better balance between the precision and recall.

In our GPT-2 implementation, we used a pretrained model
developed by Papanikolaou and Pierleoni [28], which was a
model based on the GPT-2 architecture fine-tuned using 0.5
million PubMed abstracts with 355 million parameters. This
model was adopted instead of the original GPT-2 released by
OpenAl to address the issue of the variety of medical
vocabularies conveyed inthe summaries, which include diverse
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clinical data such as symptoms, diseases, and medications
written in varying styles. To further fine-tune the pretrained
model on our data set, we added special tokens to the model’s
tokenizer to help the model understand the structure of the
sequence to complete the coding tasks. A total of 3 special
tokensincluding“CLS,” “SEPR" and “#@#" weredefined, which
represent the starting position symbol of the input, the ending
position symbol of the sentence, and the separator between
ICD-10-CM main code (MAINCODE) and other codes

Figure2. Anexample of fine-tuned data for GPT-2.

Dai et al

(OTHERCODE), respectively. An example of a fine-tuned
instance after processing is shown in Figure 2. The coding task
isthen formulated in agenerative manner that is given an input
text (eg, the prompt part shown in Figure 2) with a sequence of
n tokens = [x4,X,,....X,], and the target output sequence y =
[Y1.Y2:--¥Yml- The objective is to maximize the conditional
probability in the auto-regressive formulation represented in
equation (4).

Prompt:

#Hyperlipidemia”

Completion:

DischgDiag:#Acuteurine retention.<NL>#Hypertension.<NL>

MAINCODE: R33.9#@#0THERCODE: 110, E78.5

HZP(}&-IX. y)fory, €y (4)

During inference, the probability of each generated code is
estimated by averaging the accumul ated conditional probabilities
for the tokens of the generated code. In instances where
discharge summaries exceed the 1024 token limit of the GPT-2
model, we truncate the text during preprocessing to ensure it
stays within the specified limit.

Finaly, in addition to HAN and GPT-2, we implemented 2
baselines for performance comparison, one is a BERT-based
model proposed by Devlin et al [29] and the other is based on
thebidirectional gated recurrent unit along with the BERT-based
word representation architecture proposed by Chen et a [30].

I ntegration of the Developed NL P-Driven Al-Assisted
Coding System at KMUCHH

To integrate the developed models within the workflow of the
CSS at KMUCHH, a user interface as illustrated in Figure 3
was implemented [31]. Various components can be identified
within thisinterface. Area (1) servesasthe patient EMRsdisplay
area. It conveniently showcases the relevant unstructured text

https://www.jmir.org/2024/1/e58278

content from the EMRs with 14 selectable sections. Area (2)
features 3 functional buttons from left to right. The first button
isused for attention visualization as presented in Figure 4. To
display thisfigure, we analyze the results of the attention layer
of the deployed model to highlight key medical terms from
discharge summaries.

The second button initiates the ICD-10-CM automatic coding,
which exploits the developed model to generate ICD-10-CM
codes based on the content shown in area (1). The third button
is the save button, which is used to store the results of
|CD-10-CM autocoding, user selections, and system operation
time stamps in the database. The search bar is located in area
(3) and can be used by the CCSto manually ook up ICD-10-CM
codes or keywords in English to assist in manualy adding
missing codes. Any newly added codes are combined with the
selected codes and displayed in area (4). Findly, area (5)
provides a list of ICD-10-CM codes recommended by the
deployed model through the coding assistant process. These
resultsare presented in achecklist format asillustrated in Figure
3, including ICD-10-CM codes, their corresponding Chinese
and English descriptions, and the confidence assigned by the
deep learning model.
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Figure 3. User interface of a natural language processing—driven artificia intelligence—assisted coding system at Kaohsiung Medical University

Chung-Ho Memoria Hospital.
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Figure 4. Visualization of the attentive key terms highlighted in a given discharge summary by the attention mechanism.
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The user interface and coding system were deployed and tested
in January 2023 at KMUCHH. An overview of the integrated
workflow isdisplayed in Figure 5. First, the CCS uses the user
interface developed for the Al-assisted coding system to send
requests to the hospital information system. Once the hospital
information system accepts the request, the requested EMRs
aretransferred to the structured query language server database
specifically devel oped for the study. Subsequently, anotification

https://www.jmir.org/2024/1/e58278
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is dispatched to the user interface. Upon receiving the
notification, the user interface retrieves the corresponding
medical record from the database and uses the devel oped model
to generate suggested | CD-10-CM codes. The recommendations
are then presented in area (5) of the user interface as shown in
Figure 3. Finaly, the CCS reviews the recommendations and
selectsthefinal ICD-10-CM codesin area(4) of Figure 3, which
are subsequently saved in the database.
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Figure5. Workflow of the natural language processing—driven artificial intelligence—assi sted coding system deployed in Kaohsiung Medical University
Chung-Ho Memorial Hospital. ICD-10-CM: International Classification of Diseases, 10th Revision, Clinical Modification; SQL: structured query
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Tw-DRG Payment System

