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Abstract

Background: Accurate patient outcome prediction in the intensive care unit (ICU) can potentially lead to more effective and
efficient patient care. Deep learning models are capable of learning from data to accurately predict patient outcomes, but they
typically require large amounts of data and computational resources. Transfer learning (TL) can help in scenarios where data and
computational resources are scarce by leveraging pretrained models. While TL has been widely used in medical imaging and
natural language processing, it has been rare in electronic health record (EHR) analysis. Furthermore, domain adaptation (DA)
has been the most common TL method in general, whereas inductive transfer learning (ITL) has been rare. To the best of our
knowledge, DA and ITL have never been studied in-depth in the context of EHR-based ICU patient outcome prediction.

Objective: This study investigated DA, as well as rarely researched ITL, in EHR-based ICU patient outcome prediction under
simulated, varying levels of data scarcity.

Methods: Two patient cohorts were used in this study: (1) eCritical, a multicenter ICU data from 55,689 unique admission
records from 48,672 unique patients admitted to 15 medical-surgical ICUs in Alberta, Canada, between March 2013 and December
2019, and (2) Medical Information Mart for Intensive Care III, a single-center, publicly available ICU data set from Boston,
Massachusetts, acquired between 2001 and 2012 containing 61,532 admission records from 46,476 patients. We compared DA
and ITL models with baseline models (without TL) of fully connected neural networks, logistic regression, and lasso regression
in the prediction of 30-day mortality, acute kidney injury, ICU length of stay, and hospital length of stay. Random subsets of
training data, ranging from 1% to 75%, as well as the full data set, were used to compare the performances of DA and ITL with
the baseline models at various levels of data scarcity.

Results: Overall, the ITL models outperformed the baseline models in 55 of 56 comparisons (all P values <.001). The DA
models outperformed the baseline models in 45 of 56 comparisons (all P values <.001). ITL resulted in better performance than
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DA in terms of the number of times and the margin with which it outperformed the baseline models. In 11 of 16 cases (8 of 8 for
ITL and 3 of 8 for DA), TL models outperformed baseline models when trained using 1% data subset.

Conclusions: TL-based ICU patient outcome prediction models are useful in data-scarce scenarios. The results of this study
can be used to estimate ICU outcome prediction performance at different levels of data scarcity, with and without TL. The publicly
available pretrained models from this study can serve as building blocks in further research for the development and validation
of models in other ICU cohorts and outcomes.

(J Med Internet Res 2024;26:e52730) doi: 10.2196/52730
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Introduction

Electronic health records (EHRs) are databases that hospitals
and health care providers use to record an individual’s health
history. There has been significant progress in using deep
learning models for predicting patient outcomes using EHR
data [1]. However, using deep learning models is not feasible
in some settings, such as rural hospital ICUs, which have low
patient volumes and limited computational capacity due to
budget restrictions.

Transfer learning (TL) can be useful in these challenging
scenarios. TL research using EHR data has been uncommon

compared to medical image analysis and natural language
processing. The basic idea of TL is to use the knowledge and
representations learned while training the model on a source
prediction task, and to improve prediction performance on a
different, but potentially closely related target prediction task
[2]. In practice, this is achieved by pretraining a model with
data for the source prediction task and saving the trained
weights. These weights capture the intrinsic knowledge of the
data. This pretrained model is typically loaded without the final
layers (usually the fully connected layers immediately preceding
the output layer and the output layer itself), which are then
replaced with new layers. Finally, this pretrained model is
retrained to fine-tune it to the target prediction task (Figure 1).
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Figure 1. An illustration of how DA and ITL were applied in this study. For ITL, the source and target prediction tasks were 30-day mortality and
AKI, respectively, while the source and target domains were both eCritical. For DA, the source and target prediction tasks were both 30-day mortality,
while the source and target domains were eCritical and MIMIC-III, respectively. AKI: acute kidney injury; DA: domain adaptation; ITL: inductive
transfer learning; MIMIC-III: Medical Information Mart for Intensive Care III.

In this work, we considered 2 commonly used types of TL
methods. First, inductive transfer learning (ITL) aims to improve
performance on the target task after learning a different but
related source task, usually from the same domain [3]. For
example, in the study by Tokuoka et al [4], a model trained for
brain tissue annotation label (source task) was adapted to the
task of brain tumor segmentation (target task) using magnetic
resonance imaging images. Second, transductive TL, also
referred to as domain adaptation (DA), makes use of different
domains but the same prediction task [3]. For example, in the

study by Titoriya and Sachdeva [5], AlexNet [6] model, which
was pretrained on ImageNet data (source data set) for object
classification (source task), was retrained on the Breakhis data
set (target data set) to classify medical images into malignant
or benign (target task) to predict breast cancer.

TL can be useful in a data-scarce scenario where the target data
set does not have a sufficient volume to train a deep learning
model but there is a sufficiently large source data set to train a
pretrained model or a relevant pretrained model is available.
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For example, DA can be useful in a scenario where a rural
intensive care unit (ICU) does not have sufficient data to train
a model to predict a patient outcome, but an urban teaching
hospital has a large data set to train a model for the same patient
outcome. ITL can be useful when predicting new or rare patient
outcomes at an ICU if that ICU has a sufficiently large data set
for training a model to predict a different patient outcome.

