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Abstract

Background: Early detection of sleep apnea, the health condition where airflow either ceases or decreases episodically during
sleep, is crucial to initiate timely interventions and avoid complications. Wearable artificial intelligence (AI), the integration of
AI algorithms into wearable devices to collect and analyze data to offer various functionalities and insights, can efficiently detect
sleep apnea due to its convenience, accessibility, affordability, objectivity, and real-time monitoring capabilities, thereby addressing
the limitations of traditional approaches such as polysomnography.

Objective: The objective of this systematic review was to examine the effectiveness of wearable AI in detecting sleep apnea,
its type, and its severity.

Methods: Our search was conducted in 6 electronic databases. This review included English research articles evaluating wearable
AI’s performance in identifying sleep apnea, distinguishing its type, and gauging its severity. Two researchers independently
conducted study selection, extracted data, and assessed the risk of bias using an adapted Quality Assessment of Studies of
Diagnostic Accuracy-Revised tool. We used both narrative and statistical techniques for evidence synthesis.

Results: Among 615 studies, 38 (6.2%) met the eligibility criteria for this review. The pooled mean accuracy, sensitivity, and
specificity of wearable AI in detecting apnea events in respiration (apnea and nonapnea events) were 0.893, 0.793, and 0.947,
respectively. The pooled mean accuracy of wearable AI in differentiating types of apnea events in respiration (normal, obstructive
sleep apnea, central sleep apnea, mixed apnea, and hypopnea) was 0.815. The pooled mean accuracy, sensitivity, and specificity
of wearable AI in detecting sleep apnea were 0.869, 0.938, and 0.752, respectively. The pooled mean accuracy of wearable AI
in identifying the severity level of sleep apnea (normal, mild, moderate, and severe) and estimating the severity score
(Apnea-Hypopnea Index) was 0.651 and 0.877, respectively. Subgroup analyses found different moderators of wearable AI
performance for different outcomes, such as the type of algorithm, type of data, type of sleep apnea, and placement of wearable
devices.

Conclusions: Wearable AI shows potential in identifying and classifying sleep apnea, but its current performance is suboptimal
for routine clinical use. We recommend concurrent use with traditional assessments until improved evidence supports its reliability.
Certified commercial wearables are needed for effectively detecting sleep apnea, predicting its occurrence, and delivering proactive
interventions. Researchers should conduct further studies on detecting central sleep apnea, prioritize deep learning algorithms,
incorporate self-reported and nonwearable data, evaluate performance across different device placements, and provide detailed
findings for effective meta-analyses.
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Introduction

Background
Sleep apnea refers to a health condition where airflow either
ceases or decreases episodically during sleep [1]. According to
the American Academy of Sleep Medicine, sleep apnea is
categorized as a sleep disorder wherein an individual
experiences challenges pertaining to breathing when they are
asleep [2]. Primarily, there are 3 kinds of sleep apnea. First,
obstructive sleep apnea (OSA) is the consequence of issues with
the operation of the upper respiratory tract and is considered a
chronic breathing disorder associated with sleep [3]. By contrast,
a condition where signals required to regulate breathing muscles
are not generated or transmitted is referred to as central sleep
apnea (CSA). Complex or mixed sleep apnea is a condition that
involves a combination of both OSA and CSA [4]. It often
begins as OSA and evolves into CSA [4].

According to global estimates, approximately 936 million adults
aged between 30 and 69 years experience OSA [5]. A systematic
review showed that the global prevalence of OSA is between
9% and 38% [6]. In the United States alone, the number of
people struggling with sleep apnea may exceed 30 million, as
per the American Medical Association [7]. Furthermore, studies
showed that >80% of sleep apnea cases remain undiagnosed
[7-10]. If not diagnosed and treated, sleep apnea may result in
severe health issues, such as mood disorders [11-13],
cardiovascular diseases [14,15], cognitive deterioration [16,17],
increased risk of road accidents [18,19], and all-cause mortality
[20,21]. Therefore, the timely detection of sleep apnea for
prompt initiation of treatment is imperative.

Conventionally, polysomnography is a comprehensive
diagnostic test used in the field of sleep medicine to evaluate
and monitor various physiological parameters during sleep to
help diagnose sleep disorders, such as sleep apnea [22]. Despite
being considered the gold standard for diagnosing sleep apnea,
it does have some disadvantages and limitations: (1) it is
relatively expensive; (2) access to sleep laboratories may be
limited, particularly in certain geographic areas; (3) it can be
inconvenient for patients, as they must spend a full night in a
sleep laboratory with numerous sensors and electrodes attached
to their body; (4) the physiological parameters recorded using
polysomnography may not fully reflect the individual’s typical
sleep behavior due to a first-night effect in a sleep laboratory,
where sleep patterns are different from those at home due to the
novelty of the environment; and (5) it is a subjective process,
as analyzing polysomnography data depends on sleep clinicians’
experience [22-24]. Hence, there is a dire need to develop and
integrate automated technologies and tools that are more
efficient and capable of addressing the challenges posed by the
current system of diagnosing sleep apnea.

One of the promising solutions that have been used to address
the limitations of polysomnography is wearable artificial

intelligence (AI), which refers to the integration of AI algorithms
and techniques into wearable devices (eg, smartwatches, fitness
trackers, and smart glasses) to collect and analyze data (eg, heart
rate [HR], respiration rate, and oxygen saturation) to offer
various functionalities and insights. Sleep apnea can be
efficiently detected with wearable AI due to its convenience,
accessibility, affordability, objectivity, and real-time monitoring
capabilities. Various types of wearable devices can be used for
gathering biomarkers associated with sleep apnea: on-body
devices (worn directly on the body or skin), near-body devices
(worn close to the body but not touching the skin), in-body
devices (implanted within the body), and electronic textiles
(clothes with built-in technology). Wearable AI can be used for
(1) detecting apnea events in respiration, (2) identifying the
type of apnea events in respiration (hypopnea, OSA, CSA, and
mixed), (3) detecting patients with sleep apnea, and (4)
estimating the severity of sleep apnea.

Research Problem and Aim
In the last decade, numerous investigations have been carried
out to evaluate the effectiveness of wearable AI in detecting
sleep apnea. Consolidating the results of these studies can
contribute to forming more conclusive judgments regarding the
effectiveness of wearable AI in detecting sleep apnea. Previous
literature reviews attempted to summarize the evidence, but
they were constrained by the following limitations. First, most
previous reviews were literature reviews rather than systematic
reviews [22-28]. Second, many reviews concentrated solely on
OSA rather than considering all types of sleep apnea
[22,23,25-29]. Third, some reviews focused on a specific type
of data, such as HR variability [2,25] and electrocardiography
[1,2,25], for sleep apnea detection. Fourth, main databases, such
as Embase [1,2,22-29], ACM [1,2,22-29], IEEE [22-25,27-29],
and Scopus [1,2,22-25,28], were not incorporated in the searches
of previous reviews. Fifth, all prior reviews focused on the
performance of various sensors rather than specifically
addressing wearable devices [1,2,22-29]. Sixth, one of the
reviews focused on non-AI tools for detecting sleep apnea [29].
Seventh, the risk of bias was not taken into account in most of
the reviews [1,2,22-28]. Finally, none of these reviews used
statistical techniques (eg, meta-analysis) to aggregate findings
from previous studies [1,2,22-29]. Hence, this review aimed to
bridge all these identified gaps with a focus on examining the
performance of wearable AI when it comes to both the detection
and prediction of sleep apnea, thereby making it the first of its
kind in this field.

Methods

Overview
This review was undertaken and reported in line with the
PRISMA-DTA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Diagnostic Test
Accuracy) guidelines [30]. Multimedia Appendix 1 provides
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this review’s PRISMA-DTA checklist. Its protocol has been
registered with the PROSPERO (CRD42023495554).

Search Strategy
On December 7, 2023, a comprehensive search was performed
across the following electronic repositories: MEDLINE (via
Ovid), Embase (via Ovid), ACM Digital Library, Scopus, IEEE
Xplore, and Google Scholar. MEDLINE and Embase were
chosen due to their reputation as authoritative sources for
biomedical and health sciences literature. ACM Digital Library
and IEEE Xplore were selected for their status as leading
repositories for publications in computing, information
technology, electrical engineering, and electronics. Scopus was
included because of its comprehensive coverage of scientific
literature across multiple disciplines, including health sciences,
engineering, computer science, and social sciences. Google
Scholar was incorporated, as it indexes scholarly literature from
diverse sources and serves as a valuable supplementary tool for
identifying relevant studies and gray literature. We set an
autoalert to run the search query biweekly for 3 months,
concluding on March 6, 2024. Because Google Scholar returned
a massive number of results, this review assessed only the first
100 results (equivalent to 10 pages). To identify additional
relevant studies, we examined the references cited in the studies
already included (backward reference list checking) and studies
that had cited the included studies (forward reference list
checking).

Relevant literature reviews were assessed, and 2 experts holding
doctoral degrees in digital health and health informatics were
consulted to compile and collate search terms [31]. The final
search query combined three categories of search terms: (1)
terms related to AI (eg, “artificial intelligence,” “machine
learning,” and “deep learning”), (2) terms associated with
wearable devices (eg, “wearable,” “smartwatch,” and
“smartband”), and (3) terms linked to sleep apnea (eg, “sleep
apnea” and “sleep aponea”). The Boolean operators “OR” and
“AND” were used to combine terms within the same category
and across different categories, respectively. The specific search
query used for searching each database is detailed in Multimedia
Appendix 2 for reference.

Study Eligibility Criteria
This review included studies that used AI algorithms to detect
sleep apnea or predict its occurrence by leveraging data derived
from wearable devices. The research articles deemed suitable
for inclusion in this review were those that concentrated on
individuals diagnosed with or suspected of having any type of
sleep apnea. No limitations were imposed based on age, gender,
or ethnicity. In addition, for inclusion in this review, studies
were required to evaluate the performance of AI algorithms in
detecting or predicting apnea events in respiration, identifying
types of apnea events in respiration, detecting patients with
sleep apnea, or estimating the severity of sleep apnea. The
studies had to provide the confusion matrix or performance
metrics (eg, accuracy, sensitivity, and specificity). Studies using
AI solely for detecting sleep quality, sleep stages, or other sleep
disorders or forecasting the outcomes of sleep apnea
interventions were excluded. This review included studies that
gathered data using, at a minimum, on-body wearable devices.