Figure S1 in Multimedia Appendix 1 depicts the current
implementation practice of the Tw-DRG payment system. The
initial step of this processinvolves the conversion of diagnoses
from physician-provided discharge summariesinto |CD-10-CM
codes and follows the principal diagnosis selection principle
defined by NHIA to use the main cause of hospitalization as
the principal diagnosis. In cases where multiple principal
diagnoses areidentified simultaneously, the one with the highest
medical cost will be selected. Our NLP-driven Al-assisted
coding system plays a pivotal rolein the first and second steps
of the process, automating the |CD-10-CM coding process based
on discharge summaries and determining the principal diagnosis.

As listed in Table 2, the cause of a patient’s hospitalization
identified by our system as the principal diagnosis is
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subsequently categorized into the corresponding MDC under
the Tw-DRG cal cul ation software program. The MDC schematic
classification for inpatient cases consists of 26 distinct
categories, spanning from pre-MDC to MDC 1 through MDC
25. Once the principal diagnosis is determined for a patient,
similar therapeutic diseases or procedures are further divided
into multiple DRGs. This division considers various factors
including the patient's age and gender, the presence of
comorbiditiesor complications (secondary diagnoses), discharge
status, etc. The prospective inpatient coststhat the NHIA should
reimburse hospitals are cal culated by leveraging historical data
from the hedlth care industry as a foundational reference. In
sum, the DRG provides essential information for this specific
hospitalization, including details related to health insurance
reimbursement, relative weight, and the presence of
comorbidities and complications.
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Table 2. The 26 major diagnostic categories (MDC) in Taiwan diagnosis related groups.

MDC Title
Pre o Heart Transplant
o  Liver Transplant
«  BoneMarrow Transplant
«  Tracheostomy
o Lung Transplant
«  Pancreatic Transplant
1 »  Diseasesand Disorders of the Nervous System
2 «  Diseases and Disorders of the Eye
3 o  Diseases and Disorders of the Ear, Nose, Mouth and Throat
4 «  Diseases and Disorders of the Respiratory System
5 »  Diseases and Disorders of the Circulatory System
6 «  Diseases and Disorders of the Digestive System
7 «  Diseases and Disorders of the Hepatobiliary System and Pancreas
8 «  Diseases and Disorders of the Musculoskeletal System and Connective Tissue
9 . Diseases and Disorders of the Skin, Subcutaneous Tissue and Breast
10 «  Endocrine, Nutritional and Metabolic Diseases and Disorders
11 »  Diseasesand Disorders of the Kidney and Urinary Tract
12 «  Diseases and Disorders of the Male Reproductive System
13 »  Diseases and Disorders of the Female Reproductive System
14 «  Pregnancy, Childbirth and the Puerperium
15 «  Newborns and Other Neonates with Conditions Originating in the Perinatal Period
16 «  Diseases and Disorders of the Blood and Blood Forming Organs and Immunological Disorders
17 «  Myelopraliferative Diseases and Disorders, and Poorly Differentiated Neoplasm
18 « Infectious and Parasitic Diseases (Systemic or Unspecified Sites)
19 o Mental Diseases and Disorders
20 «  Alcohol/Drug Use and Alcohol/Drug Induced Organic Mental Disorders
21 « Injuries, Poisonings and Toxic Effects of Drugs
22 « Burns
23 «  Factors Influencing Health Status and Other Contacts with Health Services
24 «  Multiple Significant Trauma
25 «  Human Immunodeficiency Virus Infection

Experiment Configurations

trained on machines equipped with an Intel i7-13700 processor
(Intel Corporation), 64 GB of RAM, and an NVIDIA GeForce

Both deep learning models were implemented using CUDA  RTX 4090 24-GB graphics card (Nvidia Corp). During the
12.0 (Nvidia Corp) and the PyTorch (Meta Platforms) libraries  training of these 2 models, different hyper-parameter
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configurations were used. For HAN, we set the batch size to
32, the learning rate to 1e-3, and the number of epochs to 500,
and used the Adam optimizer [32] for optimization. During the
training process, we implemented an early stopping strategy
with a patience value of 50, which was triggered if there was
no improvement in the F;-score or loss, or if the loss on the
validation set reached 0. For GPT-2, we configured thelearning
rate to be 1.5e-4, set the number of epochs to 10, and set the
batch size to 4 to prevent out-of-memory issues. We used the
AdamW optimizer [33] for parameter optimization, setting the
epsilonto 1.0e-09 to ensure that the model stops updating when
thelearning rate drops below thisthreshold. In addition, to align
with the maximum input length in the GPT-2 architecture, we
set the maximum input length for each training instance to 1024.

