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Abstract

Background: Clinical notes contain contextualized information beyond structured data related to patients’ past and current
health status.

Objective: This study aimed to design a multimodal deep learning approach to improve the evaluation precision of hospital
outcomes for heart failure (HF) using admission clinical notes and easily collected tabular data.

Methods: Data for the development and validation of the multimodal model were retrospectively derived from 3 open-access
US databases, including the Medical Information Mart for Intensive Care III v1.4 (MIMIC-III) and MIMIC-IV v1.0, collected
from a teaching hospital from 2001 to 2019, and the eICU Collaborative Research Database v1.2, collected from 208 hospitals
from 2014 to 2015. The study cohorts consisted of all patients with critical HF. The clinical notes, including chief complaint,
history of present illness, physical examination, medical history, and admission medication, as well as clinical variables recorded
in electronic health records, were analyzed. We developed a deep learning mortality prediction model for in-hospital patients,
which underwent complete internal, prospective, and external evaluation. The Integrated Gradients and SHapley Additive
exPlanations (SHAP) methods were used to analyze the importance of risk factors.

Results: The study included 9989 (16.4%) patients in the development set, 2497 (14.1%) patients in the internal validation set,
1896 (18.3%) in the prospective validation set, and 7432 (15%) patients in the external validation set. The area under the receiver
operating characteristic curve of the models was 0.838 (95% CI 0.827-0.851), 0.849 (95% CI 0.841-0.856), and 0.767 (95% CI
0.762-0.772), for the internal, prospective, and external validation sets, respectively. The area under the receiver operating
characteristic curve of the multimodal model outperformed that of the unimodal models in all test sets, and tabular data contributed
to higher discrimination. The medical history and physical examination were more useful than other factors in early assessments.

Conclusions: The multimodal deep learning model for combining admission notes and clinical tabular data showed promising
efficacy as a potentially novel method in evaluating the risk of mortality in patients with HF, providing more accurate and timely
decision support.

(J Med Internet Res 2024;26:e54363) doi: 10.2196/54363
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Introduction

Heart failure (HF), a syndrome of impaired heart function,
represents the advanced stage of various cardiac conditions
[1-3]. With its substantial influence on both morbidity and
mortality, HF poses a formidable challenge to human health
and societal progress [4-6].

As a potentially life-threatening condition, particularly when
accompanied by advanced organ dysfunction or severe
complications, a considerable portion of patients with HF may
require immediate access to advanced, high-technology,
life-saving care, which is typically available only in intensive
care units (ICUs) [7]. Studies have indicated that approximately
10% to 51% of patients with HF admitted to hospitals in the
United States are subsequently admitted to ICUs [8,9]. It has
also been found that ICU-admitted patients with HF experience
significantly higher adjusted in-hospital mortality rates
compared to those admitted solely to hospitals [10]. The
in-hospital mortality rate for patients with HF receiving
treatment in an ICU has been reported as 10.6%, in contrast to
the overall in-hospital mortality rate of 4% for all patients with
HF [11]. Given this substantially higher mortality rate, accurate
prediction of in-hospital mortality could empower physicians
to implement early interventions and tailor individualized
treatments [12,13]. Consequently, there is an increasing need
for the development of predictive models that can effectively
identify individuals at a heightened risk of mortality in the ICU.

Most previous research works have applied statistical analysis
or machine learning techniques using structured administrative
data from electronic health records to identify significant risk
predictors that trigger adverse outcomes [14-19]. However, HF
disease often develops rapidly, and while some sensitive
biomarkers, such as N-terminal pro–b-type natriuretic peptide
(NT-proBNP), tend to increase in reactivity after the disease
progresses, their efficiency is limited due to their high cost and
inability to be measured in real time [20,21]. Recently, there
has been a growing acknowledgment of the importance of
clinical narratives in clinical decision-making [22,23]. The

narrative notes at admission, such as chief complaint, history
of present illness, physical examination, medical history, and
admission medication, play a central role in health care
communication. They represent a more comprehensive and
personalized account of patient history and assessments [24].
Harnessing the potential of clinical narratives can largely
enhance patient care and contribute to the improvement of
predictive models for prognosis [25,26]. Exploiting the potential
of clinical narratives and modeling them by multimodal deep
learning (DL) approaches can enhance the precision of patient
care and contribute to the improvement of predictive models
for in-hospital mortality.

We aim to design a multimodal DL model and explore the
infusion approaches to improve evaluation performance using
tabular data and admission notes. The cross-modal model, which
characterizes textual, categorical, and continuous variables
separately, significantly outperforms the unimodal models on
the multicenter and prospective validation sets. We believe our
findings will motivate data-centric studies to more precisely
characterize the illness severity of patients with HF.

Methods

Study Design
An overview of the study flow is shown in Figure 1A. First, we
acquired patients’ admission notes and tabular data, and these
two single modalities were separately embedded to obtain the
feature and status representation. The categorical and continuous
variables in tabular data were characterized separately. Next, a
feature-fusing DL network was applied to integrate the two
modalities and achieved the model development. Then, a fully
connected DL network was used to predict the in-hospital
outcome, our primary outcome of interest. Two postexplanation
approaches were adopted to increase the credibility of the model.
Finally, the internal, prospective, and external validation with
multiple evaluation metrics were accomplished. Our study
followed the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD)
reporting guidelines for prognosis studies.
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Figure 1. (A) Workflow of the multimodal deep learning model with the fusion of textual and tabular data. (B) An overview of the inclusion criteria
with all study cohorts. BERT: Bidirectional Encoder Representations from Transformers; eICU-CRD: eICU Collaborative Research Database; HF:
heart failure; ICD-10: International Classification of Diseases, Tenth Revision; ICU: intensive care unit; MIMIC: Medical Information Mart for Intensive
Care.