Conversely, research papers exclusively relying on the following
devices for data collection were not considered: nonwearable
devices; handheld devices (eg, mobile phones); near-body
wearable devices; in-body wearable devices; wearable devices
physically connected to nonwearable devices; and wearable
devices necessitating expert oversight, such as those demanding
precise electrode placement. This review included only
peer-reviewed journal articles, conference papers, and
dissertations, without restrictions on study setting, study design,
reference standard (ie, ground truth), year of publication, or
country of study. However, papers not published in English
were excluded from consideration. The decision to exclude
studies not written in English was based on practical
considerations related to resource constraints and the
accessibility of non-English literature. While including studies
in languages other than English may enhance the
comprehensiveness of the review, it can also pose challenges
in terms of language translation, interpretation, and the synthesis
of findings. Furthermore, English is widely recognized as the
dominant language of scholarly communication in many
scientific disciplines, including health care and biomedical
research. We have transparently acknowledged its implications
for the review’s scope and findings in the Limitations section.
We also excluded studies that fell into the categories of
editorials, reviews, protocols, posters, conference abstracts, and
research highlights. The decision to exclude these publication
types was primarily guided by the need to maintain the focus
and rigor of our review process. While editorials, reviews, and
research highlights provide valuable insights into and
perspectives on a topic, they typically do not present original
research findings or empirical data that meet the objectives of
our study. Similarly, protocols, posters, and conference abstracts
often offer preliminary or incomplete results that may not
undergo peer review or provide sufficient detail for a
comprehensive analysis. This helps maintain the quality and
reliability of the evidence synthesized in our review while
minimizing the risk of bias introduced by including
non–peer-reviewed or preliminary findings.

Study Selection
The study selection process comprised 3 key steps. Initially,
the EndNote (version X9; Clarivate) software was used to
eliminate any duplicate papers from the initial pool.
Subsequently, 2 reviewers assessed the titles and abstracts of
the remaining studies, separately deciding on their inclusion.
Finally, the reviewers independently scrutinized the full texts
of the remaining articles. Any discrepancies were deliberated
upon and resolved through discussion. The level of agreement
between the reviewers was substantial, indicated by a κ score
of 0.92 for the evaluation of titles and abstracts and 0.95 for the
examination of full texts.

Data Extraction
Initially, 5 studies were used to develop and test the data
extraction form shown in Multimedia Appendix 3.
Independently, 2 reviewers used Excel (Microsoft Corp) to
extract metadata from the studies, participants’ characteristics,
wearable devices’ specifications, and AI algorithms’ features.
In addition to the previously mentioned extracted data, we
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collected the highest performance score for each metric,
algorithm, and measured outcome. When studies provided raw
data or confusion matrices, we calculated all possible
performance metrics (eg, accuracy, specificity, and sensitivity).
In case of the unavailability of such data, we attempted to obtain
them by reaching out to the studies’ first and corresponding
authors. Any discrepancies between the 2 reviewers were
addressed through discussion between them.

Risk of Bias and Applicability Appraisal
To evaluate the quality of the studies included in our review,
we adapted the Quality Assessment of Studies of Diagnostic
Accuracy-Revised (QUADAS-2) [32] tool to align with our
review’s specific objectives. This adaptation involved
substituting some of the original criteria, which were not
applicable to our context, with more relevant criteria from the
Prediction Model Risk of Bias Assessment Tool [33]. We
modified the QUADAS-2 tool to encompass 4 main domains
tailored to our review: “participants,” “index test” (focused on
AI algorithms), “reference standard” (representing the ground
truth), and “analysis.” For each domain, we developed 4 targeted
questions aligned with our review’s objectives. In addition, our
evaluation assessed the practical applicability of the results
derived from the first 3 domains. To optimize our adapted tool,
we initially tested it on 5 studies for fine-tuning purposes. The
included studies were independently evaluated by 2 reviewers
using the modified QUADAS-2 tool (Multimedia Appendix 4).
Any differences in their assessments were discussed and
resolved through consensus.

Data Synthesis
We used both narrative and statistical techniques to synthesize
the data extracted from the included studies. In our narrative
synthesis, we used textual descriptions and tabulated summaries
to elucidate the characteristics of the included studies,
encompassing study metadata, wearable devices, and AI
techniques. As for the statistical approach, a meta-analysis was
carried out when at least 2 different studies presented enough
data to perform the analysis. We conducted conventional
meta-analyses for results associated with the following
outcomes, given that they were extracted from different unique
studies (ie, independent effect sizes): identification of types of
apnea events in respiration, detection of patients with sleep
apnea, and estimation of the severity of sleep apnea.
Specifically, DerSimonian-Laird random-effects models [34]
using the Freeman-Tukey double arcsine transformation [35,36]
were performed to pool the extracted results. This method
considers variations arising from sampling and accounts for
heterogeneity in estimates. The analysis was carried out using
the meta toolkit within R (version 4.2.2; The R Foundation)
[37].

We also performed multilevel meta-analyses for results related
to the detection of apnea events in respiration, as certain results

originated from the same study (ie, dependent effect sizes)
[34,38]. Multilevel meta-analyses were used to address this
dependency in effect sizes, thereby minimizing the risk of type
I errors. These analyses were carried out using the metafor
toolkit within R (version 4.2.2) [35].

When applicable, subgroup meta-analyses were conducted to
explore how different factors might influence the effectiveness
of wearable AI [34,38]. These factors included AI algorithms,
the type of algorithm (ie, machine learning [ML] vs deep
learning), the number of participants, the type of sleep apnea,
the status of the wearable device (ie, commercial vs
noncommercial), the placement of the wearable device, data set
size, data type, ground truth, and validation method. We
considered differences in results between subgroups to be
statistically significant if the statistical probability (P value)
was <.05.

To assess how consistent the studies were in their findings
(heterogeneity), we used 2 statistical tests. The first test is the
Cochrane Q statistic, which indicates whether the observed
differences in results could be due to chance alone. A P value
<.05 indicates significant heterogeneity, meaning the results

varied more than expected by chance. The second test is the I2

statistic, which quantifies the proportion of observed variability
due to real differences between studies rather than differences
by chance [35,39]. Heterogeneity was considered insignificant

when I2 ranged from 0% to 40%, moderate when I2 fell within

the 30% to 60% range, substantial when I2 ranged from 50% to

90%, or considerable when I2 extended from 75% to 100%.

Results

Search Results
As depicted in Figure 1, a total of 615 citations were retrieved
when the above-identified databases were searched. Of the
retrieved citations, 161 (26.2%) duplicates were removed using
EndNote X9, leaving 454 (73.8%) studies. Further, 362 (79.7%)
studies were removed after screening the titles and abstracts of
these 454 studies. After retrieving and reading the full text of
all the remaining 92 (20.3%) studies, it was determined that 57
(62%) of these studies were ineligible for inclusion. The main
reasons for exclusion were that they did not use wearable
devices (23/92, 25%), did not use AI algorithms (11/92, 12%),
did not focus on sleep apnea (6/92, 7%), were irrelevant
publication types (16/92, 17%), or were not written in English
(1/92, 1%). We identified 3 additional studies relevant to this
review through backward reference list checking. In total, 38
studies were included in this review [40-77], and 27 (71%) of
them were  e l ig ib le  for  meta-ana lyses
[40,41,45-49,52-55,57,58,61-64,66,68,69,71-77].
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of the study selection process. AI: artificial
intelligence.

Characteristics of the Included Studies
As displayed in Table 1, the number of studies has varied over
the years, with the highest number reached in 2020 (11/38,
29%). While the included studies were conducted in 16 different
countries, the studies were predominantly from the United States
(9/38, 24%). Most of the studies were journal articles (29/38,
76%), but conference papers also made a substantial contribution
(9/38, 24%). The average number of participants across studies
was 155.9 (SD 374.9). The number of participants ranged from
4 to 2252. The mean age of participants was identified in 25

(66%) of the 38 included studies and ranged from 25.6 to 61.1
years, with an average of 47.3 (SD 9.3) years. Across 25 studies
reporting the proportion of female participants, female
participants constituted an average of 37.4% of the total
participants, ranging from 12% to 65%. A total of 20 studies

reported the BMI, which ranged from 22.1 to 38.7 kg/m2, with

an average of 28.6 (SD 3.81) kg/m2. About two-thirds (25/38,
66%) of studies did not focus on a specific type of sleep apnea.
The characteristics of each included study are listed in
Multimedia Appendix 5.
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Table 1. Characteristics of the included studies (N=38).

ReferencesStudiesFeatures

Year of publication, n (%)

[54,55,60,64,67,71,75,76]8 (21)2023

[40,42,46,52,61,63,68,73,77]9 (24)2022

[43,53,70,72]4 (11)2021

[41,45,47,49,51,57-59,65,66,74]11 (29)2020

[48]1 (3)2019

[44,50,69]3 (8)2018

[62]1 (3)2014

[56]1 (3)2013

Country of publication, n (%)

[43,44,46,47,55-57,64,72]9 (24)United States

[42,63,67,68,70,71,75,76]8 (21)China

[45,51,73,77]4 (11)South Korea

[48,49]2 (5)Canada

[40,60]2 (5)Italy

[53,54]2 (5)Norway

[41,69]2 (5)Taiwan

[50,52,58,59,61,62,65,66,74]9 (24)Others (<2)

Publication type, n (%)

[43-45,48,50,51,59,62,76]9 (24)Conference paper

[40-42,46,47,49,52-58,60,61,63-75,77]29 (76)Journal article

[40-77]155.9 (374.9; 4-2252)Number of participants, mean (SD; range)

Age (y)

[40,41,43,45-49,53,54,57-62,64,66,67,69,71-73,75,77]47.3 (9.3; 25.6-61.1)Value, mean (SD; range)

[42,44,50-52,55,56,63,65,68,70,74,76]13 (34)Not reported, n (%)

Female participants (%)

[40,41,43,46-49,52-54,57-62,64,66-69,71-73,75]37.4 (14.76; 12-65)Value, mean (SD; range)

[42,44,45,50,51,55,56,63,65,70,74,76,77]13 (34)Not reported, n (%)

BMI (kg/m2)

[40,41,45,47-49,53,54,57,58,61,62,64,66,68,69,71-73,77]28.6 (3.813; 22.1-38.7)Value, mean (SD; range)

[42-44,46,50-52,55,56,59,60,63,65,67,70,74-76]18 (47)Not reported, n (%)

Sleep apnea type, n (%)

[41,43,45,46,48,49,51-55,57,59-63,66,67,69,70,73-75,77]25 (66)All

[40,42,44,47,56,58,64,65,68,71,72,76]12 (32)Obstructive sleep apnea

[50]1 (3)Central sleep apnea

Features of Wearable Devices
Commercial wearable devices constituted the majority of
wearable devices in the included studies (24/38, 63%; Table 2).
The most mentioned wearable device in the included studies
was the Belun Ring (3/38, 8%). Wearable devices are placed

on various body parts, with the chest (16/38, 42%), wrist (11/38,
29%), and abdomen (9/38, 24%) being the most common
locations. Wearable devices were worn for 1 full night (6-8
hours) in 29 studies (76%). The features of wearable devices in
each included study are shown in Multimedia Appendix 6.
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Table 2. Features of wearable devices (N=38).

