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Abstract

Background: Although several biomarkers exist for patients with heart failure (HF), their use in routine clinical practice is
often constrained by high costs and limited availability.

Objective: We examined the utility of an artificial intelligence (AI) algorithm that analyzes printed electrocardiograms (ECGs)
for outcome prediction in patients with acute HF.

Methods: We retrospectively analyzed prospectively collected data of patients with acute HF at two tertiary centers in Korea.
Baseline ECGs were analyzed using a deep-learning system called Quantitative ECG (QCG), which was trained to detect several
urgent clinical conditions, including shock, cardiac arrest, and reduced left ventricular ejection fraction (LVEF).

Results: Among the 1254 patients enrolled, in-hospital cardiac death occurred in 53 (4.2%) patients, and the QCG score for
critical events (QCG-Critical) was significantly higher in these patients than in survivors (mean 0.57, SD 0.23 vs mean 0.29, SD
0.20; P<.001). The QCG-Critical score was an independent predictor of in-hospital cardiac death after adjustment for age, sex,
comorbidities, HF etiology/type, atrial fibrillation, and QRS widening (adjusted odds ratio [OR] 1.68, 95% CI 1.47-1.92 per 0.1
increase; P<.001), and remained a significant predictor after additional adjustments for echocardiographic LVEF and N-terminal
prohormone of brain natriuretic peptide level (adjusted OR 1.59, 95% CI 1.36-1.87 per 0.1 increase; P<.001). During long-term
follow-up, patients with higher QCG-Critical scores (>0.5) had higher mortality rates than those with low QCG-Critical scores
(<0.25) (adjusted hazard ratio 2.69, 95% CI 2.14-3.38; P<.001).

Conclusions: Predicting outcomes in patients with acute HF using the QCG-Critical score is feasible, indicating that this
AI-based ECG score may be a novel biomarker for these patients.

Trial Registration: ClinicalTrials.gov NCT01389843; https://clinicaltrials.gov/study/NCT01389843

(J Med Internet Res 2024;26:e52139) doi: 10.2196/52139

J Med Internet Res 2024 | vol. 26 | e52139 | p. 1https://www.jmir.org/2024/1/e52139
(page number not for citation purposes)

Cho et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:djchoi@snubh.org
http://dx.doi.org/10.2196/52139
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

acute heart failure; electrocardiography; artificial intelligence; deep learning

Introduction

Heart failure (HF) is a major global health problem affecting
millions of people worldwide, leading to significant morbidity,
mortality, and health care expenditure [1-3]. Although several
valuable biomarkers such as N-terminal prohormone of brain
natriuretic peptide (NT-proBNP) [4,5] and cardiac troponins
[6] have been introduced for patients with HF, their use in
routine clinical practice is often constrained by their cost and
limited availability.

Electrocardiogram (ECG) is an essential and cost-effective tool
for evaluating cardiovascular diseases. ECG is widely available,
noninvasive, and provides real-time information about cardiac
electrical activity, which is crucial for detecting arrhythmias,
ischemia, and other cardiac abnormalities. With advances in
artificial intelligence (AI) and deep learning, there has been
growing interest in employing AI algorithms to analyze ECG
data and predict outcomes in patients with various
cardiovascular conditions [7,8].

In this study, we investigated the utility of an AI algorithm that
analyzes printed ECG images for outcome prediction in patients
with acute HF. These findings will demonstrate the potential
of AI-assisted ECG analysis for predicting outcomes in these

patients, potentially overcoming the cost and availability
constraints of current biomarkers.

Methods

Study Population
This was a substudy of the prospective multicenter Korean
Acute Heart Failure (KorAHF) registry, which enrolled 5625
consecutive patients upon initial hospital admission for acute
HF at 10 tertiary university hospitals in Korea. Details on the
KorAHF registry objectives, design, and population are available
on the clinical trial registration site (ClinicalTrials.gov
NCT01389843) and have been published previously [9,10].
Briefly, patients who had signs or symptoms of HF and met one
of the following criteria were eligible for enrollment in the
KorAHF registry: (1) lung congestion or (2) objective left
ventricular systolic dysfunction or structural heart disease
findings. There were no exclusion criteria.