Data Sets and Cohorts
The cohorts for this multicenter retrospective cohort study were
derived from 3 open-access clinical databases, including the
Medical Information Mart for Intensive Care v1.4 (MIMIC-III;
CareVue) and MIMIC-IV v1.0, collected from the Beth Israel
Deaconess Medical Center in Boston from 2001 to 2008 and
2008 to 2019, respectively [27,28], and the eICU Collaborative
Research Database v1.2 (eICU-CRD), collected from 208
hospitals in United States from 2014 to 2015 [29]. We included
all first-time ICU admissions for patients with HF aged ≥16
years according to the International Classification of Diseases
diagnostic codes. We excluded patients who stayed in the ICU
for less than 24 hours and did not have admission notes. Patients
were divided into 4 cohorts to support adequate model
evaluation, including the development, internal validation,
prospective validation, and external validation cohorts. These

cohorts correspond to different stages of model development
and evaluation. The development cohort consisted of a subset
of data used to create or develop the predictive model. Internal
validation, prospective validation, and external validation
cohorts helped to check if the model had learned patterns that
generalized well to new, unseen data. Each of these cohorts
played a crucial role in different stages of model development
and validation, ensuring that the predictive model was accurate,
reliable, and applicable to new and diverse data sets or
situations. The inclusion criteria of them are displayed in Figure
1B.

Data Extraction
Our target is to provide early clinical decision support during
ICU admissions. The 5 types of commonly recorded notes were
extracted, including chief complaint, history of present illness,
medical history, admission medications, and physical exam. In
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Figure S1 in Multimedia Appendix 1, an example of an
admission note is shown with highlights. Meanwhile, 6 types
of clinical variables were collected for model development, as
follows: (1) basic information of age, gender, weight, BMI, and
Charlson Comorbidity Index; (2) vital signs, such as Glasgow
Coma Scale, heart rate, respiratory rate, and systolic blood
pressure; (3) laboratory tests, including glucose, creatinine,
white blood cell, and total bilirubin; (4) urine output; (5)
treatments received, including mechanical ventilation; and (6)
physical frailty assessments, including activity and fall risks.
Representative statistical features were calculated based on the
type of variable, such as the maximum, minimum, and mean
values. The median value of each feature was used to impute
missing values for continuous variables except for FiO2

([fraction of inspired oxygen] with the imputation of 21%), with
a missing ratio limitation of less than 30%. Details about all
types of candidate variables are provided in Table S1 in
Multimedia Appendix 1. Their missing ratio is shown in Table
S2 in Multimedia Appendix 1.

Model Development and Output
The model was constructed based on a supervised multimodal
DL framework, which mainly included feature extractors and
a feature fusion module. A pretrained Bidirectional Encoder
Representations from Transformers (BERT) module was used
for learning the presentation of clinical notes [30]. In the
preliminary experiments, we used all the text chunks (the same
subset from the training set for the model) to compare the
performances of different pretrained clinical BERT models. We
found that clinical BERT [31] demonstrated the best
comprehensive performance (Table S3 in Multimedia Appendix
1). In the fusion module, a gate attention mechanism [32] was
introduced to aggregate the embedded features of clinical notes
and tabular data using attention scores; this module finally
output the predicted risk probability of in-hospital deaths
through a fully connected layer (Figure S2 in Multimedia
Appendix 1). The maximum predicted value of all text chunks
for a patient was adopted as the optimal risk prediction score.
Further detailed information on model building and training is
present in the Multimedia Appendix 1.

Model Explanation
In the pursuit of explicating the underlying mechanisms of the
DL model and facilitating a comprehensive visualization of
pivotal insights, we embarked on an intricate analysis of the
pivotal terminologies instrumental in shaping predictions within
the developed model. To achieve this, we used the Integrated
Gradients (IG) technique [33] to enhance our comprehension
of the BERT model’s inner workings and the rationale behind
its predictions. This technique hinges on computing gradients
with respect to input features, gauging each feature’s
contribution to the model’s prediction. IG offers an intuitive
understanding of model predictions by quantifying different
features’ contributions, aiding clinicians and researchers in
comprehending the model’s decisions [34,35]. At the same time,
IG demonstrates stability across diverse samples and model
architectures, yielding consistent explanatory outcomes, crucial
in the face of clinical data diversity and complexity [36].
Consequently, it is considered a reliable analytical tool, helping

to assess how each word in the input sequence influences the
model's predictions for our research. Simultaneously, we
harnessed the SHapley Additive exPlanations (SHAP) technique
to unravel the importance of clinical variables in structured
tabular data. We computed Shapley values to rank the important
clinical variables. Shapley values involve a game theory–based
approach to explain the prediction of DL models. They measure
the contribution of a given feature value to the difference
between the actual prediction and the mean prediction. It is
important to note that higher SHAP values signify a heightened
pertinence of specific terms in influencing the model’s
predictions, whereas relatively diminished SHAP values connote
a less pronounced impact. The IG technique exhibits a similar
pattern.