The evaluation metric used to assess the performance of the
developed models is the F-measure, calculated from the
harmonic mean of the precision and recall. Precision and recall
are computed based on the counts of correctly predicted
ICD-10-CM codes (true positives), incorrectly predicted
|CD-10-CM codes (fal se positives), and undetected ICD-10-CM
codes (false negatives). These values are determined by
comparing the model’s predictionswith the ICD codes assigned
by the CCS. These metrics are calculated using the following
equations 5, 6 and 7 for the precision, recall and F;-scores.

True Positives

(5)

True Positives + False Positives

True Positives

(6)

True Positives + False Negatives

2 X Precision X Recall (7)
Precision + Recall

It is worth noting that in the evaluation step, in addition to
assessing the performance of the autocoding systems on the
original compiled corpus, we also compiled a new Tw-DRGs
data set consisting of EMRs collected from the real KMUCHH
environment. The new data set was processed by the
af orementioned autocoding systemsin serieswith NHIA'sDRG
calculation software. In addition, to assess the reliability of our
NLP-driven Al-assisted coding system in the Tw-DRG inpatient
payment process, we used the k measure as an indicator of
agreement for MDC between our system and CCS curated
results. Specifically, we used the Cohen k [34] to estimate the
K values. For this comparison, we used the Tw-DRG cal culation
program provided by the NHIA in Taiwan. This program uses
inputs, such as the predicted main code, other codes, gender,
and date of birth to perform MDC classification and DRG
grouping. We developed a program to analyze the output from
the Tw-DRG calculation program for the comparison study.

Ethical Considerations

Thisstudy was approved by the KMUCHH Institutional Review
Board (protocaol title: “Devel oping Artificial Intelligence model
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to support ICD-10-CM and PCS coding and comparing the
performance between machine coding and manual coding”;
ingtitutional review board number: KMUHIRB-E(11)-20230214).
Asthe study utilized secondary data collected under the original
institutional review board approved protocol, no additional
informed consent was required. All data collected from
KMUCHH was aggregated for research purposes adhering to
fair use principles. Participant privacy wasrigorously protected
through anonymization, and stringent confidentiality measures
were implemented. Given that the study involved only the
analysis of existing, deidentified data, there was no direct
interaction with participants, and thus, no compensation was
provided. Additionally, the study strictly adhered to all
applicable local, national, regional, and international laws and
regulations concerning the protection of personal information,
privacy, and human rights.

Results

Overview

In the following subsections, we demonstrated the effectiveness
of deploying NLP-driven Al-assisted coding systems,
specifically using HAN and GPT-2 models, in the context of
ICD-10-CM coding and Tw-DRGs process. We provide a
comparative analysis of the Al-assisted coding resultswith CCS
curated results for Tw-DRGs using the data set gathered from
the deployment of the developed Al-assistant system in the
hospital environment. This analysis validates the potential of
NLP-driven Al-assisted coding in fecilitating the Tw-DRGs
process, highlighting its effectivenessin improving coding.

Performance Comparison of the Developed Deep
Learning Models on the ICD-10-CM Coding Task

Tables 3 and 4 offer a comprehensive anaysis of the
performance of the baseline models as well as the HAN and
GPT-2 models in ICD-10-CM autocoding on the test set. In
addition to the full code results, Table 3 showsthe performance
of each model on the top-50 codes (Top-50 F) which is often
reported in previous research papers. The list of the top-50
ICD-10-CM codes can be found in Multimedia Appendix 2.
The results presented in Table 3 highlight the superior
performance of the GPT-2 model compared to the other models.
GPT-2 exhibited higher precision, recall, and F-measure in its
overal performance compared to HAN, with improvements of
0.134, 0.077, and 0.107, respectively. Additionally, the boost
in the F;-score for the main code further emphasizes the
advantage of applying the GPT-2 model over the other models.
Both HAN and GPT-2 models achieved satisfactory top-50
F,-scores but obtained significantly lower F;-scoresfor the full
codes owing to the long-tailed distribution of the ICD-10-CM
codes assigned by the CCS.

JMed Internet Res 2024 | vol. 26 | €58278 | p. 11
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Dai et al

Table 3. Overall performance evaluation of hierarchical attention network (HAN) and GPT-2 models in the International Classification of Diseases,

10th Revision, Clinical Modification, autocoding on the test set.

Model Precision Recall F-measure Top-50 (F) Main code (F)
HAN 0.529 0.594 0.560 0.818 0.429

GPT-2 0.663 0671 @ 0.667 & 0.851 @ 0575 @
8iGRUP 0765 2 0.451 0.567 0717 0.250

BERTC 0.759 0.366 0.494 0.698 0.215

8The best value for each performance metric is italicized.
bBiGRU: bidirectional gated recurrent unit.
®BERT: bidirectional encoder representations from transformers.