TL research in medical image analysis is relatively
comprehensive, as pretrained convolutional neural networks,
such as AlexNet [6], ResNet [7], VGGNet [8], and GoogleNet
[9], are publicly available and have been used widely for
prediction problems such as image classification [10], image
segmentation [11], object identification [12], disease
categorization [13], and severity grading [14]. Most of these
examples used DA rather than ITL.

Another field with significant previous TL research is natural
language processing. Some of the established pretrained
language models are Word2Vec [15], GloVe [16], Bidirectional
Encoder Representations from Transformers [17], and fastText
[18]. Some of the use cases of pretrained natural language
processing models include text mining [19], word classification
[20], and sentiment classification [21].

A recent trend has been to adapt the progress made in TL
research in the natural language processing domain to EHR data
analysis. Inspired by the pretrained Bidirectional Encoder
Representations from Transformers model [17], Li et al [22]
developed BEHRT using EHR data to improve future visit
diagnosis prediction. This study used only 4 features, which
included age, segment, position, and diagnosis. Longitudinal
data were used, and a transformer-based model was trained.
This study had inclusion criteria of patients with at least 5 visits
and a diagnosis available in their EHR. One of the shortcomings
of this study was not using all the available features in the EHR
data such as demographics, laboratory results, vitals, and
prescriptions. Another concern was the requirement of 5
previous visits with diagnosis, causing the model to be unable
to predict the diagnosis for patients with fewer previous visits.

Liu et al [23] used TL to improve the prediction of acute kidney
injury (AKI) using EHR data acquired at the University of
Kansas Medical Center. Logistic regression (LR) was used as
the global (baseline) model and the global TL model. Global
TL and baseline models are the same LR models except the
baseline model was trained on the original data set and the TL
model was trained on the modified data set. To create the
modified data set, data of each feature were multiplied by the
corresponding feature coefficient, which was obtained from the
global baseline model. The personalized model was then trained
on a subset of the training sample with the highest similarity
(nearest neighbors) with the selected test sample. For each test
sample, a subset of the training data set with the highest
k-nearest neighbor score was selected and a personalized model
and personalized TL model were trained. The personalized TL
model followed the same approach as the global TL model
except that the training sample was selected from the modified
data set using the k-nearest neighbor score (similarity) with the
selected test sample. Although the source and target prediction
tasks and domains were the same, this can be considered as DA

since TL models use a modified data set. Here, deep learning
models were not used, which are often assumed to be better at
learning the general representations of the data. Since both these
TL models (global and personalized) were not like the traditional
pretrained models with saved weights, the transfer of knowledge
happened by modifying the data set. Thus, the transferred
knowledge is stored in a modified data set, not in the TL models.
These TL models are strongly tied to this specific data set and
their generalizability has not been well established by using
external validation data.

In the study by Shickel et al [24], TL was used to improve
hospital discharge prediction using a conventional ICU cohort
acquired at the University of Florida Health as the source cohort
and the intelligent ICU cohort also acquired at the University
of Florida Health as the target cohort. It used a feed-forward
neural network for TL. Here, the source cohort had 48,400
patient records whereas the target cohort had 51 patient records.
This study used only 9 features and DA, even though not stated
specifically in the paper. This semantic progression was
observed in other studies as well; DA has become so prevalent
that the terms TL and DA are being used interchangeably, with
the former most commonly referring to the latter [24,25].

To the best of our knowledge, TL research has been rare in
EHR-based ICU patient outcome prediction, particularly in
terms of ITL, leading to a limited understanding of the
effectiveness of TL in data-scarce ICU settings. Furthermore,
there is a lack of publicly available EHR-based pretrained
models for ICU patient outcome prediction. These are important
gaps because EHR-based tabular data are one of the most widely
used forms of data in predictive modeling studies in health, and
the state-of-the-art TL methods from general computer vision
and natural language processing are often not readily applicable
to EHR data. Hence, this retrospective study aimed to compare
the performances of DA, ITL, and baseline (without TL) models
in predicting the following 4 ICU patient outcomes at varying
levels of data scarcity: 30-day post-ICU admission mortality,
AKI, hospital length of stay (H_LOS), and ICU length of stay
(ICU_LOS).

Methods

Data Sources
EHR data from 2 patient cohorts were used in this retrospective
study. The first cohort was eCritical, which has 55,689 unique
admission records from 48,672 unique patients admitted to 15
ICUs in Alberta, Canada, between March 2013 and December
2019. The second cohort was the Medical Information Mart for
Intensive Care III (MIMIC-III) database [26] version 1.4, which
includes 61,532 unique admission records from 46,476 unique
patients admitted to the ICUs at the Beth Israel Deaconess
Medical Center in Boston, Massachusetts, between 2001 and
2012.