Leveraging the IG and SHAP techniques offers valuable insights
into the intricate relationship between input features and
prediction outcomes, contributing to a more comprehensive
understanding of the model’s decision-making process.

Model Validation
The discrimination performance of our prediction model was
assessed on the internal (MIMIC, 2001-2016), prospective
(MIMIC, 2017-2019) and external (eICU-CRD, 2014-2015)
validation cohorts. This assessment compared the model against
different single modalities covering notes, tabular data, and a
combination of both. The importance of the 5 types of notes for
outcome assessment was also examined separately. We trained
5 predictive models based on the tabular data and individual
clinical notes. It should be mentioned that the chief complaint
was absent in the external validation cohort. Three evaluation
metrics were calculated along with their corresponding 95%
CIs, the area under the receiver operating characteristic curve
(AUROC), F1-score, and the area under the precision-recall
curve.

Statistics Analysis
The median (IQR) values for continuous variables are presented.
The t test (2-tailed) or the Wilcoxon Rank Sum Test was used
when appropriate to compare survivors and nonsurvivors of
HF. Categorical variables were reported by total numbers and
percentages. Two-sided P values of less than .05 were
considered statistically significant.

Ethical Considerations
This study was exempt from institutional review board approval
due to the retrospective design and lack of direct patient
intervention. All data from patients were retrospectively
collected from the electronic health care records systems (in the
form of third-party public databases or hospital health care
systems), which originated from daily clinical work.

All data were de-identified before the analysis. Third-party
public databases (MIMIC-IV, MIMIC-III, and eICU-CRD) were
used in this study. The institutional review boards of the
Massachusetts Institute of Technology (number 0403000206)
and Beth Israel Deaconess Medical Center (number
2001-P-001699/14) approved the use of the database for
research.
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The requirement for individual patient consent was waived
because the study did not impact clinical care, all protected
health information was deidentified, and all available data in
the databases were anonymous.

Results

Patient Characteristics
A total of samples from 12,486 (14.1%) patients with HF were
collected from MIMIC-III and MIMIC-IV joint data sets

between 2001 and 2016; they were randomly divided into a
development set and an independent internal validation set.
Additionally, 1896 (18.3%) patients with HF were extracted
from MIMIC-IV from 2017 to 2019 for a prospective validation
set. For the external validation set, 7432 (15%) patients with
HF were extracted from the eICU-CRD data set. Baseline
characteristics are summarized in Table 1. The proportion of
patients with in-hospital mortality in the 4 cohorts ranges from
14% to 19%. Detailed comparisons of survivors and
nonsurvivors in all study cohorts are shown in Tables S4-S7 in
Multimedia Appendix 1.

Table 1. The comparison of the total study cohorts for model development and validation.

External validation set
(n=7432)

Prospective validation
set (n=1896)

Internal validation set
(n=2497)

Development set
(n=9989)

Characteristics

Basic information

73 (62-82)74 (64-82)75 (64-83)75 (65-84)Age (years), median (IQR)

3470 (46.7)786 (41.5)1151 (46.1)4637 (46.4)Female sex, n (%)

28.9 (24.4-35.0)28.8 (24.4-33.8)27.5 (23.8-32.6)27.7 (24.1-32.6)BMI (kg/m2), median (IQR)

5.0 (4.0-6.0)7.0 (6.0-9.0)7.0 (5.0-9.0)7.0 (5.0-8.0)CCIa score, median (IQR)

1374 (18.5)1896 (100)836 (33.5)3334 (33.4)Physical frailty (fall risk), n (%)

Activity, n (%)

3955 (83.5)1064 (56.2)1801 (72.6)7347 (73.8)Bed

279 (5.9)441 (23.3)444 (17.9)1759 (17.7)Sit

504 (10.6)388 (20.5)235 (9.5)843 (8.5)Stand

Notes recorded proportion, n (%)

0 (0)1659 (87.5)2146 (85.9)8592 (86.0)Chief complaint

7186 (96.7)1680 (88.6)2455 (98.3)9866 (98.8)History of present illness

7188 (96.7)1675 (88.3)2427 (97.2)9730 (97.4)Medical history

4387 (59.0)1650 (87.0)2257 (90.4)9018 (90.3)Admission medication

5104 (68.7)1644 (86.7)2303 (92.2)9186 (92.0)Physical exam

Outcome

0.2 (0.1-0.8)0.1 (0.0-0.9)0.1 (0.0-1.3)0.1 (0.0-1.1)Days before ICUb admission, median (IQR)

2.8 (1.8-4.9)2.9 (1.7-5.3)3.0 (1.8-5.5)3.0 (1.8-5.5)Days of ICU admission, median (IQR)

7.2 (4.3-11.9)9.8 (6.0-15.7)9.2 (5.8-14.7)8.9 (5.7-14.6)Days of hospital admission, median (IQR)

1115 (15.0)293 (18.3)351 (14.1)1404 (16.4)Death in hospital, n (%)

aCCI: Charlson Comorbidity Index.
bICU: intensive care unit.