Table 4 providesamore detailed breakdown of the |CD-10-CM
subcategory performance for the 2 models. The results
underscorethe consistent superiority of GPT-2 over HAN across
all categories, particularly in situationswith limited data (<10%).
Notably, GPT-2 acquired better F;-scoresin the T, H, and O
categories compared to HAN with an increase of 0.387, 0.279,
and 0.269, respectively. This accentuates the advantage of
GPT-2 due to its pretrained nature, which enables it to extract

https://www.jmir.org/2024/1/e58278

crucial featuresin a more efficient manner compared to HAN
when only limited training data are provided.

By contrast, both models revealed low performance in the X
and Y categories. These 2 categories suffered from a lack of
data, as they have the lowest number of training instances as
outlined in the last column of Table 4. The restricted amount
of training data poses a challenge to the models in achieving
better performances in these specific categories.
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Table4. Thelnternationa Classification of Diseases, Tenth Revision, Clinical Modification, category-specific performance comparison of the hierarchical

attention network (HAN) and GPT-2 on the test set.

Categories (block) Chapters Models (F-measure) Discharge summaries in the training set (n=105,101), n (%)
HAN GPT-2

A | 0.851 0.955 2 15,267 (14.53)

B | 0.703 0.889 2 20,441 (19.45)

c I 0.812 0.8902 71,202 (67.75)

D 1, 1 0.702 08142 28,393 (27.01)

E \Y 0.797 0.8882 63,545 (60.46)

F Vv 0.611 08332 8835 (8.41)

G Vi 0.566 07942 13,236 (12.59)

H VIL VI 0.576 0.855 2 9824 (9.35)

I IX 0.781 0.8332 82,005 (78.02)

J X 0.756 0.8802 31,233 (29.72)

K X1 0.714 0.8432 48,827 (46.46)

L X1l 0.496 07302 7369 (7.01)

M X1 0.549 07642 20,312 (19.33)

N XIV 0.783 0.894 2 39,504 (37.59)

(0] XV 0.583 0.8522 3887 (3.7)

P XVI 0.738 0.8572 4297 (4.09)

Q XVII 0571 06522 2918 (2.78)

R XV 0.545 06172 24,544 (23.35)

S XIX 0.661 07422 20,850 (19.84)

T XIX 0.297 06842 8505 (8.09)

\Y XX 0.446 05842 3613 (3.44)

W XX 0.459 06192 3558 (3.39)

X XX 0.270 0.444 2 1968 (1.87)

Y XX 0.425 0.458 2 2652 (2.52)

z XXI 0.657 07472 39,577 (37.66)

#The best value for each performance metric isitalicized.

Comparative Analysis of NLP-Driven Al-Assisted
Coding Results With CCSfor Tw-DRGsin the Real
Hospital Environment

In this subsection, we provide a comparative analysis of the
performance of the deployed systems from the perspective of
Tw-DRGs. The performance of Tw-DRGs was estimated on
the additional data set of 2632 discharge cases stored in the
SQL server databaseindicated in Figure 5, which was collected
from February 2023 to April 2023.

Asdescribed in the previous section on the Tw-DRGs payment
system, the principal diagnosis is the crucia factor in

https://www.jmir.org/2024/1/e58278

determining the MDC, while secondary diagnosesare only used
to determine different Tw-DRGs distributions within the same
MDC. Theprincipa diagnosisisdetermined based on thereason
for the patient’s hospitalization and only a single disease can
be selected. If there are multiple diseases for which the patient
is receiving treatment upon admission, selecting any one of
them as the principal diagnosis is not considered an error but
may affect the results of Tw-DRGs. Hence, the principal
diagnosis sel ection cannot be assessed by solely comparing the
system output against the 1CD-10-CM main codes initially
assigned by the CCS. Instead, it necessitates the expertise of
the CCS to reevaluate both the EMRs and the codes proposed
by the developed systems. Therefore, to provide a comparative
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analysisof the 2 developed modelsin terms of their performance  examined the discharged cases to determine the accuracy of
in defining the principal diagnosis as shown in Table 5, the principal diagnoses suggested by the Al-assisted coding systems
senior CCS, author ATL, who is the third author of the paper, based on the HAN and GPT-2 models.

Table 5. Comparison of performance between the deep learning models and certified coding specialist—curated results for principa diagnosis in

discharge cases.

Models and conditions

February 2023 (n=748), n (%)

March 2023 (n=991), n (%) April 2023 (n=893), n (%)

HAN? (F-measure=0.524)

Al correct” 79 (10.6)

Principa diagnosiswith incorrect secondary diag- 462 (61.8)

noses”

No principal diagnosis® 181 (24.2)

All incorrect® 26 (3.5)
GPT-2 (F-measure=0.621)

All correct® 130(17.4)

Principal diagnosiswith incorrect secondary diag- 443 (59.2)

noses®

No principal diagnosis® 165 (22.1)

All incorrect® 24(3.2)

181 (18.3) 177 (19.8)
477 (48.1) 369 (41.3)
277 (27) 285 (31.9)
56 (5.5) 62 (6.9)

161 (16.2) 144 (16.1)
599 (60.4) 524 (58.7)
186 (18.8) 183 (20.5)
29 (2.9) 43 (4.8)

3HAN: hierarchical attention network.
bAutocoding results were identical to certified coding specidists.