ReferencesStudies, n (%)Features

Status of the wearable device

[40,42-47,51,53,54,57,58,60-66,70,72,73,76,77]24 (63)Commercial

[41,48-50,52,55,56,59,67-69,71,74,75]14 (37)Noncommercial

Name of the wearable device

[47,64,72]3 (8)Belun Ring

[48,49]2 (5)Patch

[73,77]2 (5)T-REX TR100A

[43-46,51,53,54,57,60-62,64-66,71,74,76]17 (45)Others

[41,42,50,52,55,56,58,59,63,67-70,75]14 (37)Not reported

Placement of the wearable device

[41,46,50,52-54,56,57,59-62,65,66,68,69]16 (42)Chest

[40,42-45,51,54,58,63,70,76]11 (29)Wrist

[41,53,54,57,65,69,73,74,77]9 (24)Abdomen

[47,53,64,67,69,72]6 (16)Finger

[48,49]2 (5)Neck

[53,75]2 (5)Nose

[55]1 (3)Face

Duration of wearing the wearable device

[41-43,45-49,53-56,58,60-69,71-73,75-77]29 (76)1 full night

[50,52,59]3 (8)<1 full night

[44,51]2 (5)>1 full night

[57,70,74]3 (8)Not reported

Features of AI
Classification was the dominant problem-solving approach used
in the included studies (38/38, 100%; Table 3). Various AI
algorithms were used in the included studies, with convolutional
neural networks (CNNs) being the most common (14/38, 37%).
Among the 38 included studies, most studies (n=37, 97%) used
AI to detect the current sleep apnea, whereas 3 (8%) studies
used wearable AI to predict sleep apnea before its occurrence.
The mean data set size reported in 28 (74%) studies was 60,554
(SD 133,059), with the range spanning from 12 to 561,480.
Most studies (36/38, 95%) used closed-source data, while only
2 (5%) of 38 studies used open-source data. Data were gathered
through wearable devices in all studies (38/38, 100%), via
self-reported questionnaires in 3 (8%) studies, and using
nonwearable devices (eg, smartphones) in 2 (5%) studies.
Respiration data (eg, respiratory rate and respiratory efforts;
25/38, 66%) and HR data (eg, HR, HR variability, and interbeat
interval; 21/38, 55%) were the most frequently used data for
developing the models in the included studies. The number of

features reported in 21 (55%) of the 38 studies ranged from 3
to 212, with an average of 44.3 (62.5). Most studies used
polysomnography as the ground truth assessment method (26/38,
68%), followed by the wearable device (8/38, 21%) and the
context of the experiment (eg, performing different patterns of
breathing; 4/38, 11%). In 28 studies that reported the assessor
of the ground truth, sleep technicians were the most common
assessors (23/38, 61%), followed by sleep physicians (8/38,
21%). American Academy of Sleep Medicine guidelines were
followed in 84% (32/38) of studies to assess the ground truth.
Train-test split was the most common approach used in the
included studies to validate the performance of AI models
(20/38, 53%), followed by k-fold cross-validation (17/38, 45%).
The included studies used wearable AI to detect apnea events
in respiration (24/38, 63%) and patients with sleep apnea (15/38,
40%) and to identify the severity of sleep apnea (21/38, 55%)
and types of apnea events in respiration (8/38, 21%). The
features of AI in each included study are described in
Multimedia Appendix 7.
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Table 3. Features of artificial intelligence (N=38).

ReferencesStudiesFeatures

Problem-solving approaches, n (%)

[40-77]38 (100)Classification

[45-49,54,56,58,62,64,70,71,76]15 (40)Regression

AIa algorithms, n (%)

[48,49,53-55,57-60,63,64,68,73,75,77]14 (37)Convolutional neural network

[40,42,43,46,52-54,67,70,73]10 (26)Random forest

[41,44,45,48,49,52-54,66]9 (24)Long short-term memory

[43,52,53,56,62,67,69,73]8 (21)Support vector machines

[42,51,52,54,61,67,70]7 (18)K-nearest neighbors

[47,51,65,72,74]5 (13)Artificial neural network

[40,50,53,54,73]5 (13)Multilayer perceptron

[41,42,51,52,70]5 (13)Naive Bayes

[42,43,52,70]4 (11)Decision trees

[41,52,61]3 (8)AdaBoost

[52,67,71,73,76]5 (13)Others (<3)

Aim of AI algorithms, n (%)

[40-55,57-76]37 (97)Detection

[44,56,65]3 (8)Prediction

Data set size

[40,42-44,46-49,52-55,58-66,68,72-76]60,554 (133,059; 12-561,480)Value, mean (SD; range)

[41,45,50,51,56,57,67,69-71]10 (26)Not reported, n (%)

Data sources, n (%)

[40-43,45-64,66-77]36 (95)Closed source

[44,65]2 (5)Open source

Data types, n (%)

[40-77]38 (100)Wearable device data

[44,69,76]3 (8)Self-reported data

[69,76]2 (5)Nonwearable device data

Data input to AI algorithms, n (%)

[41,43,45,46,48-50,52-54,56-62,65,66,69,73-77]25 (66)Respiration data

[40,42,45,47,50-52,56,58,62-64,66-68,70-73,76,77]21 (55)Heart rate

[40,44,45,47,51,52,58,60,62,64,66,71,72,76]14 (37)Body movement

[41,46,47,53,54,56,60,64,67,69,71,72,76]13 (34)Oxygen saturation

[56,60,76]3 (8)Acoustic data

[44,55,58,76]10.5 (4)Others (<3)

Number of features

[40-43,45-50,52,56-58,61,64,65,69,70,72,73]44.33 (62.5; 3-212)Value, mean (SD; range)

[44,51,53-55,59,60,62,63,66-68,71,73-77]17 (45)Not reported, n (%)

Ground truth assessment methods, n (%)

[41-43,45-49,55,58,61-73,75-77]26 (68)Polysomnography

[40,44,51,53,54,56,60,74]8 (21)Wearable device

[50,52,57,59]4 (11)Context
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ReferencesStudiesFeatures

Guidelines for ground truth assessment, n (%)

[40-49,51,53-55,58,61-77]32 (84)American Academy of Sleep
Medicine guidelines

[50,52,56,57,59,60]6 (16)Not reported

Assessors of ground truth, n (%)

[40-42,44-47,53-56,58,60-62,64-66,69,72,73,76,77]23 (61)Sleep technician

[42,57,63,64,68,71,72]8 (21)Sleep physician

[48-52,59,68,70,74,75]10 (26)Not reported

Validation methods, n (%)

[41,45,47,51,52,55,57-60,63-65,68,71-75,77]20 (53)Train-test split

[42-44,46,48-51,53,54,56,61,63,66,68,70,76]17 (45)K-fold cross-validation

[40,54,60,62,69]5 (13)Leave-one-out cross-validation

[67]1 (3)Not reported

Measured outcomes, n (%)

[41,43-46,50-59,61,63,66-68,73-75,77]24 (63)Apnea events in respiration

[40-43,45-49,53,58,62,64,65,69-73,76,77]21 (55)Sleep apnea severity

[40-44,46-48,53,58,63,64,69,71,72,76]15 (40)Patients with sleep apnea

[41,46,53,57,58,60,66,75]8 (21)Type of apnea events

aAI: artificial intelligence.

Results of Risk-of-Bias Appraisal
Nearly half of the included studies (17/38, 45%) reported
comprehensive details to determine whether an appropriate
consecutive or random sample of eligible participants was used.
Over half of the studies (22/38, 58%) avoided inappropriate
exclusions. A substantial majority, 30 (79%) out of 38 studies,
ensured a balanced number of patients across subgroups. In

addition, around two-thirds (25/38, 66%) of the studies reported
a sufficient sample size. Consequently, a little less than half of
the studies (16/38, 42%) were assessed as having a low risk of
bias in the “selection of participants” domain, as shown in Figure
2. In terms of matching participants to the predefined
requirements in the review question, a low level of concern was
identified in nearly 40% (15/38, 40%) of the included studies,
as shown in Figure 3.

Figure 2. Results of the assessment of risk of bias in the included studies.

A substantial majority of the included studies comprehensively
detailed their AI models, with 34 (89%) out of 38 studies
providing thorough descriptions. Almost all, 35 (92%) out of

38 studies, clearly reported the features (predictors) used.
Moreover, an overwhelming majority, 36 (95%) out of 38
studies, ensured that these features were sourced without prior
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knowledge of the outcome data. Consistency in feature
assessment across participants was observed in 35 (92%) out
of 38 studies. Consequently, the potential for bias in the “index
test” domain was assessed as low in the vast majority of the

studies (32/38, 84%), as shown in Figure 2. In addition, 32
(84%) out of 38 studies were found to have minimal concerns
regarding the alignment between the model’s predictors and the
review question’s criteria, as illustrated in Figure 3.

Figure 3. Results of the assessment of applicability concerns in the included studies.