In this study, we retrospectively analyzed the prospectively
collected data from 1254 patients who were hospitalized for
acute HF from March 2011 to February 2014 at 2 out of 10
participating tertiary centers (Seoul National University
Bundang Hospital and Severance Hospital) using the KorAHF
registry (Figure 1). Additional ECG image data were collected
for this study.

Figure 1. Flowchart of the training and validation study populations. The AI-ECG analyzer, named Quantitative ECG (QCG), was developed using
47,194 annotated ECG images of over 32,968 patients who visited the emergency department of SNUBH between 2017 and 2019. The QCG analyzer
was applied to ECGs from a subpopulation of the KorAHF registry including patients with AHF enrolled between 2011 and 2014. *Internal validation
results for two QCG scores. AHF: acute heart failure; AI: artificial intelligence; AUC: area under the curve; ECG: electrocardiogram; ED: emergency
department; KorAHF: Korean Acute Heart Failure; LV: left ventricular; SNUBH: Seoul National University Bundang Hospital.
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Ethical Considerations
This study conformed with the principles outlined in the
Declaration of Helsinki. The study protocol was approved by
the institutional review board at Seoul National University
Bundang Hospital (No. B-1104-125-014) and Severance
Hospital (No. 2022-2166-001). The need for written informed
consent was waived by the institutional review board. Our
research strictly adheres to the Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical
Research [11].

Clinical Follow-Up and Endpoints
Data collection methods have been previously described [9].
Briefly, data on patients’ clinical manifestations, biochemical
parameters, medication, and outcome were collected using a
web-based case report form for up to 60 months by research
nurses. Outcome data on patients lost to follow-up were
additionally collected from national death records.

The primary endpoint of this study was all-cause mortality.
Secondary outcomes included in-hospital outcomes, especially
in-hospital mortality. All deaths were considered to be
cardiac-related unless a definite noncardiac cause could be
established. All outcome data reported from the participating
centers were reviewed by an independent clinical event
adjudicating committee.

AI Algorithm
Quantitative ECG (QCG) is an AI analyzer composed of an
encoder part and multiple task-specific networks. The encoder
part is a modified convolutional neural network with residual
connections, squeeze excitation modules, and a nonlocal block.
The task-specific networks are multilayer percetron models.
The encoder part accepts 2D ECG images as input to produce
a common numerical feature vector for downstream tasks. The
encoder part was pretrained on 49,731 open ECGs using
self-supervised learning schemes and then fine-tuned on 47,194
annotated ECG images of over 32,968 patients who visited the
Emergency Department of Seoul National University Bundang
Hospital between 2017 and 2019 using multitask learning
schemes. The tasks include the classification of 12 rhythms
(with 35 subtypes) and production of 10 digital biomarkers
correlated with the risk of (1) being critically ill (shock,
respiratory failure, or cardiac arrest), (2) cardiac ischemia (acute
coronary syndrome, ST-elevation myocardial infarction, or
myocardial injury as defined by an elevated troponin level), (3)
cardiac dysfunction (pulmonary edema, left and right heart
dysfunction, pulmonary hypertension, and clinically significant
pericardial effusion), and (4) hyperkalemia. Several validation
studies of the system have been published previously [12-14].
The collection of these AI algorithms has been developed into
a mobile app (ECG Buddy, ARPI), which has been approved
by the Korean Ministry of Food and Drug Safety.

In this study, two QCG features were evaluated: QCG-Critical
for critical conditions such as shock or mortality and QCG-HF
for a reduced echocardiographic left ventricular ejection fraction
(LVEF) of <40%. The QCG scores, representing probability,
ranged from 0 to 1.0, with 0 indicating low and 1.0 indicating
high probability. With a 9:1 ratio split of the training and test
data sets, the internal validation results for these two QCG
features showed an area under the curve (AUC) of 0.877 for
QCG-Critical and 0.956 for QCG-HF. The composition of the
training and validation data sets is presented as a flowchart in
Figure 1.