Ethical Considerations
Since MIMIC-III is a publicly available database, the need to
obtain research ethics approval to use it in this study was
waived. However, eCritical contains patient identifying
information, and approval from the Conjoint Health Research
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Ethics Board, University of Calgary, was obtained
(REB17-0389). Informed consent was waived due to the large
number of patients involved in the study. All research was
performed in accordance with relevant guidelines and
regulations set by the University of Calgary and Alberta Health
Services, the custodian of the eCritical data, as well as the
Declaration of Helsinki.

Patient Cohorts
Two different sets of inclusion and exclusion criteria were
applied. The first set was used to establish the base cohorts for

the entire study, whereas the second set was specific to each
patient outcome and applied to the base cohorts.

For the base cohorts, the following inclusion criteria were
applied to both eCritical and MIMIC-III (Figure 2): (1) only
the first ICU admission of each patient; (2) ICU_LOS greater
than 24 hours; (3) only adult patients with an age 18 years and
older; and (4) samples with data available of at least 80% of the
features (missing values are imputed as discussed in data
preprocessing section). As a result, the base cohorts for eCritical
and MIMIC-III consisted of 39,317 and 31,446 patient records,
respectively.

Figure 2. Patient cohort flowchart. AKI: acute kidney injury; H_LOS: hospital length of stay; ICU: intensive care unit; ICU_LOS: ICU length of stay;
MIMIC: Medical Information Mart for Intensive Care.

Further inclusion and exclusion criteria were applied to each
patient outcome, resulting in different data sets for each
outcome, as shown in Figure 2. The 30-day mortality did not
require further inclusion criteria and was modeled using the
base cohorts. For AKI, the following criteria were applied: (1)
only patient records with sufficient data to determine the
presence or absence of AKI, with one serum creatinine
laboratory measurement within the first 24 hours of admission
to be able to establish a baseline and another measurement after
24 hours of ICU admission; and (2) no AKI onset at or within
24 hours of admission. For ICU_LOS, the following inclusion
criteria were applied: (1) the presence of ICU admission and
discharge date times; and (2) to exclude outliers only the bottom
98th percentile values of ICU_LOS are included. For H_LOS,
the following inclusion criteria were applied: (1) the presence
of hospital admission and discharge date times; and (2) to

exclude outliers only the bottom 98th percentile values of
H_LOS were included.

In the end, the eCritical and MIMIC-III cohorts had 39,317 and
31,446 samples, respectively, for 30-day mortality. Similarly,
AKI had 32,076 and 26,741 samples, H_LOS had 37,675 and
30,816 samples, and ICU_LOS had 38,529 and 30,816 samples,
respectively. These cohorts were randomly split into 80%
training, 10% validation, and 10% test data. We compared the
prediction performance of TL with those of baseline models at
different levels of training data scarcity with random subsets of
1%, 5%, 10%, 25%, 50%, 75%, and 100% of the training data.

Patient Outcomes
The primary patient outcomes for this study were 30-day
post-ICU admission mortality and ICU_LOS. A patient was
defined as deceased if he or she died after being admitted to the
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ICU and within 30 days of ICU admission. ICU_LOS was
defined as the time between ICU admission and discharge.

Furthermore, AKI after 24 hours of ICU admission and H_LOS
were predicted as secondary patient outcomes. AKI was
identified using the creatinine criteria of KDIGO [27]. H_LOS
was defined as the time between hospital admission and
discharge.

30-day mortality and AKI were predicted as classification
problems, whereas H_LOS and ICU_LOS were predicted as
regression problems.

Feature Set
Machine learning (ML) models were trained with the following
predictor variables from the first 24 hours in the ICU that were
common in both eCritical and MIMIC-III: demographics, vitals,

laboratory test results, Glasgow Coma Scale, prescriptions,
dialysis, and mechanical ventilation. Features with more than
30% missing data were excluded from the study. Table 1 shows
a complete list of the predictor variables. Four statistical features
(5th percentile, 95th percentile, IQR, and median) were extracted
from the longitudinal variables such as vitals, laboratory results,
and Glasgow Coma Scale. The maximum and minimum values
of laboratory assessments and vitals carry crucial information
regarding the health condition of the patient, but to minimize
the influence of outliers, the 5 percentile and 95 percentiles
were used instead. Other predictor variables, such as
prescriptions, dialysis, and mechanical ventilation, were
transformed into binary features to indicate the presence or
absence. In the end, a total of 104 features were included in this
study.
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Table 1. Common feature set between eCritical and MIMIC-IIIa.