In most of the included studies (32/38, 84%), the outcome of
interest, specifically sleep apnea, was consistently assessed
using appropriate methodologies. Nearly all studies (37/38,
97%) defined and determined the outcome in a uniform manner
for all participants. An overwhelming majority of the studies
(36/38, 95%) determined the outcome without prior knowledge
of the predictor information. In a substantial portion of the
studies (33/38, 87%), the diagnostic test was conducted for an
appropriate duration to ensure accurate results. As a result, the
potential for bias in the “reference standard” domain was
deemed low in the vast majority of the studies (32/38, 84%), as
shown in Figure 2. In addition, the same number of studies
(32/38, 84%) showed minimal concerns regarding any
discrepancies between the outcome’s definition, timing, or
determination and the review question’s criteria, as indicated
in Figure 3.

Finally, a significant majority of the studies (34/38, 89%)
ensured the inclusion of all enrolled participants in the data
analysis. A substantial number of these studies (32/38, 84%)
executed proper data preprocessing. Similarly, a high proportion
(34/38, 89%) adopted suitable measures to evaluate the
performance of their models. Nearly half of the studies (17/38,
45%) demonstrated an appropriate split among training,
validation, and test sets. However, the risk of bias in the
validation methods used by the remaining studies remained
unclear due to insufficient information being provided.

Consequently, slightly more than half of the studies (20/38,
53%) were deemed to have a low risk of bias in the “analysis”
domain, as indicated in Figure 2. A detailed breakdown of the
“risk of bias” and “applicability concerns” for each domain in
every study is available in Multimedia Appendix 8.

Results of the Studies
As mentioned earlier, meta-analyses were carried out to pool
results related to 4 outcomes: detection of apnea events in
respiration, identification of types of apnea events in respiration,
detection of patients with sleep apnea, and estimation of the
severity of sleep apnea. The following subsections present the
results of the meta-analyses for each outcome.

Apnea Events in Respiration

Accuracy

We conducted meta-analyses of 36 estimates of accuracy derived
from 2,702,305 respiratory events across 17 (45%) of the 38
studies (Table 4). The pooled mean accuracy of these estimates
was 0.893 (95% CI 0.82-0.94). The meta-analyzed evidence
exhibited considerable statistical heterogeneity (P<.001;

I2=100%). Further, Table 4 shows that there is a statistically
significant difference in the pooled mean accuracy between
subgroups in the “algorithms” group (P<.001) and “type of
algorithms” group (P=.02), whereas no statistically significant
difference (P>.05) was found in the pooled mean accuracy
between subgroups in the remaining groups.
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Table 4. Pooled mean estimates of accuracy in detecting respiratory events by several factors.

Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean accu-
racy (%; 95% CI)

Accuracy (%),
range

Sample size,
N

Studies

(N=38), na

(%)

Groups

I2 (%)Q (P value)Tau2

<.001 bAlgorithm

1008523.6
(<.001)

0.01020.884 (0.84-0.92)0.76-0.97437,5939 (24)Convolutional neu-
ral network

10018,227
(<.001)

0.00860.848 (0.79-0.90)0.73-0.92665,0916 (16)Recurrent neural
networks

10041,658
(<.001)

0.01540.867 (0.77-0.94)0.81-0.96807,2254 (11)Random forest

99221.4 (<.01)0.00140.807 (0.77-0.84)0.79-0.84245,7453 (8)Support vector ma-
chine

9778.1 (<.01)0.00190.736 (0.69-0.78)0.69-0.77233,6473 (8)K-nearest neigh-
bors

00.99 (.32)0.00000.716 (0.71-0.73)0.71-0.7256292 (5)AdaBoost

9111.3 (<.01)0.00010.804 (0.79-0.86)0.80-0.81242,5052 (5)Multilayer percep-
tron

100218.8 (<.01)0.01030.664 (0.53-0.79)0.60-0.7317,7272 (5)Quadratic discrimi-
nant analysis

.02Type of algorithm

100289,302.4
(<.001)

0.19260.831 (0.65-0.92)0.60-0.971,334,18018 (47)Machine learning

100160,871.2
(<.001)

0.26590.899 (0.82-0.94)0.73-1.001,368,12518 (47)Deep learning

.93Sample size, n

100111,302.0
(<.001)

0.47830.885 (0.74-0.95)0.60-1.00326,32224 (63)<100

1002658.6
(<.001)

0.00860.896 (0.82-0.95)0.82-0.93276,5723 (8)100-200

100314,844.0
(<.001)

0.12380.907 (0.75-0.97)0.77-0.972,099,4119 (24)<200

>.99Type of sleep apnea

96457,420.0
(<.001)

0.36160.893 (0.80-0.94)0.60-1.002,635,18834 (89)All

10025.4 (<.001)0.00070.892 (0.87-0.91)0.88-0.9067,1172 (5)Obstructive sleep
apnea

.05Status of the WDc

100370,236.6
(<.001)

0.07050.844 (0.78-0.89)0.69-0.972,581,50522 (58)Commercial

10073,404.3
(<.001)

0.62430.947 (0.80-0.99)0.60-1.00120,80014 (37)Noncommercial

.61Placement of the WD

100143,429.2
(<.001)

0.21730.845 (0.64-0.94)0.60-0.97719,05514 (37)Chest

10084,686.0
(<.001)

1.46500.951 (0.13-0.99)0.73-1.00127,3757 (18)Abdomen

1002849.4
(<.001)

0.01860.880 (0.76-0.96)0.76-0.93261,9493 (8)Chest and ab-
domen

100790.1 (<.001)0.00240.841 (0.80-0.88)0.82-0.88113,4323 (8)Wrist
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Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean accu-
racy (%; 95% CI)

Accuracy (%),
range

Sample size,
N

Studies

(N=38), na

(%)

Groups

I2 (%)Q (P value)Tau2

.90Data set size, n

1001136.8
(<.001)

0.47470.863 (0.39-0.98)0.60-0.9734,08812 (32)<10,000

10089,963.2
(<.001)

0.60160.907 (0.69-0.97)0.73-1.00173,17111 (29)10,000-50,000

100343,840.9
(<.001)

0.13910.881 (0.71-0.95)0.73-0.972,218,47410 (26)>50,000

.30Data type

10056,612.8
(<.001)

0.99620.962 (0.53-1.0)0.69-1.00217,6845 (13)Respiration data

100240.24
(<.001)

0.00780.864 (0.77-0.94)0.82-0.9027,7352 (5)HRd data

100852.8 (<.001)0.01160.813 (0.77-0.85)0.73-0.84104,4396 (16)Respiration data
and HR data

100319,067.7
(<.001)

0.13410.896 (0.75-0.96)0.76-0.972,108,99710 (26)Respiration data

and SpO2
e

1009958.4
(<.001)

0.01960.787 (0.69-0.86)0.60-0.88238,49412 (32)Respiration data,
HR data, and body
movement

.47Ground truth

100185,452.6
(<.001)

0.14330.877 (0.81-0.92)0.69-0.97971,89617 (45)Polysomnography

100148,018.6
(<.001)

1.46130.949 (0.19-1.0)0.76-1.001,511,4299 (24)WD

10013,488.7
(<.001)

0.23020.856 (0.45-0.97)0.60-0.93218,98010 (26)Experiment con-
text

.31Validation method

100347,304
(<.001)

0.16430.835 (0.64-0.93)0.69-0.972,173,81412 (32)K-fold cross-valida-
tion

100106,748.9
(<.001)

0.36670.911 (0.82-0.96)0.60-1.00528,49124 (63)Train-test split

—f100457,567.0
(<.001)

0.31300.893 (0.82-0.94)0.60-1.02,702,30536 (95)Overall accuracy

aMany studies were included >1 time in most meta-analyses, given that the studies assessed the performance of >1 algorithm.
bItalicized values are statistically significant (P<.05).
cWD: wearable device.
dHR: heart rate.
eSpO2: blood oxygen saturation.
fNot applicable.

Sensitivity

As shown in Table 5, meta-analyses were carried out on 22
estimates of sensitivity derived from 872,443 respiratory events
across 15 (39%) of the 38 studies. The pooled mean sensitivity

of these estimates was 0.793 (95% CI 0.67-0.87). The
meta-analyzed evidence has considerable statistical

heterogeneity (P<.001; I2=100%). With regard to subgroup
analyses, there was no statistically significant difference in the
pooled mean sensitivity between subgroups in all groups.
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Table 5. Pooled mean estimates of sensitivity in detecting respiratory events by several factors.

Test for sub-
group differ-
ence, P value

Heterogeneity measuresPooled mean sensi-
tivity (%; 95% CI)

Sensitivity
(%), range

Sample size,
N

Studies, na

(%)

Groups

I2 (%)Q (P value)Tau2

.39Algorithm

10014,383.9
(<.001)

0.08620.752 (0.56-0.90)0.25-0.94107,2748 (21)Convolutional neu-
ral network

1007460.8
(<.001)

0.01190.799 (0.72-0.86)0.68-0.89279,3696 (16)Recurrent neural
networks

1001628.9
(<.001)

0.00920.737 (0.61-0.84)0.68-0.80141,6012 (5)Random forest

100228.8 (<.01)0.07940.499 (0.15-0.85)0.30-0.69114,3682 (5)K-nearest neigh-
bors

.80Type of algorithm

1003872.9
(<.001)

0.06960.682 (0.50-0.80)0.30-0.80370,3376 (16)Machine learning

10042,230.7
(<.001)

0.13970.819 (0.69-0.90)0.25-0.98502,10616 (42)Deep learning

.41Sample size, n

1004692.1
(<.001)

0.16760.813 (0.58-0.92)0.25-0.9841,76110 (26)<100

100658.0 (<.001)0.01130.801 (0.70-0.89)0.70-0.8757,0223 (8)100-200

10055,208.4
(<.001)

0.08020.718 (0.38-0.89)0.44-0.94773,6609 (24)<200

.99Type of sleep apnea

10058,431.0
(<.001)

0.10060.791 (0.67-0.87)0.25-0.98862,06020 (53)All

1002217.2
(<.001)

0.17090.724 (0.18-1.0)0.44-0.9310,3832 (5)Obstructive sleep
apnea

.05Status of the WDb

10058,113.7
(<.001)