Statistical Analysis
Categorical variables are reported as frequencies (percentages)
and continuous variables are expressed as means (SD) or
medians (IQR). The two key AI-driven scores (QCG-Critical
and QCG-HF) were analyzed as continuous variables. The

Student t test and χ2 (or Fisher exact) test were used to compare
the baseline clinical characteristics between the two groups.
The discrimination performance of QCG scores for in-hospital
outcomes was evaluated using receiver operating characteristic
(ROC) curve analysis. The AUC values were compared using
the DeLong test. The logistic regression model was used to
estimate the odds ratios (ORs) and 95% CIs. Survival analysis
was performed using the Kaplan-Meier method, and the Cox
proportional hazard model was used to estimate the hazard ratios
(HRs) and 95% CIs for the clinical outcomes. Multivariable
analysis was performed with the inclusion of clinically relevant
variables.

All tests were two-tailed and a P value <.05 was considered
statistically significant. Statistical analyses were performed
using R programming version 4.3.0 (The R Foundation for
Statistical Computing).

Results

Baseline Characteristics
Data of 1254 patients (716 from Seoul National University
Bundang Hospital and 538 from Severance Hospital) were
analyzed. Among the 1254 patients, 53 (4.2%) experienced
in-hospital cardiac death. The baseline characteristics of the
study population according to the in-hospital outcomes are
shown in Table 1. Compared with survivors, patients who died
in the hospital were older, had a higher prevalence of ischemic
heart disease, lower LVEF, and higher NT-proBNP levels. By
contrast, atrial fibrillation (AF) was more frequent in survivors.
The QCG-Critical and QCG-HF scores were significantly higher
in patients who experienced in-hospital cardiac death than in
survivors (P<.001) (Table 1 and Figure S1 in Multimedia
Appendix 1).
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Table 1. Baseline characteristics.

P valueSurvivors (n=1201)In-hospital cardiac death (n=53)Total (n=1254)Characteristics

.0369.6 (14.1)74.0 (14.5)69.8 (14.7)Age (years), mean (SD)

.99644 (53.6)29 (54.7)673 (53.7)Male, n (%)

.22812 (67.6)31 (58.5)843 (67.2)Hypertension, n (%)

.69476 (39.6)23 (43.4)499 (39.8)Diabetes mellitus, n (%)

.47217 (18.1)7 (13.2)224 (17.9)Cerebrovascular disease, n (%)

.69212 (28.3)11 (20.8)212 (28.3)Chronic kidney disease, n (%)

.005340 (28.3)25 (47.2)365 (29.1)Ischemic heart disease, n (%)

>.99208 (17.3)9 (17.0)217 (17.3)Valvular heart disease, n (%)

.46583 (48.5)29 (54.7)612 (48.8)De novo HFa, n (%)

.03417 (34.7)10 (10.9)417 (34.7)Atrial fibrillation, n (%)

.32301 (25.1)17 (32.1)318 (25.4)QRS duration≥120 ms, n (%)

.00235.6 (14.7)28.5 (11.9)35.3 (14.7)LVEFb (%), mean (SD)

<.00110,092 (11,879)17,035 (1900)10,373 (11,915)NT-proBNPc (pg/mL), mean (SD)

QCGd scores, mean (SD)

<.0010.29 (0.20)0.57 (0.23)0.30 (0.21)QCG-Critical

<.0010.64 (0.31)0.78 (0.18)0.65 (0.31)QCG-HF

aHF: heart failure.
bLVEF: left ventricular ejection fraction.
cNT-proBNP: N-terminal prohormone of brain natriuretic peptide.
dQCG: Quantitative electrocardiogram artificial intelligence system.

Predictors of In-Hospital Cardiac Death
In the univariable logistic regression analysis, the QCG-Critical
and QCG-HF scores were significant predictors of in-hospital

cardiac death (Table 2). Other than QCG scores,
echocardiographic LVEF, NT-proBNP level, age, ischemic
heart disease, and AF were significantly correlated with
in-hospital cardiac death (Table 2).
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Table 2. Predictors of in-hospital cardiac death.