Unit of measurementCategoryFeature

yearsDemographicsAge

kgDemographicsWeight

Binary (M/F)DemographicsSex

N/AcGCSbEye-opening

N/AGCSVerbal response

N/AGCSGCS

N/AGCSMotor response

mLUrine volumesUrine volumes

bpmVitalsHeart rate

mm HgVitalsBPd systolic

mm HgVitalsBP diastolic

%VitalsSpO2
e

breaths/minVitalsRespiratory rate

mmol/LLaboratory findingsUrea blood

mmol/LLaboratory findingsCO2 content blood

µmol/LLaboratory findingsCreatinine blood

mmol/LLaboratory findingsGlucose blood

mmol/LLaboratory findingsPotassium blood

mmol/LLaboratory findingsSodium blood

mmHgLaboratory findingspCO2
f arterial

%Laboratory findingsFiO2

N/ALaboratory findingsPH arterial

mmHgLaboratory findingspO2
g arterial

g/LLaboratory findingsHemoglobin

%Laboratory findingsHematocrit

E+12 units/LLaboratory findingsRBCh

E+9 units/LLaboratory findingsWBCi

Binary (1/0)DialysisDialysis

Binary (1/0)Mechanical ventilationMechanical ventilation

Binary (1/0)PrescriptionsNorepinephrine

Binary (1/0)PrescriptionsPhenylephrine

Binary (1/0)PrescriptionsVasopressin

Binary (1/0)PrescriptionsDobutamine

Binary (1/0)PrescriptionsDopamine

Binary (1/0)PrescriptionsEpinephrine

aMIMIC-III: Medical Information Mart for Intensive Care III.
bGCS: Glasgow Coma Scale.
cN/A: not applicable.
dBP: blood pressure.
eSpO2: oxygen saturation.
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fpCO2: partial pressure of carbon dioxide.
gpO2: partial pressure of oxygen.
hRBC: red blood cell.
iWBC: white blood cell.

Data Preprocessing
Differences in units of measurement between eCritical and
MIMIC-III were handled by converting all features in
MIMIC-III to the eCritical units of measurement.

The train set was used for training the models, whereas the
validation set was used for tuning hyperparameters. The test set
was used for model performance evaluation. Numerical features
(eg, vitals and laboratory findings) were scaled (unit variance
and zero mean) and categorical features (eg, sex, prescriptions,
and mechanical ventilation) were transformed using one-hot
encoding.

Missing data were present to varying degrees in both cohorts.
Features with more than 30% missing data were excluded from
the study. Patient records with missing data for more than 20%
of the features were dropped. The remaining patient records
with missing values were imputed using the IterativeImputer
from the Scikit-learn Python package, which is similar to the
multiple imputation by chained equations. Imputation was
performed after splitting the data to avoid data leakage. Training,
validation, and test data were imputed separately.

Both categorical patient outcomes, 30-day mortality and AKI,
had varying degrees of class imbalance in both cohorts. The
30-day mortality had the highest class imbalance; the event
rates were 16.79% and 12.24% in eCritical and MIMIC-III,
respectively. The class imbalance was mitigated using the
Synthetic Minority Oversampling Technique [28], by
oversampling the minority class to 50% of the majority class
and then undersampling the majority class to 100% of the
minority class.

Baseline Models
Since logistic [29] and lasso [30] regression are widely used in
medical research for classification and regression, respectively,
they were used as baseline models. In addition, deep learning
models (fully connected neural network [FCNN]) with random
initialization of weights were used as baseline models.

Hyperparameter tuning for the LR and lasso models was done
using grid search with 3-fold cross-validation. The searched
hyperparameter space for LR included: solvers of newton-cg,
liblinear, lbfgs, sag, and saga; penalties of L1, L2, and none;
and C values ranging from 0.01 to 10 with a step of 0.01. The
searched hyperparameter space for lasso included: α values
ranging from .01 to 1 with a step of .01. FCNN baseline models
used the same architecture and hyperparameters as the
corresponding TL models so that we were comparing models
that were trained the same way except how the weights were
initialized.

Eight FCNN models were created for the 4 patient outcomes
and 2 cohorts. Four LR models were created for 30-day mortality
and AKI trained on eCritical and MIMIC-III. Similarly, 4 lasso

regression models were created for H_LOS and ICU_LOS
trained on eCritical and MIMIC-III.

TL Models
In DA, the source and target domains were eCritical and
MIMIC-III, respectively. The source and target tasks were the
same, and each DA model predicted one of the four patient
outcomes. Each model was pretrained on the source domain
data before being fine-tuned and evaluated on the target domain
data. As a result, four pretrained DA models were created, one
for each of the 4 patient outcomes.

In ITL, both the source and target domains were eCritical and
the source task was 30-day mortality prediction whereas the
target task was the prediction of one of the four patient
outcomes. The ITL model where both the source and target
tasks were 30-day mortality served as a benchmark for the other
ITL models. In the end, 4 pretrained ITL models were created
for each of the 4 patient outcomes.

The pretrained TL models were FCNNs trained on the training
data set of the source domain. Hyperparameters were tuned
using the validation data set. The searched hyperparameter space
included: dropout rates of 0.5, 0.4, and 0.3; batch sizes of 32,
64, and 128; numbers of neurons per hidden layer of 100, 128,
256, and 200; learning rates of 0.001 and 0.0001; activation
functions of ReLU, tanh, selu, elu, LeakyReLU, and PReLU;
kernel initializers of He Uniform and He Normal; and kernel
regularizers of L2 (l2=1e-3) and L1 (l1=0.001). In addition,
different architectures were explored. The first one had 3 hidden
layers with layer, layer/2, and layer/4 number of neurons. The
second architecture had 7 hidden layers with layer, layer*2,
layer*2, layer, layer, layer/2, and layer/4 neurons. Here, the
layer had 100, 200, 128, and 256 neurons. Finally, these models
were tested using the hold-out test set from the source domain
to identify the best-performing model concerning balanced
accuracy (to account for class imbalance) for classification tasks
and mean absolute error (MAE) for regression tasks. Then, these
best-performing models were used as the pretrained models.