0.02140.726 (0.61-0.81)0.30-0.94848,03416 (42)Commercial

1001790.4
(<.001)

0.10510.830 (0.60-0.97)0.25-0.9824,4096 (16)Noncommercial

.36Placement of the WD

1001621.1
(<.001)

0.00790.745 (0.45-0.89)0.30-0.9358,1756 (16)Chest

99285.5 (<.001)0.00320.826 (0.77-0.87)0.78-0.8755,7833 (8)Chest and ab-
domen

1001316.3
(<.001)

0.02380.617 (0.44-0.78)0.44-0.7018,5483 (8)Wrist

.63Data set size, n

99191.7 (<.001)0.13380.796 (0.71-0.97)0.30-0.9416574 (11)<10,000

1002218.8
(<.001)

0.12240.768 (0.48-0.96)0.25-0.9813,1375 (13)10,000-50,000

10057,265.8
(<.001)

0.05230.718 (0.48-0.86)0.44-0.94800,62710 (26)>50,000

.41Data type

1002046.3
(<.001)

0.35660.888 (0.37-0.98)0.30-0.9835,7495 (13)Respiration data
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Test for sub-
group differ-
ence, P value

Heterogeneity measuresPooled mean sensi-
tivity (%; 95% CI)

Sensitivity
(%), range

Sample size,
N

Studies, na

(%)

Groups

I2 (%)Q (P value)Tau2

100600.2 (<.001)0.04990.835 (0.56-0.99)0.70-0.9379562 (5)HRc data

10052,794.7
(<.001)

0.08760.814 (0.73-0.87)0.68-0.94787,54210 (26)Respiration data

and SpO2
d

1001688.2
(<.001)

0.02530.658 (0.50-0.80)0.44-0.8040,4574 (11)Respiration data,
HR data, and body
movement

.29Ground truth

1007131.5
(<.001)

0.23730.726 (0.53-0.85)0.25-0.9495,89111 (29)Polysomnography

10051,466.2
(<.001)

0.10810.900 (0.55-0.98)0.69-0.98742,1369 (24)WD

602.47 (.12)0.00020.813 (0.79-0.83)0.80-0.8234,4162 (5)Experiment con-
text

.36Validation method

10054,250.9
(<.001)

0.02530.743 (0.59-0.85)0.30-0.94795,95912 (32)K-fold cross-valida-
tion

1008020.8
(<.001)

0.07650.770 (0.61-0.90)0.25-0.9876,48410 (26)Train-test split

—e10062,433.8
(<.001)

0.11960.793 (0.67-0.87)0.25-0.98872,44322 (58)Overall sensitivity

aMany studies were included >1 time in most meta-analyses, given that the studies assessed the performance of >1 algorithm.
bWD: wearable device.
cHR: heart rate.
dSpO2: blood oxygen saturation.
eNot applicable.

Specificity

Meta-analyses were performed to pool 22 estimates of
specificity derived from 1,699,503 respiratory events across 15
(39%) of the 38 studies (Table 6). The pooled mean specificity
of these estimates was 0.946 (95% CI 0.88-0.98). There was

considerable statistical heterogeneity (P<.001; I2=100%) in the
meta-analyzed studies. We also found a statistically significant
difference in the pooled mean specificity between subgroups
in the “status of wearable device” group (P=.01), while there
was no statistically significant difference (P>.05) in the pooled
mean specificity between subgroups in the rest of the groups.
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Table 6. Pooled mean estimates of specificity in detecting respiratory events by several factors.

Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean
specificity (%;
95% CI)

Specificity
(%), range

Sample size,
N

Studies, na

(%)

Groups

I² (%)Q (P value)Tau2

.14Algorithm

1006463.7
(<.001)

0.02360.932 (0.87-0.98)0.72-0.99298,3158 (21)Convolutional neu-
ral network

10011,722.7
(<.001)

0.00900.870 (0.81-0.92)0.76-0.95385,7226 (16)Recurrent neural
networks

10028,107.9
(<.001)

0.03740.930 (0.74-1.00)0.85-0.98647,8972 (5)Random forest

99127.1 (<.01)0.00790.812 (0.71-0.90)0.76-0.86116,0392 (5)K-nearest neigh-
bors

.10Type of algorithm

100259,327.0
(<.001)

0.57000.910 (0.38-0.99)0.70-0.98879,9756 (16)Machine learning

100158,624.8
(<.001)

0.64540.949 (0.87-0.98)0.72-1.00819,52816 (42)Deep learning

.94Sample size, n

100123,494.7
(<.001)

1.02720.951 (0.79-0.99)0.70-1.00154,20210 (26)<100

1002860.8
(<.001)

0.01120.922 (0.85-0.97)0.84-0.95219,5503 (8)100-200

100340,888.9
(<.001)

0.25490.949 (0.81-0.99)0.85-0.981,325,7519 (24)<200

.97Type of sleep apnea

100487,691.1
(<.001)

0.74590.947 (0.86-0.98)0.70-1.001,642,76920 (53)All

663.0 (.09)0.01000.943 (0.94-0.95)0.94-0.9556,7342 (5)Obstructive sleep
apnea

.01 cStatus of the WDb

100413,387.5
(<.001)

0.22570.887 (0.79-0.94)0.70-0.981,629,03216 (42)Commercial

1002607.4
(<.001)

0.01810.969 (0.92-1.00)0.85-1.0070,4716 (16)Noncommercial

.97Placement of the WD

100157,806.3
(<.001)

0.36780.900 (0.65-0.97)0.70-0.98634,9606 (16)Chest

1004312.8
(<.001)

0.03700.893 (0.73-0.99)0.72-0.95206,1663 (8)Chest and ab-
domen

1002106.2
(<.001)

0.00740.885 (0.82-0.94)0.84-0.9494,8843 (8)Wrist

.64Data set size, n

100416.7 (<.001)0.81310.923 (0.06-1.00)0.70-0.9965114 (11)<10,000

1009402.4
(<.001)

0.04820.937 (0.81-1.00)0.72-1.0055,5955 (13)10,000-50,000

10093,530.5
(<.001)

0.10310.888 (0.84-0.93)0.76-0.981,417,84710 (26)>50,000

.37Data type
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Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean
specificity (%;
95% CI)

Specificity
(%), range

Sample size,
N

Studies, na

(%)

Groups

I² (%)Q (P value)Tau2

10053,359.8
(<.001)

1.16210.977 (0.61-1.00)0.70-1.00181,9355 (13)Respiration data

99217.8 (<.001)0.01210.908 (0.80-0.98)0.86-0.9519,7792 (5)HRd data

100348,529.0
(<.001)

0.37910.925 (0.72-0.98)0.72-0.981,321,45510 (26)Respiration data

and SpO2
e

1009381.8
(<.001)

0.01170.864 (0.67-0.95)0.76-0.94172,1174 (11)Respiration data,
HR data, and body
movement

.90Ground truth

100202,709.3
(<.001)

0.56190.948 (0.86-0.98)0.70-1.00771,56611 (29)Polysomnography

100103,183.0
(<.001)

1.81980.957 (0.11-1.00)0.72-1.00769,2939 (24)WD

100293.1 (<.001)0.01580.908 (0.78-0.98)0.85-0.95158,6442 (5)Experiment con-
text

.10Validation method

100401,832.4
(<.001)

0.36740.866 (0.61-0.96)0.70-0.981,377,85512 (32)K-fold cross-valida-
tion

1008482.6
(<.001)

0.01780.947 (0.90-0.98)0.84-1.00321,64810 (26)Train-test split

—f100487,706.6
(<.001)

0.63730.946 (0.88-0.98)0.70-1.001,699,50322 (58)Overall specificity

aMany studies were included more than one time in all meta-analyses given that the studies assessed the performance of more than one algorithm.
bWD: wearable device.
cItalicized values are statistically significant (P<.05).
dHR: heart rate.
eSpO2: blood oxygen saturation.
fNot applicable.

Type of Apnea Events in Respiration
We conducted meta-analyses of 6 estimates of accuracy derived
from 637,250 respiratory events across 6 (16%) of the 38 studies
(Table 7). The pooled mean accuracy of these estimates was
0.815 (95% CI 0.64-0.94). The meta-analyzed studies exhibited

considerable statistical heterogeneity (P<.001; I2=100%). In
addition, there was a statistically significant difference in the
pooled mean accuracy between subgroups in the “data type”
group (P=.001), while no statistically significant difference
(P>.05) was found in the pooled mean accuracy between
subgroups in the remaining groups.
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Table 7. Pooled mean estimates of accuracy in detecting the type of respiratory events by several factors.

Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean accu-
racy (%; 95% CI)

Accuracy (%),
range

Sample size,
N

Studies, n
(%)

Groups

I² (%)Q (P value)Tau2

.76Algorithm

10026,906.1
(<.001)

0.09730.829 (0.55-0.99)0.40-0.97459,1634 (11)Convolutional neu-
ral network

1002299.2
(<.001)

0.00730.788 (0.68-0.88)0.73-0.84178,0872 (5)Long short-term
memory

.27Sample size, n

10021,243.3
(<.001)

0.03280.892 (0.73-0.98)0.74-0.97309,0333 (8)≤100

10019,923.0
(<.001)

0.08240.724 (0.41-0.95)0.40-0.88328,2173 (8)>100

.25Status of the WDa

10041,330.6
(<.001)

0.07350.759 (0.51-0.94)0.40-0.93578,0764 (11)Commercial

9730.9 (<.01)0.02490.909 (0.74-0.99)0.84-0.9759,1742 (5)Noncommercial

.001 bData type

733.7 (.05)000220.944 (0.91-0.97)0.93-0.97189,9702 (5)Respiration data

100697.4 (<.01)0.00180.857 (0.81-0.90)0.84-0.88308,8102 (5)Respiration data

and SpO2
c

1007875.2
(<.001)

0.05900.574 (0.25-0.87)0.40-0.74138,4702 (5)Respiration data,

HRd data, and
body movement

.19Ground truth

10012,665.3
(<.001)

0.08220.762 (0.49-0.95)0.40-0.97197,6444 (11)Polysomnography

1003353.7
(<.001)

0.00390.905 (0.85-0.95)0.88-0.93439,6062 (5)Nonpolysomnogra-
phy

.97Validation method

10010,579.9
(<.001)

0.01640.812 (0.66-0.93)0.74-0.88368,8492 (5)K-fold cross-valida-
tion

10028,010.1
(<.001)

0.09540.818 (0.54-0.98)0.40-0.97268,4014 (11)Train-test split

—e10041,608.1
(<.001)

0.06030.815 (0.64-0.94)0.40-0.97637,2506 (16)Overall accuracy

aWD: wearable device.
bItalicized values are statistically significant (P<.05).
cSpO2: blood oxygen saturation.
dHR: heart rate.
eNot applicable.