Model Performance Evaluation
We present the discrimination performance on internal,
prospective, and external validation sets by receiver operating
characteristic curves of the optimal models after tuning the
hyperparameters (Figure 2). The AUROCs of the multimodal
model were significantly higher than the two unimodal models
in all 3 types of validation evaluations. They were 0.838 (95%
CI 0.827-0.851), 0.849 (95% CI 0.841-0.856), and 0.767
[0.762-0.772] for the internal, prospective, and external

validation sets, respectively. Specifically, the design details of
the unimodal models were as follows: the text-based unimodal
model used clinical BERT, leveraging its capabilities in
contextualizing clinical text data; on the other hand, the tabular
unimodal model used a fully connected model structure, tailored
to effectively process structured tabular data from the tables.
More comparisons on baseline models, such as random forest
and logistic regression, and all evaluation metrics for these
models in the 3 validation types are presented in Table S8 in
Multimedia Appendix 1.

J Med Internet Res 2024 | vol. 26 | e54363 | p. 5https://www.jmir.org/2024/1/e54363
(page number not for citation purposes)

Gao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The receiver operating characteristic curve comparison of the optimal multimodal deep learning model against different single modalities in
the (A) internal validation set, (B) prospective validation set, and (C) external validation set. Values inside brackets are 95% CIs.

Contribution of Individual Part in Clinical Notes
The performance contributions of the 5 types of clinical notes
(including chief complaint, history of present illness, medical
history, admission medication, and physical exam) were
separately evaluated by combining them with clinical variables
to retrain all prediction models. Figure 3 and Table S9

(Multimedia Appendix 1) display the AUROC comparisons
with the full model. We found the individual contributions were
much lower than the overall contribution in all validation
cohorts. Specifically, medical history and physical exam
contained more information that was useful in assessing the
prognosis of patients with HF compared to other note types.

Figure 3. The reduction of discrimination when separately combining the individual clinical note with tabular data in the (A) internal validation set,
(B) prospective validation set, and (C) external validation set. AUC: area under the receiver operating characteristic curve.

Clinical Notes Visualization and Interpretation
We applied the IG method to study the attribution of the
prediction of a deep network to its input features, aiming to
provide explanation for individual predictions. IG is computed
based on the gradient of the prediction outputs with respect to
the input words. Higher IG values denote the greater significance
of a word to the model’s prediction, whereas lower values
indicate lesser importance. We derived IG values for all tokens
present in the clinical notes of each patient within the test data
set, extracting those tokens with higher IG values. It is important
to note that, due to BERT’s tokenization process, inputs are
represented as tokens rather than individual words. For instance,
the phrase “the patient has been extubated” is tokenized into
“the patient has been ex ##tub ##ated” as the input sequence
[35]. To enhance readability, we conducted postprocessing by
excluding numbers, tokens with only 1 or 2 characters, and
separators. A clinical expert assessed the clinical significance
of tokens and their associated IG values in the context of

mortality prediction. The sorted tokens are illustrated in Figure
4A.

The analysis identified commonly ubiquitous clinical terms like
“in,” “to,” and “with,” which were segregated due to their
limited potential in distinguishing prognostic variations. Among
the top 20 clinically meaningful indicators vital for mortality
prediction, intriguing insights emerged upon clinical
interpretation. For instance, “Failure” and “Pain,” the leading
predictors, denote prevalent symptoms within ICU care and can
mirror disease severity and disability. Indicators 4 and 9 align
with pulmonary pathology, their elevated importance reflecting
the gravity of respiratory conditions and the necessity for ICU
interventions, such as mechanical ventilation. Additional
indicators such as “pneumonia” and “fall” manifest acute illness,
carrying prognostic weight in mortality prediction. Clinical
cues, such as “status,” “reflex,” and “shock,” correspond to
mental well-being, with their significance in prognosis attributed
to the association of delirium with adverse outcomes.
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Figure 4. Explanation of the developed deep learning model. (A) The top 20 tokens of clinical notes evaluated by the Integrated Gradient values in 3
types of language scenarios. (B) The top 20 clinical variables evaluated by the Shapley values. BUN: blood urea nitrogen; CCI: Charlson comorbidity
index; GCS: Glasgow Coma Scale; ICU: intensive care unit; PTT: partial thromboplastin time; SBP: systolic blood pressure; SHAP: SHapley Additive
exPlanations; SpO2: oxygen saturation.

Clinical Variables Feature Analysis
We ranked the important clinical variables using the SHAP
technique. The top 20 out of 52 clinical variables (Figure 4)
show that for structured tabular data, the highest ranked
variables also correlate with disease severity and poorer
prognosis. These variables represent clinically important
information, such as mental status, using the Glasgow Coma
Scale, urine output, mechanical ventilation, activity, and
respiratory rate measurements.

Discussion

Principal Findings
This retrospective prognostic study aimed to develop, validate,
and explain a multimodal DL prediction model for in-hospital
outcomes in critically ill patients with HF. The model was
constructed based on the admission notes and records from the
first ICU admission day. Simultaneously, we compared the
difference between multimodal and unimodal models and
explored the individual importance of admission notes in the
clinical practice of HF. We found that multimodality could
further enhance the model’s ability and credibility to evaluate
outcomes compared to unimodality.