For fine-tuning, the pretrained model was loaded and the last
hidden layer was replaced with a new hidden layer with
randomly initialized weights. Then, all pretrained model layers
were frozen (preventing those layers from learning) except for
the newly added hidden layer and the model was trained to
allow the new hidden layer to adjust its weights. Then, all layers
were unfrozen (allowing weights to update) and the model was
trained for the final time.

Prediction Performance Comparisons at Varying
Levels of Data Scarcity
To investigate prediction performance at varying levels of data
scarcity, random subsets of 1%, 5%, 10%, 25%, 50%, and 75%
were created from the full training data set (100%). To avoid
selection bias [31], each subset was obtained 10 different times
using 10 different random states. Models were trained on these
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10 data subsets and then performance metrics from all models
were then aggregated for each subset. As there were 6 subsets
(1%, 5%, 10%, 25%, 50%, and 75%) and the full training data
set of 100%, 61 (6×10+1) models were trained for each outcome
and each model. For example, for AKI, 61 LR, 61 FCNN, 61
ITL, and 61 DA models were trained.

To obtain the median and 95% CI of the performance metrics,
1000 bootstrap samples of the test set were obtained for the full
data set (100%), and for the random subsets, 100 bootstrap
samples for each of the 10 random states (1000 in total) were
created and then tested using these bootstrapped test sets.

All classification models were assessed using balanced accuracy
as the primary metric (to account for class imbalance) and the
following 4 secondary metrics on the hold-out test set: area
under the receiver operating characteristic curve, accuracy,
precision (also known as positive predictive value), and recall
(also known as sensitivity). All regression models were
evaluated using MAE and mean squared error (MSE).

Finally, Wilcoxon rank sum tests were performed to compare
the performance of TL models to the baseline models. Since
there were repeated comparisons involved, a Bonferroni
correction was applied. Because the classification tasks had 35
comparisons (7 data subsets and 5 metrics), statistical

significance was indicated by P<.001 (.05/35). The regression
tasks had 14 comparisons (7 data subsets and 2 metrics), leading
to statistical significance set at P<.001 (.05/14).

Results

Patient Cohorts
Based on the inclusion and exclusion criteria, the final eCritical
and MIMIC-III cohorts were different for each patient outcome
(Figure 2). The 30-day mortality cohort had 39,317 and 31,446
samples in eCritical and MIMIC-III databases, respectively,
whereas the AKI cohort had 32,076 and 26,741 samples,
respectively. The H_LOS cohort had 37,675 and 30,816
samples, and the ICU_LOS cohort had 38,529 and 30,816
samples, respectively. In the eCritical cohort, there were 6713
(17.07%) 30-day mortalities, whereas, in the MIMIC-III
database, there were 3900 (12.40%) 30-day mortalities. The
eCritical cohort had 4524 (14.11%) AKI cases whereas
MIMIC-III had 5789 (21.64%) AKI cases. The eCritical cohort
had a median H_LOS of 11.48 (IQR 5.59-23.29) days, whereas
the MIMIC-III cohort had a median (IQR) of 7.39 (4.67-12.32).
Similarly, the median (IQR) ICU_LOS in the eCritical and
MIMIC-III cohorts were 3.97 (2.2-7.67) and 2.47 (1.59-4.58)
days, respectively. The descriptive statistics for the 2 cohorts
are shown in Table 2.
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Table 2. Descriptive statistics of the 2 patient cohorts.

MIMIC-IIIaeCriticalDescriptor

17,900 (56.92)22,957 (58.39)Male, n (%)

66 (53-78)60 (46-70)Age (years), median (IQR)

79.3 (66.5-94)80 (67.4-96.6)Admission weight (kg), median (IQR)

3900 (12.40)6713 (17.07)30-day mortality, n (%)

5789 (21.64)4524 (14.10)AKIb, n (%)

7.39 (4.67-12.32)11.48 (5.59-23.29)H_LOSc (days), median (IQR)

2.47 (1.59-4.58)3.97 (2.2-7.67)ICU_LOSd (days), median (IQR)

79.56 (61.88-123.76)90.5 (65.5-152.05)Blood creatinine (μmol/L), median (IQR)

12 (8-15)11 (7.2-14.25)Glasgow Coma Scale, median (IQR)

7.1 (5.83-8.99)7.49 (6.09-9.45)Blood glucose (mmol/L), median (IQR)

4.07 (3.7-4.5)3.95 (3.6-4.4)Blood potassium (mmol/L), median (IQR)

138.5 (136-141)138.2 (135.15-141)Blood sodium (mmol/L), median (IQR)

7.38 (7.33-7.43)7.38 (7.32-7.43)Arterial pH, median (IQR)

11.2 (8.1-14.9)12.03 (8.55-16.65)WBCe (/µL), median (IQR)