CAutocoding system correctly identified the principal diagnosis, but discrepancies exist in =1 secondary diagnosis codes assigned by certified coding

specialists.

dautocodi ng system’s principal diagnosis was different from certified coding specialists.

€A utocoding results were entirely different from certified coding specialists.

The first column of Table 5 shows the F-measure estimates for
HAN (0.524) and GPT-2 (0.621) in their suggestion for main
codesin comparison with the CCS coding results. The reported
F-measures align with our observation on the test set and
validate GPT-2 as a more reliable model. The manual
reassessment of the results performed by the senior CCS
according to the definition of principal diagnosisis displayed
in the second to fourth columns of the table. Notably, most
(1308/2632, 49.7%) of the cases of the 2 deep learning models
when reviewed against the manual coding of the CCSfall under
the category “principal diagnosis with incorrect secondary
diagnoses,” followed by the category “no principal diagnosis.”
The “al incorrect” cases had the lowest proportion among all

https://www.jmir.org/2024/1/e58278

categories. Predictions of GPT-2 achieved a better “all correct”
category coverage and once again demonstrate superiority over
HAN infacilitating the ICD coding task. The respective overall
correct rate for principal diagnosisfor HAN and GPT-2, which
takes into account both categories “all correct” and “principal
diagnosis with incorrect secondary diagnoses,” was 0.663 and
0.7602.

In Table 6, we extended the comparison to assess the agreement
of MDC between the 2 developed models and the CCS. The
first, second, and third columns of Table 6 show the MDC
estimated results for the codes assigned by CCS, HAN, and
GPT-2. The last 2 columns show the estimated K vaues
corresponding to the 2 models against the CCS.
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Table 6. Comparison of the k values between 2 deep learning models and a senior certified coding specialist (CCS) for major diagnostic category
(MDC) in discharge cases spanning from February 2023 to April 2023 at Kaohsiung Medical University Chung-Ho Memorial Hospital .

MDC ccs Model K value®

Manual coding (n=2632),n (%) HaNP (n=2632), n (%) GPT-2 (n=2632),n (%) HAN (average 0.592) GPT-2 (average 0.714)
Pre 0(0) 0(0) 0(0) _c —
1 509 (19.34) 280 (10.64) 497 (18.88) 0.670¢ 0.803¢
2 38 (1.44) 9(0.34) 28 (1.06) 0.300 0.7248
3 132 (5.02) 113 (4.29) 124 (4.71) 0.689¢ 0.852°€
4 302 (11.47) 300 (11.74) 287 (10.90) 0.845 € 0.826 €
5 184 (6.99) 310 (11.78) 213 (8.09) 0.607 0.786¢
6 229 (8.7) 217 (8.24) 222 (8.43) 0.775¢ 0.818°
7 84(3.19) 90 (3.42) 77 (2.93) 0.710¢ 0.827°©
8 87 (3.31) 66 (2.51) 87 (3.31) 0.576 0.786¢
9 116 (4.41) 83(3.15) 95 (3.61) 0.692° 0.726¢
10 132 (5.02) 237(9) 167 (6.34) 0.505 0.642¢
11 120 (4.56) 205 (7.79) 99 (3.76) 0.648¢ 0.738¢
12 3(0.11) 7(0.27) 3(0.11) 0.362 0.666¢
13 8(0.30) 8(0.30) 10(0.38) 0.749¢ 0.889 €
14 41 (1.56) 11 (0.42) 38 (1.44) 0.419 1.000©
15 15 (0.57) 9(0.34) 16 (0.61) 0.635¢ 0.708¢
16 57 (2.17) 64 (2.43) 44 (1.67) 0.624¢ 0.728¢
17 2(0.08) 3(0.11) 1(0.04) 0.399 0.666¢
18 505 (19.19) 465 (17.67) 483 (18.35) 0.870€ 0777
19 0(0) 23(0.87) 3(0.11) — —
20 0(0) 2(0.08) 2(0.08) — —
21 21(0.8) 24.(0.91) 16 (0.61) 0.404 0.646¢
22 1(0.04) 0(0) 0(0) — —
23 42 (1.6) 24(0.91) 43 (1.63) 0.366 0.398
24 4(0.15) 6 (0.23) 3(0.12) 0.599 -0.010
25 0(0) 2(0.08) 0(0) — —
None 0(0) 65 (2.47) 74 (2.81) — —

#The average K values are calculated using arithmetic averaging of the MDC categories, excluding the blank cells.

PHAN: hierarchical attention network.
®Not applicable.