Emerging clinical data sets provide an opportunity for the DL
techniques to study the problem of in-hospital mortality
prediction. Compared to previous related work, which mostly

considers single modality or simply concatenates embeddings
from different modalities, our work demonstrates a novel
approach. We separately embed texts as well as categorical and
continuous variables to integrate multimodal knowledge and
leverage clinical notes information for better predictions. Our
comprehensive experiments demonstrate that our proposed
model outperforms the models using single modality (text-only
AUROC: 0.701; tabular-only AUROC: 0.790) by achieving
high performance (AUROC: 0.838).

The fusion method we used integrated two different
modalities—unstructured clinical notes and structured clinical
variables—into a universal shareable space using a transformer
block. It was efficient to leverage clinical notes and integrate
tabular data. Meanwhile, the novel application of an attention
mechanism on clinical data enhanced the model’s ability to
focus on evaluating the target in models when fusing multimodal
information. Our ablation study, as shown in Figures S3-S5
(Multimedia Appendix 1), on domain adaptive pretraining and
task adaptive fine-tuning with multiple BERTs verified the
significance of pretraining and fine-tuning, when implementing
BERT models on natural language text, especially on
domain-specific clinical notes.

In the multimodal model, the proportion of clinical variables,
especially continuous variables, was much higher compared to
other parts (Figure S6 in Multimedia Appendix 1). The analysis
and visualization of important words in clinical notes also
yielded interesting findings. The ranking of words by IG values
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provided face validity, indicating that some of the important
words used for prediction were clinically related to diseases
trajectory, such as the severity of respiratory disease or mental
status. Some of the unspecified words, such as “disease,” used
in diverse scenarios, were more difficult to interpret as isolated
words. Lastly, some of the clinically meaningful words can
change significantly with negation, such as “fall.” In the future,
we will use more techniques, such as the NegEx algorithm, to
consider negation of keywords to better explain the clinical
words’ meanings.

There are some limitations in our study. First, our model
leveraged the electronic health records data based on patients’
ICU admission and the first day of admission to predict
in-hospital death risk. It did not include recorded data during
the treatment, which might reduce the evaluation performance
of the model. Second, we simplify the feature extraction, using
the maximum, minimum, or mean statistical values to
characterize all data throughout the day. Such simplification

ignored the changes in time series, and it might have caused the
loss of useful information. Time series data will be considered
in our future study. Finally, we recommend that the model need
to be calibrated using local data to avoid assessment bias.

Conclusions
In this multicenter prognostic study, we developed and validated
an attention-multimodal DL model for in-hospital outcome
prediction of patients with HF and explored the approaches that
can improve the evaluation precision by simultaneously
characterizing both admission notes and tabular data. The
AUROCs of our model were significantly higher than those of
unimodal models in all validation sets. The clinical variables
included in the study made a particularly significant contribution
to the overall results, with the data from the clinical notes
exhibiting a much lower contribution. The model shows good
predictive and explainable performance to potentially support
the precise decision-making and disease management of
critically ill patients with HF.

Acknowledgments
We gratefully acknowledge the guidance and assistance of Dr Max Shen from Beth Israel Deaconess Medical Center (BIDMC).

This work was supported in part by the National Natural Science Foundations of China (NSFC) under grants 62173032 and
62171471, the Foshan Science and Technology Innovation Special Projects (grant BK22BF005), the Regional Joint Fund of the
Guangdong Basic and Applied Basic Research Fund (grant 2022A1515140109).

Qing Zhang (qzhang2000cn@163.com), Wendong Xiao (wdxiao@ustb.edu.cn), and Zhengbo Zhang
(zhangzhengbo@301hospital.com.cn) are co-corresponding authors of this manuscript.

Authors' Contributions
ZG and XL had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of
the data analysis. They also contributed to the conceptualization and design of the study. YK, PH, XZ, and WY contributed to
the acquisition, analysis, or interpretation of data. MY and PY conducted statistical analysis. ZG and XL drafted the manuscript.
PY, QZ, ZZ, and WX obtained funding for the study and supervised the study.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Additional statistics.
[DOCX File , 466 KB-Multimedia Appendix 1]

References

1. Katz AM, Rolett EL. Heart failure: when form fails to follow function. Eur Heart J. Feb 01, 2016;37(5):449-454. [doi:
10.1093/eurheartj/ehv548] [Medline: 26497163]

2. Ormerod JO, Ashrafian H, Frenneaux MP. Impaired energetics in heart failure - a new therapeutic target. Pharmacol Ther.
Sep 2008;119(3):264-274. [doi: 10.1016/j.pharmthera.2008.05.007] [Medline: 18602947]

3. Pagliaro BR, Cannata F, Stefanini GG, Bolognese L. Myocardial ischemia and coronary disease in heart failure. Heart Fail
Rev. Jan 22, 2020;25(1):53-65. [doi: 10.1007/s10741-019-09831-z] [Medline: 31332663]

4. Murphy SP, Ibrahim NE, Januzzi JL. Heart failure with reduced ejection fraction: a review. JAMA. Aug 04,
2020;324(5):488-504. [doi: 10.1001/jama.2020.10262] [Medline: 32749493]