3.54 (3.15-3.99)3.7 (3.15-4.24)RBCf (/µL), median (IQR)

117 (100.8-135.75)118.5 (100.25-139.8)Systolic blood pressure (mm Hg), median (IQR)

59.5 (49.5-71)61.5 (52-73.8)Diastolic blood pressure (mm Hg), median (IQR)

97.7 (95-99.7)97 (94-99)SpO2
g (%), median (IQR)

107 (94.5-121)112.45 (95.75-129.2)Hemoglobin (g/L), median (IQR)

31.5 (27.95-35.5)34 (29-39)Hematocrit (%), median (IQR)

16,429 (52.25)34,073 (86.66)Mechanical ventilation, n (%)

6909 (21.97)2173 (5.53)Dialysis, n (%)

3,339 (10.62)15,797 (40.18)Norepinephrine, n (%)

6737 (21.42)4384 (11.15)Phenylephrine, n (%)

712 (2.26)5087 (12.94)Vasopressin, n (%)

429 (1.36)754 (1.92)Dobutamine, n (%)

1512 (4.81)1051 (2.67)Dopamine, n (%)

1221 (3.88)1320 (3.36)Epinephrine, n (%)

aMIMIC-III: Medical Information Mart for Intensive Care III.
bAKI: acute kidney injury.
cH_LOS: hospital length of stay.
dICU_LOS: intensive care unit length of stay.
eWBC: white blood cell.
fRBC: red blood cell.
gSpO2: oxygen saturation.

Pretrained Models
After hyperparameter tuning for the 30-day mortality source
task, the pretrained model with 3 hidden layers of 128, 64, and
32 neurons was selected. This model had the highest balanced
accuracy of 0.7810. This was the pretrained model for all 4 ITL
target tasks and the 30-day mortality DA target task. Similarly,
after hyperparameter tuning for the AKI, H_LOS, and ICU_LOS

source tasks, pretrained models with 3 hidden layers of 256,
128, and 64 neurons, 7 hidden layers of 256, 512, 512, 256,
256, 128, and 64 neurons, and 7 hidden layers of 256, 512, 512,
256, 256, 128, and 64 neurons, with a balanced accuracy of
0.7199, an MAE of 11.8019, and an MAE of 3.0887, were
selected, respectively. These were the pretrained models for the
DA target tasks for AKI, H_LOS, and ICU_LOS, respectively.

These pretrained models are publicly available via GitHub [32].
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Domain Adaptation
Multimedia Appendices 1-4 show the complete prediction
performances of the DA and baseline models at varying levels

of data scarcity represented by the data subsets for 30-day
mortality, AKI, ICU_LOS, and H_LOS, respectively. Figures
3-6 pictorially compare the DA and baseline models for each
patient outcome.

Figure 3. 30-day mortality prediction performances of the (A) ITL and (B) DA models in comparison with those of the baseline models across a range
of data subsets representing varying levels of data scarcity. The solid lines are the medians and the shaded areas are the 95% CIs. AUC: area under the
receiver operating characteristic curve; DA: domain adaptation; FCNN: fully connected neural network; ITL: inductive transfer learning; LR: logistic
regression.
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Figure 4. AKI prediction performances of the (A) ITL and (B) DA models in comparison with those of the baseline models across a range of data
subsets representing varying levels of data scarcity. The solid lines are the medians and the shaded areas are the 95% CIs. AKI: acute kidney injury;
AUC: area under the receiver operating characteristic curve; DA: domain adaptation; FCNN: fully connected neural network; ITL: inductive transfer
learning; LR: logistic regression.
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Figure 5. ICU_LOS prediction performances of the (A) ITL and (B) DA models in comparison with those of the baseline models across a range of
data subsets representing varying levels of data scarcity. The solid lines are the medians and the shaded areas are the 95% CIs. DA: domain adaptation;
FCNN: fully connected neural network; ICU_LOS: intensive care unit length of stay; ITL: inductive transfer learning; MAE: mean absolute error; MSE:
mean squared error.
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Figure 6. H_LOS prediction performances of the (A) ITL and (B) DA models in comparison with those of the baseline models across a range of data
subsets representing varying levels of data scarcity. The solid lines are the medians and the shaded areas are the 95% CIs. DA: domain adaptation;
FCNN: fully connected neural network; H_LOS: hospital length of stay; ITL: inductive transfer learning; MAE: mean absolute error; MSE: mean
squared error.

For 30-day mortality, DA models outperformed both the baseline
models LR and FCNN for data subsets 1% to 50%. For data
sets, 75% and 100% DA models outperformed the LR model
but underperformed the FCNN model. For example, when 1%
data set was used for training, the DA model had a median
balanced accuracy of 0.6744 (95% CI 0.5758-0.7083), whereas
LR had 0.5821 (95% CI 0.551-0.6134) and FCNN had 0.6636
(95% CI 0.6146-0.6971).