%Thek value fallswithin the range of 0.61 to 0.80, indicating substantial reliability.
®The k value falls within the range of 0.81 to 1.00, indicating almost perfect reliability.

Our analysis revealed that the CCS did not assign any casesto
preeMDC, MDC 19, MDC 20, and MDC 25 for the curated
patients. By contrast, HAN erroneously assigned 23 (0.87%)
of the 2632 casesto MDC 19, 2 (0.08%) casesto MDC 20, and
2 (0.08%) cases to MDC 25. GPT-2 made fewer mistakes in
classifying 3 (0.11%) of the 2632 cases to MDC 19 and 2
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(0.08%) casesto MDC 20. Following an analysis conducted by
using SPSS (version 19; IBM Corp), outputs of both models
along with the coding results manually curated by the CCS
underwent Cohen kK evaluation for agreement. The results
indicated that the average k valuefor GPT-2 (0.714/Substantial)
was approximately 12.2 percentage points higher than that of
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HAN (0.592/Moderate). Notably, the average k value of GPT-2
exceeded 0.81 (highlighted in italics in Table 6) across 6
categories of the MDC, indicating amost perfect agreement
between the CCS and GPT-2. These observations exhibit the
effectiveness of NL P-driven systems in supporting the work of
CCSs. Itisworth mentioning that the k value of GPT-2in MDC
24 (pertaining to injuries involving 2 or more body systems)
was recorded as —0.01 (poor). A close examination of the 7
cases of the compiled data set in MDC 24 reveals that while 6
(86%0) cases shared consistent principal diagnoses, discrepancies
arosein the secondary diagnoses. These discrepanciesinvolved
instances of overcoding for lung contusion and traumatic
hemothorax, as well as undercoding for hepatic contusion and
cervical spina cord injury. Consequently, these inconsistencies
resulted in a complete mismatch between the MDC results of
GPT-2 and CCS-curated results.

The Effectiveness of Applying Models Acquired With
Biomedical Knowledge

We conducted an ablation study comparing the performance of
2 fine-tuned GPT-2 models. one fine-tuned on PubMed
documents and the other being the origina GPT-2 model
released by OpenAl. This study aimed to assess the necessity
of using models fine-tuned on biomedical documents. The
results indicate that the PubMed fine-tuned model achieves
dlightly better performance than the original GPT-2 model, with
F,-scoreimprovements of 0.05 for full coding and 0.03 for main

coding.

In addition, we used the following prompt template to assess
theknowledge of the 2 GPT-2 modelsfor thetail-50 | CD codes.

“<ICD-10-CM Code> < ICD-10-CM Description>
The condition involves...”

From the generated texts, we observed that both GPT-2 models
generally possess a considerable understanding of ICD-10-CM
terms. For instance, when prompted with the ICD-10-CM code
“C9502: Acute leukemia of unspecified cell type, in relapse,”
the GPT-2 model generated the following response: “This
condition involveserythroid and myeloid cellsand is associated
with a poor prognosis” This response accurately describes a
challenging scenario in leukemiamanagement, wherethe disease
has rel apsed with theinvolvement of both erythroid and myeloid
cell lines, often indicating a poor prognosis.

Discussion

Error Analysis

Ji et a [35] discussed several challenges encountered during
the implementation of automated clinical coding procedures.
Onesignificant challengeisthat electronic health records often
contain avariety of professional medical vocabulariesaongside
noisy information, including nonstandard synonyms and
misspellings. To address this issue, our study used a variation
of GPT-2 fine-tuned using 0.5 million PubMed abstracts to
enhance its ability to recognize medical terminologies. The
observations from the prompting results, as described in the
M ethods section, highlight the biomedical knowledge acquired
by the pretrained GPT-2 model. This enhancement enabled the
GPT-2 model perform better than the HAN model, which was
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not pretrained on biomedical data, particularly in categories,
such as XIX-T, VII, VIII, and XV, where training instances
werelimited. Our analysisalso reveal sthat HAN tendsto attend
to noisy information and sometimes generates completely
irrelevant codes, which can be frustrating for CCSs. The result
underscores the GPT-2 model’'s adeptness in comprehending
medical context and its effectivenessin mitigating the challenges
associated with clinical coding procedures.

Another problem highlighted by J et a [35] is the
high-dimensionality of medical codes and the long-tailed
distribution, which results in limited corresponding training
instances that are necessary for effective model training. EMRs
associated with multiple diagnoses are particularly complex
issues known as a multi-label extreme classification problem
characterized by a vast label set, which was aso encountered
by our HAN model. In our implementation of HAN, the
high-dimensional label space comprises 11,653 codes,
magnifying the complexity of the task. On the contrary, while
the high-dimensionality issue does not significantly impact the
GPT-2 model, the scarcity of training instances still presents a
considerable challenge. For instance, codes associated with the
rarity of congenital conditions, such as those in category XVII
(congenital malformations, deformations, and chromosomal
abnormalities), are less frequent in the data set. This rarity
results in fewer cases for the models to learn from, thereby
hindering accurate predictions. In addition, we noted that certain
codes manually labeled by CCSs, such as D489, K5100, 28616,
and others, were not present in the training set. Consequently,
both models struggled to predict these unlearned codes,
illustrating a critical limitation in the presented training data.