5. Savarese G, Becher P, Lund L, Seferovic P, Rosano G, Coats A. Global burden of heart failure: a comprehensive and
updated review of epidemiology. Cardiovasc Res. Jan 18, 2023;118(17):3272-3287. [doi: 10.1093/cvr/cvac013] [Medline:
35150240]

6. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. Dec 2016;13(6):368-378. [FREE
Full text] [doi: 10.1038/nrcardio.2016.25] [Medline: 26935038]

J Med Internet Res 2024 | vol. 26 | e54363 | p. 8https://www.jmir.org/2024/1/e54363
(page number not for citation purposes)

Gao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v26i1e54363_app1.docx&filename=fa7a6bae11f8f405b0421120e52dcb7e.docx
https://jmir.org/api/download?alt_name=jmir_v26i1e54363_app1.docx&filename=fa7a6bae11f8f405b0421120e52dcb7e.docx
http://dx.doi.org/10.1093/eurheartj/ehv548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26497163&dopt=Abstract
http://dx.doi.org/10.1016/j.pharmthera.2008.05.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18602947&dopt=Abstract
http://dx.doi.org/10.1007/s10741-019-09831-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31332663&dopt=Abstract
http://dx.doi.org/10.1001/jama.2020.10262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32749493&dopt=Abstract
http://dx.doi.org/10.1093/cvr/cvac013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35150240&dopt=Abstract
http://europepmc.org/abstract/MED/26935038
http://europepmc.org/abstract/MED/26935038
http://dx.doi.org/10.1038/nrcardio.2016.25
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26935038&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


7. Li F, Xin H, Zhang J, Fu M, Zhou J, Lian Z. Prediction model of in-hospital mortality in intensive care unit patients with
heart failure: machine learning-based, retrospective analysis of the MIMIC-III database. BMJ Open. Jul 23,
2021;11(7):e044779. [FREE Full text] [doi: 10.1136/bmjopen-2020-044779] [Medline: 34301649]

8. Safavi KC, Dharmarajan K, Kim N, Strait KM, Li S, Chen SI, et al. Variation exists in rates of admission to intensive care
units for heart failure patients across hospitals in the United States. Circulation. Feb 26, 2013;127(8):923-929. [doi:
10.1161/circulationaha.112.001088]

9. van Diepen S, Bakal JA, Lin M, Kaul P, McAlister FA, Ezekowitz JA. Variation in critical care unit admission rates and
outcomes for patients with acute coronary syndromes or heart failure among high‐ and low‐volume cardiac hospitals.
JAHA. Mar 10, 2015;4(3):e001708. [doi: 10.1161/jaha.114.001708]

10. Wunsch H, Angus DC, Harrison DA, Collange O, Fowler R, Hoste EAJ, et al. Variation in critical care services across
North America and Western Europe*. Critical Care Medicine. 2008;36(10):2787-27e8. [doi: 10.1097/ccm.0b013e318186aec8]

11. Adams KF, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. ADHERE Scientific Advisory
CommitteeInvestigators. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale,
design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National
Registry (ADHERE). Am Heart J. Feb 2005;149(2):209-216. [doi: 10.1016/j.ahj.2004.08.005] [Medline: 15846257]

12. Adler ED, Voors AA, Klein L, Macheret F, Braun OO, Urey MA, et al. Improving risk prediction in heart failure using
machine learning. Eur J Heart Fail. Jan 2020;22(1):139-147. [FREE Full text] [doi: 10.1002/ejhf.1628] [Medline: 31721391]

13. Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR, et al. Machine learning prediction of mortality and
hospitalization in heart failure with preserved ejection fraction. JACC Heart Fail. Jan 2020;8(1):12-21. [FREE Full text]
[doi: 10.1016/j.jchf.2019.06.013] [Medline: 31606361]

14. Soliman A, Agvall B, Etminani K, Hamed O, Lingman M. The price of explainability in machine learning models for
100-day readmission prediction in heart failure: retrospective, comparative, machine learning study. JMIR. Oct 27,
2023;25:e46934. [FREE Full text] [doi: 10.2196/46934] [Medline: 37889530]

15. White-Williams C, Rossi LP, Bittner VA, Driscoll A, Durant RW, Granger BB, et al. American Heart Association Council
on CardiovascularStroke Nursing; Council on Clinical Cardiology;Council on EpidemiologyPrevention. Addressing social
determinants of health in the care of patients with heart failure: a scientific statement from the American heart association.
Circulation. Jun 02, 2020;141(22):e841-e863. [FREE Full text] [doi: 10.1161/CIR.0000000000000767] [Medline: 32349541]

16. Abraham WT, Fonarow GC, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, et al. OPTIMIZE-HF
InvestigatorsCoordinators. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the
Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J Am
Coll Cardiol. Jul 29, 2008;52(5):347-356. [FREE Full text] [doi: 10.1016/j.jacc.2008.04.028] [Medline: 18652942]

17. Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR, et al. Machine learning prediction of mortality and
hospitalization in heart failure with preserved ejection fraction. JACC Heart Fail. Jan 2020;8(1):12-21. [FREE Full text]
[doi: 10.1016/j.jchf.2019.06.013] [Medline: 31606361]

18. McGilvray MM, Heaton J, Guo A, Masood MF, Cupps BP, Damiano M, et al. Electronic health record-based deep learning
prediction of death or severe decompensation in heart failure patients. JACC Heart Fail. Sep 2022;10(9):637-647. [FREE
Full text] [doi: 10.1016/j.jchf.2022.05.010] [Medline: 36049815]