For AKI, the DA models outperformed both baseline models
for some of the data subsets (75%, 50%, 25%, 10%, and 5%)
and underperformed both baseline models for the data subset
(1%). The DA model outperformed the LR model and
underperformed the FCNN model for the 100% data set. When

the 10% data subset was used, the DA model had a median
balanced accuracy of 0.6511 (95% CI 0.626-0.6763), whereas
the LR model had 0.6052 (95% CI 0.5779-0.6262) and the
FCNN model had 0.6439 (95% CI 0.6177-0.6678).

For ICU_LOS, the DA models outperformed both baseline
models for some of the data subsets (25%-100%). The DA
models outperformed the FCNN models but underperformed
the lasso models in some cases (5% and 10%). In addition, the
results from the 1% data subset were not significant between
DA and FCNN (P=.05). When the 25% training data subset was
used for training, the DA model had a median MAE of 2.2781
(95% CI 2.0427-4.643), whereas the lasso model had 2.4165
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(95% CI 2.2967-11.1001) and the FCNN model had 3.8481
(95% CI 3.5641-5.0331).

For H_LOS, the DA models outperformed both baseline models
for some of the data subsets (25%-100%). The DA models
outperformed the FCNN models but underperformed the lasso
models in some cases (1% and 5%). The results from the 10%
data subset were not significantly different between DA and
lasso (PP.02), but the DA model outperformed the FCNN model.
When the 25% data subset was used for training, the DA model
had a median MAE of 4.9109 (95% CI 4.5982-7.389), whereas
the lasso model had 5.0491 (95% CI 4.8903-6.457) and the
FCNN model had 9.2677 (95% CI 9.0162-9.6332).

Inductive Transfer Learning
Multimedia Appendices 3-6 show the complete prediction
performances of the ITL and baseline models at varying levels
of data scarcity represented by the data subsets for 30-day
mortality, AKI, ICU_LOS, and H_LOS, respectively. Figures
3-6 pictorially compare the ITL and baseline models for each
patient outcome.

As mentioned in the Methods section, the 30-day mortality
prediction results from ITL presented in Multimedia Appendix
5 serve as a benchmark, since the source and target domains
and prediction tasks were the same. The fast convergence of
ITL performance at very small data subsets shown in Figure 3
corroborates the limited learning taking place during fine-tuning.

For AKI, the ITL models outperformed both baseline models
for all data subsets except 100%. For example, when the 1%
data set was used for training the models, the ITL model had a
median balanced accuracy of 0.6434 (95% CI 0.6006-0.6888),
whereas the LR model had 0.5467 (95% CI 0.5154-0.5732) and
the FCNN model had 0.6222 (95% CI 0.5757-0.6604).

For ICU_LOS, the ITL models outperformed both baseline
models for all the data subsets. For example, when the 1% data
set was used, the ITL model had a median MAE of 3.4519 (95%
CI 3.2863-3.8158), whereas lasso had 3.5883 (95% CI
3.4255-3.7376) and FCNN had 5.626 (95% CI 5.4351-5.8329).

For H_LOS, the ITL models outperformed both baseline models
for all data subsets. For example, when the 1% data set was
used, the ITL model had a median MAE of 13.3182 (95% CI
12.6128-13.9609) whereas lasso had 13.7765 (95% CI
13.3118-14.2661) and FCNN had 18.5363 (95% CI
17.8711-19.243).

Discussion

Principal Results
Overall, the ITL models outperformed the baseline models in
55 of the 56 cases (7 data subsets × 4 outcomes × 2 baseline
models). The DA models outperformed the baseline models 45
times in 56 cases. While TL is expected to yield better prediction
performance than the baseline models, particularly with small
data subsets, this assumption has not been confirmed in a
comprehensive manner yet in the context of EHR-based ICU
patient outcome prediction. In particular, the ITL prediction
performances reported in this study are important contributions,

given that ITL has seldom been investigated in EHR-based
studies in general.

Moreover, the results from this study characterize DA, ITL, and
baseline prediction performances as a function of target data
volume. ICUs with limited data or computing resources can use
our results as a guide to decide which would be better: fine-tune
our pretrained models on their data or train new models from
scratch using their small data set.

It is also worth noting that DA did not always outperform the
baseline models even at very small data subsets (eg, ICU_LOS
at the 1% subset; Multimedia Appendix 3). This finding implies
that one should not blindly apply TL even when the target data
set is small and expect performance improvement.

The ITL models performed better than the DA models in terms
of the number of times and the margin with which they
outperformed the baseline models. This speaks to the fact that
the eCritical and MIMIC-III cohorts are quite different, and the
knowledge learned from eCritical exhibited limited use in
predicting the outcomes of the MIMIC-III patients. This is
corroborated by the substantial differences in all 4 outcomes
shown in Table 2. There seem to be more similarities between
different outcomes within the same cohort than between
different cohorts for the same outcome. This finding may be
surprising to many researchers since the differences between
different patient outcomes in terms of disease progression and
risk factors are believed to be substantial, whereas even at
different sites, the fundamentals of the diseases and ICU care
should have many similarities.