In addition, there are categories with abundant training instances
where both models performance remains unsatisfactory.
Notably, codes from category XV1I1 appear in 23.35% of the
training set summaries, yet the F,-scores for both models are
below 0.65. Upon analyzing the predicted results, we observed
that while codes from the chapter, symptoms, signs, and
abnormal clinical and laboratory findings, frequently appear in
discharge summaries, disease classification rules often do not
require separate coding for symptoms and signsthat are related
to adiagnosed disease. This discrepancy can lead to confusion
for the developed models, causing them to misinterpret these
entries.

To tackle this issue, we intend to augment the training set by
incorporating additional coded content curated by the CCSin
future iterations. This will enable our system to learn novel
coding content that the system did not previously come across.
Moreover, we plan to explore the use of |CD code representation
methods, as proposed by Vu et al [36] and Wu et a [37], into
our models. By integrating these methods, we aim to further
enhance our system'’s performance and robustnessin addressing
the challenges associated with automated clinical coding.

Moreover, athough models with neural attentions learned to
infer implicit relationships in discharge summaries by
interpreting contextual expressions with weighted attentions,
there areinstances where pertinent information required for the
coding judgment criteriais absent from the discharge summaries,
for example, for chapters X1X and XX (injury, poisoning, and
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certain other consegquences of external causes and external
causes of morbidity and mortality). According to the
classification rules, codes from these chapters are often used in
conjunction with other codes. The data sources for these codes
arenot limited to discharge summaries but also include nursing
records, imaging reports, and emergency department records.
The devel oped models' poor performancein these chapters may
be due to the complexity and the need to integrate information
from various sources, which is currently unavailable in the
current implementation.

Finally, we noticed that certain codes only existed in the test
set. These scenarios can lead to incorrect ICD-10-CM codes
generated by the model. Some examples as such are listed
subsequently.

In the discharge diagnosis, the developed system predicted the
ICD-10-CM code for “# Heart failure” as 1509:

# Dyspnea with desaturation, focus on HAP
(hospital-acquired pneumonia) and coronavirus
disecase of 2019 # Sepsis, focus on HAP
(hospital-acquired pneumonia) and catheter related
UTI (urinary tract infection) # Hyponatremia # Heart
failure.

However, the correct coding is 15020. This discrepancy is
primarily due to supplementary information recorded in the
medical history on admission, specifically mentioning “# chronic
systolic heart failure.” Following discussions with the CCS, it
was agreed that future enhancements will attempt to merge the
content from the history on admission to enable the model to
learn from abroader range of medical history information, thus
ensuring more accurate coding outcomes.

Comparison With Prior Work

Li et al [38] introduced the DeeplLabeler, a deep learning
architecture based on acombination of the convolutional neural
network (CNN) with the document-to-vector technique [39] to
extract and encode local and global features for ICD-9 coding.
Their approach achieved micro F-measures of 0.335 and 0.408
in the public multiparameter intelligent monitoring in intensive
care (MIMIC)-11 and MIMIC-I1I data sets, respectively. Zeng
et a [40] transferred the knowledge learned from the Medical
Subject Headings indexing domain using the large-scale
biomedical semantic indexing competition challenge data set
[41] to enhance the performance of the developed multi-scale
CNN for automatic ICD-9 coding. Their approach achieved a
micro F-measure of 0.420 on the public MIMIC-111 data set.
Chen et a [30] used diagnostic records from the National
Taiwan University Hospital to build a data set with a total of
1,043,124 labels (using 14,602 unique codes as prediction
candidates) and developed adeep neural network classification
model based on the bidirectional gated recurrent unit along with
the BERT-based word representation method. This model
obtained an F-measure of 0.715 for ICD-10-CM coding on their
test set. Wu et a [37] proposed a pseudo |abel-wise attention
mechanism aimed at automatically combining attention modes
of similar ICD codes to tackle the issue of unbalanced
multi-label classification in ICD coding. Their methodology
involved using a bidirectional long short-term memory in
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tandem with the pseudo label-wise attention mechanism to
represent EMRs as vectors. They then used a BERT-based
pretrained model to determine the vector representations of the
ICD-10 codes. Finaly, they calculated the similarity between
EMR vectorsand | CD vectorsto determine the assigned codes.
This approach yielded a micro F-measure of 0.806 on their
private Chinese Xiangya data sets. In a separate study, Bhutto
et al [42] proposed a deep recurrent-CNN architecture with a
lambda-scaled attention module. Their approach yielded micro
F-measures of 0.862 and 0.705 on a private Pakistan clinical
notes. In comparison with these studies, the GPT-2 model in
our research demonstrates competitive performance, particularly
excelling in caseswhere the training datafor specific categories
is limited, showcasing its robustness in handling diverse and
challenging scenarios.