19. Li J, Liu S, Hu Y, Zhu L, Mao Y, Liu J. Predicting mortality in intensive care unit patients with heart failure using an
interpretable machine learning model: retrospective cohort study. JMIR. Aug 09, 2022;24(8):e38082. [FREE Full text]
[doi: 10.2196/38082] [Medline: 35943767]

20. Kaya SI, Cetinkaya A, Ozcelikay G, Samanci SN, Ozkan SA. Approaches and challenges for biosensors for acute and
chronic heart failure. Biosensors (Basel). Feb 16, 2023;13(2):282. [FREE Full text] [doi: 10.3390/bios13020282] [Medline:
36832048]

21. Hudson SR, Chan D, Ng LL. Change in plasma volume and prognosis in acute decompensated heart failure: an observational
cohort study. J R Soc Med. Sep 08, 2016;109(9):337-346. [FREE Full text] [doi: 10.1177/0141076816661316] [Medline:
27609799]

22. Goh KH, Wang L, Yeow AYK, Ding YY, Au LSY, Poh HMN, et al. Prediction of readmission in geriatric patients from
clinical notes: retrospective text mining study. J Med Internet Res. Oct 19, 2021;23(10):e26486. [FREE Full text] [doi:
10.2196/26486] [Medline: 34665149]

23. Clapp MA, Kim E, James KE, Perlis RH, Kaimal AJ, McCoy TH, et al. Comparison of natural language processing of
clinical notes with a validated risk-stratification tool to predict severe maternal morbidity. JAMA Netw Open. Oct 03,
2022;5(10):e2234924. [FREE Full text] [doi: 10.1001/jamanetworkopen.2022.34924] [Medline: 36197662]

24. Özyılmaz E, Özkan Kuşçu Ö, Karakoç E, Boz A, Orhan Tıraşçı G, Güzel R, et al. Worse pre-admission quality of life is
a strong predictor of mortality in critically ill patients. Turk J Phys Med Rehabil. Mar 01, 2022;68(1):19-29. [FREE Full
text] [doi: 10.5606/tftrd.2022.5287] [Medline: 35949964]

25. Thapa NB, Nischay B, Sattar S, Sona T. Hospital readmission prediction using clinical admission notes. 2022. Presented
at: ACSW '22: Proceedings of the 2022 Australasian Computer Science Week; February 14 - 18; Brisbane, Australia. [doi:
10.1145/3511616.3513115]

J Med Internet Res 2024 | vol. 26 | e54363 | p. 9https://www.jmir.org/2024/1/e54363
(page number not for citation purposes)

Gao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=34301649
http://dx.doi.org/10.1136/bmjopen-2020-044779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34301649&dopt=Abstract
http://dx.doi.org/10.1161/circulationaha.112.001088
http://dx.doi.org/10.1161/jaha.114.001708
http://dx.doi.org/10.1097/ccm.0b013e318186aec8
http://dx.doi.org/10.1016/j.ahj.2004.08.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15846257&dopt=Abstract
https://doi.org/10.1002/ejhf.1628
http://dx.doi.org/10.1002/ejhf.1628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31721391&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2213-1779(19)30541-4
http://dx.doi.org/10.1016/j.jchf.2019.06.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31606361&dopt=Abstract
https://www.jmir.org/2023//e46934/
http://dx.doi.org/10.2196/46934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37889530&dopt=Abstract
https://www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000767?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1161/CIR.0000000000000767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32349541&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(08)01672-0
http://dx.doi.org/10.1016/j.jacc.2008.04.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18652942&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2213-1779(19)30541-4
http://dx.doi.org/10.1016/j.jchf.2019.06.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31606361&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2213-1779(22)00317-1
https://linkinghub.elsevier.com/retrieve/pii/S2213-1779(22)00317-1
http://dx.doi.org/10.1016/j.jchf.2022.05.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36049815&dopt=Abstract
https://www.jmir.org/2022/8/e38082/
http://dx.doi.org/10.2196/38082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35943767&dopt=Abstract
https://www.mdpi.com/resolver?pii=bios13020282
http://dx.doi.org/10.3390/bios13020282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36832048&dopt=Abstract
https://europepmc.org/abstract/MED/27609799
http://dx.doi.org/10.1177/0141076816661316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27609799&dopt=Abstract
https://www.jmir.org/2021/10/e26486/
http://dx.doi.org/10.2196/26486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34665149&dopt=Abstract
https://europepmc.org/abstract/MED/36197662
http://dx.doi.org/10.1001/jamanetworkopen.2022.34924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36197662&dopt=Abstract
https://europepmc.org/abstract/MED/35949964
https://europepmc.org/abstract/MED/35949964
http://dx.doi.org/10.5606/tftrd.2022.5287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35949964&dopt=Abstract
http://dx.doi.org/10.1145/3511616.3513115
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. van Aken B, Papaioannou JM, Mayrdorfer M, Budde K, Gers F, Loeser A. Clinical outcome prediction from admission
notes using self-supervised knowledge integration. arXiv. Preprint posted online on Feb 8, 2021. [doi:
10.48550/arXiv.2102.04110]

27. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care
database. Sci Data. May 24, 2016;3:160035. [FREE Full text] [doi: 10.1038/sdata.2016.35] [Medline: 27219127]

28. Johnson A, Stone D, Celi L, Pollard T. The MIMIC Code Repository: enabling reproducibility in critical care research. J
Am Med Inform Assoc. Jan 01, 2018;25(1):32-39. [doi: 10.1093/jamia/ocx084] [Medline: 29036464]

29. Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU Collaborative Research Database, a freely
available multi-center database for critical care research. Sci Data. Sep 11, 2018;5(1):180178. [FREE Full text] [doi:
10.1038/sdata.2018.178] [Medline: 30204154]

30. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
arXiv. Preprint posted online on Oct 11, 2018. [doi: 10.48550/arXiv.1810.04805]

31. Huang K, Altossar J, Ranganath R. ClinicalBERT: modeling clinical notes and predicting hospital readmission. arXiv.
Preprint posted online on Apr 10, 2019. [doi: 10.48550/arXiv.1904.05342]

32. Rahman W, Hasan MK, Lee S, Bagher Zadeh AA, Mao C, Morency LP, et al. Integrating multimodal information in large
pretrained transformers. Proc Conf Assoc Comput Linguist Meet. Jul 2020;2020:2359-2369. [FREE Full text] [doi:
10.18653/v1/2020.acl-main.214] [Medline: 33782629]

33. Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. 2017. Presented at: Proceedings of the 34th
International Conference on Machine Learning; August 6 - 11;3319-3328; Sydney, Australia. [doi: 10.5555/3305890.3306024]

34. Novakovsky G, Dexter N, Libbrecht MW, Wasserman WW, Mostafavi S. Obtaining genetics insights from deep learning
via explainable artificial intelligence. Nat Rev Genet. Feb 03, 2023;24(2):125-137. [doi: 10.1038/s41576-022-00532-2]
[Medline: 36192604]

35. Lyu W, Dong X, Wong R, Zheng S, Abell-Hart K, Wang F, et al. A multimodal transformer: fusing clinical notes with
structured EHR data for interpretable in-hospital mortality prediction. AMIA Annu Symp Proc. 2022;2022:719-728. [FREE
Full text] [Medline: 37128451]

36. Zhang Y, Tino P, Leonardis A, Tang K. A survey on neural network interpretability. IEEE Trans Emerg Top Comput Intell.
Oct 2021;5(5):726-742. [doi: 10.1109/tetci.2021.3100641]

Abbreviations
AUROC: area under the receiver operating characteristic curve
BERT: Bidirectional Encoder Representations from Transformers
DL: deep learning
eICU-CRD: eICU Collaborative Research Database
HF: heart failure
ICU: intensive care unit
IG: Integrated Gradients
MIMIC: Medical Information Mart for Intensive Care
NT-proBNP: N-terminal pro–b-type natriuretic peptide
SHAP: SHapley Additive exPlanations

Edited by G Eysenbach, T de Azevedo Cardoso; submitted 07.11.23; peer-reviewed by E Kawamoto, MO Khursheed; comments to
author 05.12.23; revised version received 01.01.24; accepted 19.03.24; published 02.05.24

Please cite as:
Gao Z, Liu X, Kang Y, Hu P, Zhang X, Yan W, Yan M, Yu P, Zhang Q, Xiao W, Zhang Z
Improving the Prognostic Evaluation Precision of Hospital Outcomes for Heart Failure Using Admission Notes and Clinical Tabular
Data: Multimodal Deep Learning Model
J Med Internet Res 2024;26:e54363
URL: https://www.jmir.org/2024/1/e54363
doi: 10.2196/54363
PMID:

©Zhenyue Gao, Xiaoli Liu, Yu Kang, Pan Hu, Xiu Zhang, Wei Yan, Muyang Yan, Pengming Yu, Qing Zhang, Wendong Xiao,
Zhengbo Zhang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 02.05.2024. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

J Med Internet Res 2024 | vol. 26 | e54363 | p. 10https://www.jmir.org/2024/1/e54363
(page number not for citation purposes)

Gao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.48550/arXiv.2102.04110
http://europepmc.org/abstract/MED/27219127
http://dx.doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27219127&dopt=Abstract
http://dx.doi.org/10.1093/jamia/ocx084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29036464&dopt=Abstract
https://doi.org/10.1038/sdata.2018.178
http://dx.doi.org/10.1038/sdata.2018.178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30204154&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.48550/arXiv.1904.05342
https://europepmc.org/abstract/MED/33782629
http://dx.doi.org/10.18653/v1/2020.acl-main.214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33782629&dopt=Abstract
http://dx.doi.org/10.5555/3305890.3306024
http://dx.doi.org/10.1038/s41576-022-00532-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36192604&dopt=Abstract
https://europepmc.org/abstract/MED/37128451
https://europepmc.org/abstract/MED/37128451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37128451&dopt=Abstract
http://dx.doi.org/10.1109/tetci.2021.3100641
https://www.jmir.org/2024/1/e54363
http://dx.doi.org/10.2196/54363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic
information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must
be included.

J Med Internet Res 2024 | vol. 26 | e54363 | p. 11https://www.jmir.org/2024/1/e54363
(page number not for citation purposes)

Gao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