Patients With Sleep Apnea

Accuracy

We carried out meta-analyses of 13 estimates of accuracy
derived from 2015 participants across 13 (34%) of the 38 studies
(Table 8). The pooled mean accuracy of these estimates was

0.869 (95% CI 0.81-0.92). The meta-analyzed estimates showed

considerable statistical heterogeneity (P<.001; I2=100%).
Further, there was a statistically significant difference in the
pooled mean accuracy between subgroups in the “type of sleep
apnea” group (P=.049). However, no statistically significant
difference (P>.05) was found in the pooled mean accuracy
between subgroups in the remaining groups.
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Table 8. Pooled mean estimates of accuracy in detecting sleep apnea by several factors.

Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean accu-
racy (%; 95% CI)

Accuracy (%),
range

Sample size,
N

Studies, n
(%)

Groups

I² (%)Q (P value)Tau2

.20Type of algorithm

72.2 (.34)0.00030.896 (0.87-0.92)0.88-0.9211413 (8)Machine learning

8655.4 (<.01)0.02260.849 (0.76-0.92)0.71-1.006789 (24)Deep learning

.20Sample size, n

7023.3 (<.01)0.00950.838 (0.77-0.90)0.71-0.964968 (21)≤100

9145.5 (<.01)0.02240.905 (0.81-0.97)0.75-1.0015195 (13)>100

.049 aType of sleep apnea

8024.4 (<.01)0.01630.920 (0.84-0.97)0.78-1.006716 (16)All

8540.5 (<.01)0.00910.823 (0.76-0.88)0.71-0.9113447 (18)Obstructive sleep
apnea

.18Status of the WDb

8449.5 (<.01)0.00980.841 (0.78-0.89)0.71-0.9616329 (24)Commercial

8722.4 (<.01)0.02520.923 (0.81-0.99)0.78-1.003834 (11)Noncommercial

.17Placement of the WD

9828.4 (<.01)0.01650.840 (0.73-0.93)0.74-0.969824 (11)Wrist

675.99 (.05)0.00700.805 (0.70-0.89)0.71-0.862123 (8)Finger

8110.6 (<.01)0.02300.949 (0.83-1.00)0.86-1.001473 (8)Chest and ab-
domen

.09Data type

7813.4 (<.01)0.01390.938 (0.86-0.99)0.86-1.005564 (11)Respiration data

and SpO2
c

8217.1 (<.01)0.01110.840 (0.74-0.92)0.71-0.914084 (11)Respiration data,

HRd data, and
body movement

.12Ground truth

8671.1 (<.01)0.01640.878 (0.82-0.93)0.71-1.00190811 (29)Polysomnography

381.6 (.20)0.00360.789 (0.67-0.89)0.74-0.861072 (5)WD

.91Validation method

638.2 (.04)0.00350.873 (0.82-0.92)0.78-0.9111774 (11)K-fold cross-valida-
tion

9059.2 (<.01)0.02670.880 (0.78-0.95)0.71-1.006987 (18)Train-test split

877.7 (<.01)0.02400.839 (0.64-0.97)0.74-0.921402 (5)Leave-one-out
cross-validation

—e10080.3 (<.001)0.01560.869 (0.81-0.92)0.71-1.00201513 (34)Overall accuracy

aItalicized values are statistically significant (P<.05).
bWD: wearable device.
cSpO2: blood oxygen saturation.
dHR: heart rate.
eNot applicable.
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Sensitivity

As shown in Table 9, meta-analyses were carried out on 13
estimates of sensitivity derived from 1580 participants across
13 (34%) of the 38 studies. The pooled mean sensitivity of these
estimates was 0.938 (95% CI 0.89-0.97). The meta-analyzed

evidence has considerable statistical heterogeneity (P<.001;

I2=82%). With regards to subgroup analyses, there was no
statistically significant difference in the pooled mean sensitivity
between subgroups in all groups except for the “placement of
wearable device” group (P<.001).
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Table 9. Pooled mean estimates of sensitivity in detecting sleep apnea by several factors.

Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean sensi-
tivity (%; 95% CI)

Sensitivity
(%), range

Sample size,
N

Studies, n
(%)

Groups

I² (%)Q (P value)Tau2

.78Type of algorithm

716.9 (.03)0.00380.926 (0.88-0.98)0.89-0.989213 (8)Machine learning

8659.0 (<.01)0.02560.942 (0.87-0.99)0.77-1.004859 (24)Deep learning

.50Sample size, n

7528.0 (<.01)0.01540.953 (0.90-0.99)0.77-1.003638 (21)≤100

8833.9 (<.01)0.01960.917 (0.83-0.97)0.77-1.0012175 (13)>100

.06Type of sleep apnea

6213.0 (.02)0.00590.959 (0.93-1.00)0.90-1.004566 (16)All

8437.8 (<.01)0.01790.903 (0.83-0.96)0.77-1.0011247 (18)Obstructive sleep
apnea

.06Status of the WDa

8143.2 (<.01)0.01700.916 (0.85-0.96)0.77-1.0012549 (24)Commercial

607.5 (.06)0.00480.974 (0.93-1.00)0.93-1.003264 (11)Noncommercial

<.001 bPlacement of the WD

8116.1 (<.01)0.00730.837 (0.76-0.91)0.77-0.908334 (11)Wrist

625.3 (.07)0.00000.966 (0.90-1.00)0.92-1.001483 (8)Finger

01.1 (.59)0.00830.997 (0.97-1.00)0.98-1.001303 (8)Chest and ab-
domen

.39Data type

7311.0 (.01)0.00800.980 (0.93-1.00)0.92-1.003784 (11)Respiration data

and SpO2
c

526.2 (.10)0.00400.954 (0.91-0.99)0.92-0.953224 (11)Respiration data,

HRd data, and
body movement

.80Ground truth

8152.6 (<.01)0.01260.941 (0.89-0.97)0.77-1.00149511 (29)Polysomnography

9212.1 (<.01)0.07730.917 (0.57-1.00)0.77-1.00852 (5)WD

.89Validation method

7210.7 (.01)0.00630.944 (0.89-0.98)0.89-1.009414 (11)K-fold cross-valida-
tion

8641.9 (<.01)0.01990.941 (0.87-0.99)0.77-1.005277 (18)Train-test split

9213.2 (<.01)0.05420.896 (0.61-1.00)0.77-0.981122 (5)Leave-one-out
cross-validation

—e8267.0 (<.001)0.01620.938 (0.89-0.97)0.77-1.00158013 (34)Overall sensitivity

aWD: wearable device.
bItalicized values are statistically significant (P<.05).
cSpO2: blood oxygen saturation.
dHR: heart rate.
eNot applicable.
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Specificity

Meta-analyses were performed to pool 13 estimates of
specificity derived from 436 participants across 13 (34%) of
the 38 studies (Table 10). The pooled mean specificity of these

estimates was 0.752 (95% CI 0.63-0.86). There was considerable

statistical heterogeneity (P<.001; I2=78%) in the meta-analyzed
studies. Our subgroup meta-analyses showed that there was no
statistically significant difference in the pooled mean specificity
between subgroups in all groups.
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Table 10. Pooled mean estimates of specificity in detecting sleep apnea by several factors.

Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean
specificity (%;
95% CI)

Specificity
(%), range

Sample size,
N

Studies, n
(%)

Groups

I² (%)Q (P value)Tau2

.53Type of algorithm

757.9 (.02)0.01680.796 (0.63-0.92)0.60-0.882203 (8)Machine learning

7837.1 (<.01)0.05750.735 (0.55-0.89)0.29-1.001949 (24)Deep learning

.21Sample size, n

8035.8 (<.01)0.06150.690 (0.48-0.87)0.29-1.001338 (21)≤100

6511.6 (.02)0.00770.818 (0.72-0.90)0.72-1.003035 (13)>100

.62Type of sleep apnea

8634.6 (<.01)0.07800.810 (0.55-0.99)0.29-0.892206 (16)All

5112.3 (.06)0.00680.730 (0.64-0.81)0.36-1.002167 (18)Obstructive sleep
apnea

.43Status of the WDa

7632.9 (<.01)0.02950.784 (0.66-0.89)0.29-1.003789 (24)Commercial

7311.3 (.01)0.04970.672 (0.39-0.91)0.36-1.00584 (11)Noncommercial

.71Placement of the WD

7310.9 (.01)0.03090.803 (0.62-0.94)0.72-1.001494 (11)Wrist

8311.5 (<.01)0.07270.658 (0.29-0.89)0.29-0.88643 (8)Finger

262.7 (.26)0.01570.777 (0.47-0.99)0.60-1.00183 (8)Chest and ab-
domen

.35Data type

475.6 (.13)0.01860.855 (0.66-0.99)0.60-1.001794 (11)Respiration data

and SpO2
b

7411.5 (<.01)0.04110.700 (0.46-0.90)0.29-0.89864 (11)Respiration data,

HRc data, and
body movement

.53Ground truth

8152.8 (<.01)0.04440.756 (0.62-0.88)0.29-1.0041411 (29)Polysomnography

00.04 (.85)0.00000.691 (0.46-0.89)0.67-0.75222 (5)WD

.48Validation method

8926.9 (<.01)0.05470.713 (0.44-0.93)0.36-0.882364 (11)K-fold cross-valida-
tion

7422.9 (<.01)0.04560.793 (0.72-0.86)0.29-1.001727 (18)Train-test split

00.13 (.72)0.00000.644 (0.45-0.82)0.60-0.67282 (5)Leave-one-out
cross-validation

—d7854.5 (<.001)0.03660.752 (0.63-0.86)0.29-1.0043613 (34)Overall specificity

aWD: wearable device.
bSpO2: blood oxygen saturation.
cHR: heart rate.
dNot applicable.
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Severity of Sleep Apnea

Accuracy

We performed meta-analyses of 9 estimates of accuracy derived
from 1661 participants across 9 (24%) of the 38 studies (Table
11). The pooled mean accuracy of these estimates was 0.651
(95% CI 0.54-0.75). The meta-analyzed studies exhibited

considerable statistical heterogeneity (P<.001; I2=93%). In
addition, there was a statistically significant difference in the
pooled mean accuracy between subgroups in “type of sleep
apnea” group (P=.03) and “data type” group (P=.01), while no
statistically significant difference (P>.05) was found in the
pooled mean accuracy between subgroups in the remaining
groups.