In addition, certain previous research also explored the impact
of erroneous |CD-10-CM coding on hospital finances. Zafirah
et al [43] studied the potential loss attributableto clinical coding
errorsin aMalaysian teaching hospital. Their findingsindicate
ahigh prevalence of error coding in medical records, particularly
concerning secondary diagnosis codes, which reached 81.3%
(377/464). The estimated financial impact on the medical
discipline in this hospital amounted to a potential profit loss of
RM 85,804.92 (US $19,617.05). Toner et a [15] conducted a
retrospective comparative analysis of case records for patients
with the M966 diagnosis code (periprosthetic fracture) in a
district general hospital. Their work revealed that ICD-10-CM
coding errors resulted in a loss of £25,000 (US $33,029.97)
when compared to the actual hospital revenue. In contrast with
relevant studies, our examination of the consistency assessment
of the autocoding system and CCS coding indicates promising
prospects in reducing manual workload and providing coding
references to minimize human errors. The error rate of CCS
detected with the assistance of the Al-assisted coding system
is1.9% (50/2632; number of coding errors/total cases).

Pivotally, our work serves as the first endeavor to examine the
feasibility of the combination of ICD-10 coding with DRGsin
the real hospital environment, which indicates a significant
advancement in the area. In conclusion, the implementation of
NLP-driven Al-assisted coding systems contributes to a
reduction in CCS coding errors and manual workload, thereby
enhancing the overall efficiency of the coding process, lowering
error rates, and mitigating financial losses.

Limitations

While our study demonstrates the potential of NLP-driven
Al-assisted coding systems in improving 1CD-10-CM coding
accuracy and efficiency, several limitations should be
acknowledged. First, the data set used for this study was sourced
from a single hospital, which may limit the generalizability of
the presented results. Future studies should include data from
multiple hospitals, covering diverse geographical regions and
varying patient demographics, to ensure broader applicability
of the findings and to validate the robustness of the models
across different settings.

Second, this study involved only 1 senior CCS to conduct the
K analysis for the agreements among the developed models.
Thislimitation meansthat the results may not necessarily extend
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to other CCSs, particularly those with different levels of
experience. Future works should consider recruiting a larger
and more diverse group of CCSs, including both senior and
junior coders, to eval uate the hel pfulness of the proposed models
comprehensively. In addition, studying the reduction in coding
time and theimpact on workflow efficiency in practical settings
would provide valuable insights into the real-world benefits of
Al-assisted coding systems.

Third, this study concentrated solely on Tw-DRGs, which are
specific to Taiwan's health care system. Asaresult, the findings
may not be directly generalizable to other DRG systems used
in different countries or regions, or to DRGs estimated in
different periods. Further research is needed to ascertain the
applicability of our conclusions to other DRG systems
worldwide. Investigating the performance of the models in
different international contexts and updating the models to
reflect changes in DRG systems over time would enhance the
relevance and utility of the findings.

Conclusions

In summary, our study has demonstrated the effectiveness of
deploying NLP-driven Al-assisted coding systems, specifically
using HAN and GPT-2 modéls, in the context of ICD-10-CM
coding and Tw-DRGs process. The comparative analysis
revealed that GPT-2 consistently performed better than HAN
and exhibited higher precision, recall, and F;-scores. This

superior performance was particularly evident in scenarioswith
limited data, highlighting the robustness of GPT-2 in extracting
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vital features from discharge summaries. Moreover, the
evaluation of principal diagnosis and MDC in Tw-DRGs
showcased the utility of the developed models. GPT-2, in
particular, acquired higher agreement values and made fewer
mistakesin MDC classification. In the practical deployment of
the system within a hospital environment, the comparative
analysis with CCS validated the potential of NLP-driven
autocoding in the Tw-DRGs process. Despite encountering
certain discrepancies, our study demonstrates the significant
value of theimplemented modelsastoolsthat offer insightsand
support to CCSs during the coding process. The deployment of
Al-assisted coding systems has the potential to enhance coding
accuracy while simultaneously reducing manual workload,
leading to improved process efficiency, lower error rates, and
ultimately, a decrease in financial 10sses.

While our proposed system effectively alleviates the manual
workload of CCSs, our error analysis has also unveiled notable
challenges. These include the absence of coding judgment
information in discharge summaries, presence of coding answers
not included in the training set, and the need for suggesting 1
or more main codes for the development of ICD-10 coding
system to assist in the DRG process. These findings underscore
areasfor further improvement and refinement in future iterations
of our system. Addressing these challenges will be pivotal in
enhancing the efficacy and reliability of automated coding
systems, thereby maximizing their potential to support and
streamline both clinical coding and DRG processes.
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