Our pretrained models have been made available publicly which
can be used at other ICUs or in future research. In many
scenarios, TL was useful even at the 1% data subset,
representing only about 200 samples. Hence, ICUs with their
own data set containing just 200 samples can potentially benefit
from our pretrained models. Given the paucity of public
pretrained models in EHR-based ICU patient outcome
prediction, our pretrained models are an invaluable contribution
to the field.

Clinical Implications
While accurate patient outcome prediction in the ICU has the
potential to enable early initiation of preventative care and
improve clinical efficiency and care resource management, it
may be infeasible for many ICUs to build their own predictive
models due to a lack of digital data infrastructure. The pretrained
models from this study address this barrier by serving as
predictive models that can be used out-of-the-box (albeit with
suboptimal performance) or fine-tuned with a small amount of
local data. This study provides a pathway for a wider group of
ICUs to consider bringing patient outcome prediction models
to the point of care.

Comparisons With the Literature
This study has several strengths in comparison with previous
EHR-based TL studies. First, this study is one of the few studies
that explored ITL using EHR data. Second, this study used 2
large cohorts: eCritical with 55,689 ICU admissions from 48,672
patients as the source domain, and MIMIC-III with 61,532 ICU
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admissions from 46,476 patients as the target domain. These
are considerably larger than the cohorts used in previous DA
studies. For example, Shickel et al [24] used the conventional
ICU cohort at the University of Florida Health with 48,400
distinct ICU admissions as the source domain and the intelligent
ICU cohort at the University of Florida Health with only 51
ICU admissions as the target cohort. Third, this study used a
large feature set of 104. In comparison, Shickel et al [24] used
only 9 features, while Li et al [22] used 4 features. Fourth, our
pretrained models are able to predict outcomes for new patients
without previous admissions, unlike the natural language
processing models developed by Li et al [22].

Secondary Performance Metric Results
While the TL models outperformed the baseline models in
general with respect to the primary performance metrics
(balanced accuracy and MAE), the baseline models (particularly
LR and lasso) often outperformed the TL models in terms of
the secondary metrics. In mortality and AKI prediction, the LR
models tended to show higher precisions and lower recalls than
the TL models. Given that both mortality and AKI exhibited
low event rates leading to substantial class imbalance, the
precision and recall results indicate that the LR models were
more biased toward the majority class than the TL models. The
higher area under the receiver operating characteristic curves
from the LR models indicates that they achieved higher
specificities in general than the TL models, further corroborating
the bias toward the majority class. This is why we chose
balanced accuracy as our primary metric since it reflects the
performances of both the majority and minority classes.

In the regression tasks of ICU_LOS and H_LOS prediction, the
lasso models often yielded better results than the TL models in
terms of MSE. This implies that the TL models often led to
larger errors that were amplified by the squaring effect of MSE.
Similarly, the large confidence intervals in Figures 5B and 6B
are also likely due to occasional large errors caused by the fact
that the model output is not upper-bounded.

Limitations
This study has limitations. First, we could not include all
available features due to the constraint of having to use common
features in both eCritical and MIMIC-III. Second, this study
could not investigate other major ICU patient outcomes, such
as sepsis, delirium, and acute respiratory distress syndrome,
due to data unavailability in either or both eCritical and
MIMIC-III. Third, only 2 baseline models were investigated

per prediction task, and more advanced ML models (eg,
XGBoost [XGBoost Contributors]) were not used. However,
because the primary objective of this study was to demonstrate
the benefits of TL, the most appropriate benchmark models
were the FCNNs where everything was equivalent to the TL
models except for the use of a pretrained model. While our focus
was not to produce the best prediction performance, our results
are comparable to the best MIMIC-based results in the literature
as shown by the review study conducted by Syed et al [33].
Fourth, this study only examined the discrimination of the
prediction models and did not investigate calibration. While
many health ML studies focus only on discrimination and
neglect calibration [34], this remains an important limitation of
this study. Finally, even though some of the features, such as
vitals and laboratory findings, were longitudinal, we performed
a cross-sectional study via feature aggregation. More advanced
recurrent deep learning models (eg, long short-term memory
and gated recurrent unit) that can leverage longitudinal
information may have led to different results.

Future Work
First, future work can include an investigation of DA and ITL
on other ICU patient outcomes, such as sepsis and delirium,
using data sets that can support such research. Second, the
application of DA and ITL to more advanced recurrent deep
learning models would be worthwhile. Third, the effectiveness
of pretrained models in the combination of both DA and ITL
(ie, both the domain and prediction task would change from
source to target) remains to be studied. For example, a mortality
prediction model pretrained on a source data set can be
fine-tuned on a target data set from a different domain to predict
AKI. Finally, the effectiveness of TL across patient subgroups
with respect to demographics and socioeconomic status would
be worthwhile investigating.

Conclusions
In this retrospective study, we found that TL can lead to
improved prediction performance when compared to baseline
models trained from scratch only using target data. This
performance improvement was observed in a wide range of
simulated data scarcity. In addition, the performance of ITL
was superior to that of DA. This implies fine-tuning a pretrained
model to predict a different patient outcome within the same
domain would be a promising approach. We hope that the
pretrained models from this study are useful to other researchers
and ICUs.
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