Table 11. Pooled mean estimates of accuracy in detecting the severity of sleep apnea by several factors.

Test for sub-
group differ-
ence, P value

Heterogeneity measuresPooled mean accura-
cy (%; 95% CI)

Accuracy (%),
range

Sample size,
N

Studies, n
(%)

Groups

I² (%)Q (P value)Tau2

.28Type of algorithm

9540.6 (<.01)0.01050.716 (0.60-0.82)0.63-0.8011413 (8)Machine learning

9047.8 (<.01)0.03180.615 (0.46-0.76)0.36-0.895206 (16)Deep learning

.28Sample size, n

8722.4 (<.01)0.02190.584 (0.43-0.74)0.36-0.712744 (11)≤100

9572.9 (<.01)0.02520.698 (0.56-0.82)0.55-0.8913875 (13)>100

.03 aType of sleep apnea

8520.3 (<.01)0.01960.757 (0.62-0.87)0.58-0.895914 (11)All

8323.3 (<.01)0.01110.564 (0.46-0.66)0.36-0.6710705 (13)Obstructive sleep
apnea

.08Status of the WDb

9387.9 (<.01)0.02190.606 (0.50-0.71)0.36-0.8015437 (18)Commercial

846.2 (.01)0.01810.809 (0.60-0.95)0.71-0.891182 (5)Noncommercial

.11Placement of the WD

423.5 (.18)0.00110.596 (0.54-0.65)0.55-0.639223 (8)Wrist

8816.5 (<.01)0.02350.542 (0.35-0.72)0.36-0.672123 (8)Finger

846.2 (.01)0.02190.809 (0.60-0.95)0.71-0.891182 (5)Chest and abdomen

.01Data type

686.2 (.04)0.00730.807 (0.71-0.89)0.71-0.895273 (8)Respiration data and

SpO2
c

8816.5 (<.01)0.02350.542 (0.35-0.72)0.36-0.672123 (8)Body movement,

HRd data, and SpO2

.37Validation method

9840.6 (<.01)0.01950.719 (0.53-0.87)0.63-0.8010792 (5)K-fold cross-valida-
tion

9047.8 (<.01)0.03180.615 (0.46-0.76)0.36-0.895206 (16)Train-test split

—e93106.1 (<.001)0.02430.651 (0.54-0.75)0.36-0.8916619 (24)Overall accuracy

aItalicized values are statistically significant (P<.05).
bWD: wearable device.
cSpO2: blood oxygen saturation.
dHR: heart rate.
eNot applicable.
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Correlation Coefficient
As shown in Table 12, meta-analyses were carried out on 12
estimates of correlation coefficient (r) derived from 1266
participants across 12 (32%) of the 38 studies. The pooled mean
r of these estimates was 0.877 (95% CI 0.82-0.92). The
meta-analyzed evidence has considerable statistical

heterogeneity (P<.001; I2=82%). With regard to subgroup
analyses, there was a statistically significant difference in the
pooled mean r between subgroups in the “placement of wearable
device” group (P<.001) and the “data type” group (P<.001).
However, no statistically significant difference (P>.05) was
found in the pooled mean r between subgroups in the remaining
groups.
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Table 12. Pooled mean estimates of correlation coefficient (r) in detecting the severity of sleep apnea by several factors.

Test for sub-
group differ-
ences, P value

Heterogeneity measuresPooled mean corre-
lation coefficient
(%; 95% CI)

Correlation
coefficient
(%), range

Sample size,
N

Studies, n
(%)

Groups

I² (%)Q (P value)Tau2

.12Type of algorithm

9225.6 (<.01)0.09870.922 (0.66 to0.98)0.90 to 0.965263 (8)Machine learning

8553.1 (<.01)0.05520.856 (0.79 to0.90)0.64 to 0.917409 (24)Deep learning

.79Sample size, n

3712.7 (.12)0.00010.879 (0.85 to0.90)0.64 to 0.905419 (24)≤100

99173.0 (<.01)0.28490.896 (0.12 to0.99)0.71 to 0.967253 (8)>100

.54Type of sleep apnea

9180.2 (<.01)0.09180.886 (0.81 to0.93)0.64 to 0.968028 (21)All

9134.7 (<.01)0.7590.859 (0.68 to0.94)0.71 to 0.904644 (11)Obstructive sleep
apnea

.35Status of the WDa

95191.1 (<.01)0.09770.881 (0.82 to
0.92)

0.64 to 0.96117710 (26)Commercial

00.1 (.79)0.00000.856 (0.72 to
0.93)

0.84 to 0.86892 (5)Noncommercial

<.001 bPlacement of the WD

9520.1 (<.01)0.19480.833 (–0.99 to
1.00)

0.71 to 0.913162 (5)Wrist

9416.7 (<.01)0.17650.929 (–0.98 to
1.00)

0.87 to 0.964522 (5)Chest

00.1 (.93)0.00000.894 (0.88 to0.91)0.89 to 0.902123 (8)Finger

00.1 (.79)0.00000.856 (0.72 to0.93)0.84 to 0.86892 (5)Neck

00.1 (.76)0.00000.894 (0.81 to
0.94)

0.89 to 0.901582 (5)Abdomen

<.001Data type

00.1 (.79)0.00000.856 (0.72 to
0.93)

0.84 to 0.86892 (5)Respiration data

9734.5 (<.01)0.68490.878 (–1.00 to
1.00)

0.64 to 0.964382 (5)Respiration data and

SpO2
c

00.1 (.76)0.00000.894 (0.81 to
0.94)

0.89 to 0.901582 (5)Respiration data and

HRd data

9224.5 (<.01)0.10300.844 (0.38 to
0.97)

0.71 to 0.913693 (8)Respiration data, HR
data, and body
movement

00.1 (.93)0.00000.894 (0.88 to
0.91)

0.89 to 0.902123 (8)Body movement,
HR data, and SpO2

.90Validation method

9559.3 (<.01)0.23150.869 (0.49-0.97)0.64 to 0.965274 (11)K-fold cross-valida-
tion

8850.8 (<.01)0.04860.877 (0.82-0.92)0.71 to 0.914507 (18)Train-test split

—e94194.5
(<.001)

0.08280.877 (0.82-0.92)0.64 to 0.96126612 (32)Overall accuracy

aWD: wearable device.
bItalicized values are statistically significant (P<.05).
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cSpO2: blood oxygen saturation.
dHR: heart rate.
eNot applicable.

Discussion

Principal Findings
This systematic review investigated how well wearable AI
performs in detecting sleep apnea. Overall, the findings indicate
that wearable AI demonstrated a performance that is deemed
acceptable, although not optimal, for detecting sleep apnea.
Specifically, wearable AI was able to correctly classify apnea
events and nonapnea events in 89.3% of respiratory events. This
performance was notably higher when using CNN in particular
or deep learning algorithms in general. The superiority of CNN
architectures can be attributed to their ability to capture the
localized dependencies inherent in apnea patterns through
convolution kernels. The meta-analyses conducted in this review
revealed that wearable AI performed better in detecting
nonapnea respiratory events (94.6%) compared to apnea
respiratory events (79.3%). This could be linked to the training
of AI models using an unrepresentative sample, wherein the
number of nonapnea respiratory events (n=1,699,503) was
approximately twice as high as the number of apnea respiratory
events (n=872,443). This highlights the challenge of applying
data balancing techniques for heterogeneous and time-dependent
measurements, particularly evident in longitudinal recordings
as observed in apnea studies.

Although the sensitivity of wearable AI in detecting apnea
events in respiration remained unaffected by any moderating
factors, the specificity was influenced by the status of the
wearable device, where noncommercial devices exhibited higher
specificity than commercial devices. This can be because all
studies that used noncommercial wearable devices applied deep
learning algorithms, whereas more than one-third (6/16, 38%)
of studies that used commercial wearable devices applied ML
algorithms (eg, random forest, AdaBoost, and k-nearest
neighbors). Introducing scalable AI models, such as deep
learning models, into commercial apnea detection applications
presents challenges due to their computational expense and
resource requirements, thereby complicating market penetration
and impacting profit margins. However, recent advancements
in tiny ML models and edge AI implementations offer potential
solutions to mitigate these challenges. This review also
demonstrated that wearable AI was able to correctly differentiate
between different types of apnea events (eg, apnea, hypopnea,
obstructive apnea, and central apnea) in 81.5% of respiratory
events, and this performance was not influenced by any
moderators. This can be attributed to the lack of studies (≤4) in
all subgroup analyses related to this outcome.

In this review, wearable AI demonstrated 86.9% accuracy in
correctly identifying patients with and patients without sleep
apnea. This performance was notably higher when the wearable
AI was used for detecting sleep apnea in general (92%) rather
than OSA in particular (82.3%). This difference may be
attributed to the fact that approximately 83% (5/6) of studies
focusing on general sleep apnea detection used respiration data

to develop the AI models. By contrast, only 29% (2/7) of studies
concentrating on OSA detection incorporated respiration data.
Given that respiration data are widely acknowledged as the most
crucial indicator of sleep apnea, this disparity in use may explain
the varying performance levels observed in the review.

Unlike apnea event detection, wearable AI exhibited superior
performance in identifying patients with sleep apnea (93.8%)
compared to those without sleep apnea (75.2%). This could be
associated with the training of AI models using an
unrepresentative sample, wherein the number of patients with
sleep apnea (1580) was >3 times higher than the number of
patients without sleep apnea (436). The specificity of wearable
AI in detecting sleep apnea was not affected by any moderator,
while its sensitivity was higher when wearable devices were
placed on both the chest and abdomen in comparison with other
placements (wrist or fingers). This moderation effect could be
attributed to the fact that all studies that placed wearable devices
on both the chest and abdomen focused on detecting sleep apnea
in general, while 6 (86%) out of 7 studies that placed wearable
devices in other places focused on detecting OSA in particular.
Further, all studies that placed wearable devices on other body
parts used commercial wearable devices, whereas only 1 of the
studies that placed wearable devices on both the chest and
abdomen used commercial wearable devices.

Our meta-analyses also revealed that wearable AI accurately
differentiated between various levels of sleep apnea severity
(normal, mild, moderate, and severe) in 65.1% of cases. This
performance was higher when the wearable AI was used for
detecting the severity of sleep apnea in general rather than OSA
in particular. This could be linked to the fact that all studies that
aimed to detect OSA used commercial devices that were placed
on either fingers or wrists, while two-thirds of the studies that
focused on sleep apnea in general used noncommercial devices
that were placed on both the abdomen and chest. This
performance was also higher when the model was developed
using both respiration and oxygen saturation data in comparison
with using a combination of body movement, HR, and oxygen
saturation data. This could be associated with the fact that all
studies using the combination of body movement, HR, and
oxygen saturation data focused on the detection of OSA using
commercial devices placed on fingers, while all studies using
both respiration and oxygen saturation data focused on detecting
any sleep apnea type using noncommercial devices (in 2, 67%
out 3 studies) placed on the abdomen and chest.

Finally, the accuracy of wearable AI in estimating the severity
of sleep apnea (ie, the apnea-hypopnea index score) reached
87.7%. This accuracy was higher when the wearable device was
placed on the chest and when using both respiration and HR
data or a combination of HR, oxygen saturation, and body
movement.

Research and Practical Implications
Our analysis revealed that wearable AI shows promise in
identifying sleep apnea, distinguishing its type, and gauging its
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severity; however, it is not yet ready for widespread use in
clinical practices for 3 reasons. First, its current performance
falls below the optimal level. Second, only 9 (24%) of the 38
studies were judged to have a low risk of bias in all domains.
Third, heterogeneity between studies was considerable in most
meta-analyses. Therefore, we cannot propose the use of wearable
AI as a replacement for traditional sleep assessments (eg,
polysomnography and home sleep apnea testing), but we
recommend that wearable AI be used in conjunction with these
assessments, taking into account factors such as
cost-effectiveness and practical challenges in real-world
implementation.

Among all wearable devices used in the included studies, only
1 was specifically designed for diagnosing sleep and monitoring
sleep health and obtained clearance from the US Food and Drug
Administration. This may be due to a shortage of such wearable
devices in the market or a scarcity of studies evaluating them.
We urge manufacturers of wearable devices to extend their
focus beyond evaluating sleep quality and incorporate AI into
their devices for identifying sleep apnea, its various types, and
its severity. Further, researchers should pay more attention to
such wearable devices in their future studies. The main challenge
of conducting such studies is the cost of such wearable devices.

Our meta-analyses indicate that the performance of wearable
AI was notably higher when using CNN in particular or deep
learning algorithms in general. Therefore, we recommend that
manufacturers of wearable devices and researchers prioritize
these techniques during the development of devices intended
for the detection of sleep apnea. However, obtaining large,
high-quality, and standardized data sets for training and
validating CNN or deep learning models can be challenging.

Our meta-analysis suggests the need for implementing AI on
the edge through specially crafted tiny ML modules with
federated learning protocols. Such an approach not only
enhances performance metrics but also addresses critical
considerations regarding resource efficiency, latency reduction,
and privacy preservation inherent in commercial apnea detection
systems. However, implementing AI on wearable devices,
especially with tiny ML modules, poses challenges related to
hardware constraints, such as limited processing power, limited
memory, and high energy consumption. Further, ensuring that
AI algorithms can run efficiently on resource-constrained
devices without compromising performance is a significant
challenge. Implementing federated learning protocols for edge
devices introduces additional complexities related to
communication, synchronization, and security. Designing robust
federated learning frameworks that can effectively train AI
models across distributed devices while preserving data privacy
and security requires careful consideration and expertise.

Most studies included in this review focused on the application
of wearable AI for the detection of existing sleep apnea, its type,
or its severity, rather than the anticipation of its occurrence.
Foreseeing the onset of sleep apnea in the future is as pivotal
as, if not more pivotal than, recognizing the current sleep apnea
state, as it can pave the way for the development and
implementation of proactive interventions. Consequently, we
encourage researchers to undertake additional investigations

into the capacity of wearable AI to predict future instances of
sleep apnea. Such studies collect longitudinal data over an
extended period to train and validate predictive models
accurately. However, obtaining continuous and comprehensive
sleep data from individuals over time can be challenging due
to factors such as participant compliance, dropout rates, and the
need for long-term monitoring.

In this review, only a single study evaluated the effectiveness
of wearable AI in identifying CSA. In addition, only 7 (18%)
of the 38 studies investigated the capability of wearable AI to
differentiate between different types of sleep apnea. More
research is urgently needed to evaluate the performance of
wearable AI in these crucial areas. Our study also suggests that
more open-source data sets with prepared manual labels for
different types of sleep apnea are needed. Collecting large-scale,
comprehensive, and well-annotated data from individuals with
CSA poses challenges due to the rarity of CSA cases.
Furthermore, identifying informative features and physiological
signals from wearable devices that can distinguish between
different types of sleep apnea is challenging due to the overlap
in the clinical presentation and physiological characteristics of
different types of sleep apnea, particularly in cases of mixed
sleep apnea where both obstructive and central events occur
concurrently.

Merely 3 (8%) of the 38 included studies used self-reported
data and nonwearable device data alongside wearable device
data for the detection of sleep apnea. The inclusion of
self-reported data (eg, data regarding demographics, BMI,
medical history, family history, and medications) and
nonwearable device data (eg, data collected via mobile phones,
smart pillows, smart mattresses, voice recorders, and Internet
of Things) has the potential to enhance the efficacy of wearable
AI in identifying sleep apnea. Hence, manufacturers and
researchers are encouraged to take these types of data into
consideration, alongside wearable device data, when developing
wearable AI for the diagnosis of sleep apnea. However,
challenges arise in transferring nonwearable data to wearable
devices and the potential impact on the performance of wearable
devices in terms of processing speed, memory use, energy
consumption, synchronization, and security.

A few studies in this review compared the performance of
wearable devices worn on different parts of the body (eg, wrist,
abdomen, and chest) and developed wearable AI for not only
detecting but also intervening in sleep apnea. This points to a
crucial gap in research, which urges further investigation into
the different performances of wearable AI with different
placements and integrated treatment delivery via wearable AI
for sleep apnea management.

Among the 38 studies in our review, 11 (29%) were excluded
from the meta-analyses due to insufficient details crucial for
their conduct (eg, confusion matrices and the number of apnea
and nonapnea cases). They also did not provide multiple
performance measures (eg, accuracy, sensitivity, and
specificity), which are essential for estimating the necessary
information. It is recommended that researchers include these
specific details in their reports to facilitate the conduct of
meta-analyses by other researchers. However, we acknowledge
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that the space constraints imposed by journals and conference
proceedings may present a challenge for researchers seeking to
include more comprehensive details in their reports.

Limitations
Our review intentionally excluded studies involving (1)
nonwearable devices, near-body wearable devices, in-body
wearable devices, wearable devices wired to nonwearable
devices, and wearable devices requiring an expert for their
placement on users; (2) wearable AI in detecting other sleep
disorders (eg, insomnia, narcolepsy, and restless legs syndrome);
and (3) wearable AI in predicting outcomes of sleep apnea
interventions or detecting sleep quality or sleep stages.
Therefore, our findings are specifically applicable to wearable
AI for sleep apnea detection and may not be generalizable to
the excluded devices, disorders, or outcomes. Our findings are
based on studies conducted in only 16 countries. Further, while
most studies were carried out in hospitals, only 4 (11%) of the
38 studies were conducted in health care centers. Therefore,
extrapolating our results to broader populations and clinical
settings requires caution. This limitation acknowledges the need
for further reviews in these broader areas.

Another limitation of this review is the likelihood of an
overestimation or underestimation of the results of our
meta-analyses due to 2 reasons. First, some relevant studies
could have been overlooked, as our search was confined to
English-language publications, and we did not explore other
widely used databases, such as CINAHL and Web of Science.

Secondly, 11 of the 38 studies in this review were excluded
from the meta-analyses, as they did not report details required
for meta-analyses.

Conclusions
Our review underscores the potential of wearable AI in
identifying sleep apnea, differentiating its type, and gauging its
severity. However, wearable AI is not yet ready for integration
into routine clinical practices due to its suboptimal performance.
Therefore, until further evidence demonstrates an ideal
performance, we suggest the concurrent use of wearable AI
with traditional sleep apnea assessments (eg, polysomnography
and home sleep apnea testing), rather than a complete
substitution. Manufacturers need to develop certified commercial
wearable devices that can easily detect sleep apnea, predict its
occurrence, and deliver proactive interventions. CNN in
particular or deep learning algorithms in general should be
prioritized during the development of wearable AI for the
detection of sleep apnea. Further studies are needed to assess
the performance of wearable AI in detecting CSA and
distinguishing it from other types of sleep apnea. Researchers
should consider incorporating self-reported and nonwearable
device data alongside wearable data to enhance the efficacy of
wearable AI in detecting sleep apnea. Additional research is
required to evaluate the varying performance of wearable
devices with different placements. Researchers should also
report sufficient details about their findings to enable other
researchers to conduct meta-analyses effectively.
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Abbreviations
AI: artificial intelligence
CNN: convolutional neural network
CSA: central sleep apnea
HR: heart rate
ML: machine learning
OSA: obstructive sleep apnea
PRISMA-DTA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Diagnostic
Test Accuracy
QUADAS-2: Quality Assessment of Studies of Diagnostic Accuracy-Revised
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