Model 2b,cModel 1a,bUnivariate analysesVariables

P valueAdjusted OR (95% CI)P valueAdjusted OR (95% CI)P valueORd (95% CI)

QCGe parameters (per 0.1 increase)

<.0011.59 (1.36-1.87)<.0011.68 (1.47-1.92)<.0011.66 (1.47-1.87)QCG-Critical

.821.02 (0.84-1.24).0021.22 (1.08-1.39).0011.21 (1.08-1.37)QCG-HFf

.021.29 (1.10-1.51).0011.26 (1.09-1.45).0021.21 (1.07-1.37)LVEFg (per 5% decrease)

.0021.03 (1.00-1.05)<.0011.04 (1.01-1.06)<.0011.03 (1.01-1.05)NT-proBNPh (per 1000 pg/ml in-
crease)

Clinical and demographic factors as covariates

.0091.04 (1.01-1.08).031.03 (1.00-1.06).031.03 (1.00-1.05)Age

.991.00 (0.48-2.07).531.21 (0.66-2.23).881.05 (0.60-1.82)Male

.030.42 (0.20-0.90).050.51 (0.27-0.99).170.68 (0.39-1.18)Hypertension

.130.56 (0.26-1.19).310.72 (0.38-1.36).581.17 (0.67-2.03)Diabetes mellitus

.901.06 (0.41-2.74).851.08 (0.49-2.34).561.22 (0.62-2.41)Chronic kidney disease

.290.54 (0.18-1.68).310.64 (0.26-1.53).370.69 (0.31-1.55)Cerebrovascular disease

.032.54 (1.12-5.76).0023.00 (1.51-5.97).0042.26 (1.30-3.93)Ischemic heart disease

.211.94 (0.68-5.50).122.00 (0.84-4.75).950.98 (0.47-2.03)Valvular heart disease

.120.51 (0.22-1.19).100.54 (0.26-1.11).380.78 (0.45-1.36)ADHFi (vs de novo)

.630.80 (0.32-2.00).420.73 (0.34-1.58).020.44 (0.22-0.88)Atrial fibrillation

.601.23 (0.57-2.64).850.94 (0.48-1.83).251.41 (0.78-2.55)QRS duration>120 ms

aAdjusted for age, sex, hypertension, diabetes, chronic kidney disease, cerebrovascular disease, ischemic heart disease, valvular heart disease, heart
failure type, atrial fibrillation, and QRS duration.
bWhen a variable was included as a covariate for adjustment, it was not adjusted for itself and QCG-Critical was added to the adjustment model (presented
in italics).
cAdjusted for the same covariates as model 1 and further adjusted for left ventricular ejection fraction and N-terminal prohormone of brain natriuretic
peptide.
dOR: odds ratio.
eQCG: Quantitative electrocardiogram.
fHF: heart failure.
gLVEF: left ventricular ejection fraction.
hNT-proBNP: N-terminal prohormone of brain natriuretic peptide.
iADHF: acute decompensated heart failure.

After adjustment for age, sex, hypertension, diabetes, chronic
kidney disease, cerebrovascular disease, ischemic heart disease,
valvular heart disease, HF type, AF, and QRS duration, the two
QCG scores remained significant predictors of in-hospital
cardiac death. Moreover, the QCG-Critical score was an
independent predictor of in-hospital cardiac death after further
adjustment for echocardiographic LVEF and NT-proBNP level
(OR 1.59, 95% CI 1.36-1.87; P<.001).

In a subgroup analysis, the QCG-Critical score was a significant
predictor of in-hospital cardiac death regardless of the initial
rhythm (AF or sinus rhythm), QRS width (wide or narrow),
hypertension, diabetes, HF etiology (ischemic or nonischemic),
HF type (de novo or acute decompensated HF), and LVEF (HF
with reduced ejection fraction vs HF with preserved or mildly
reduced ejection fraction), after adjustment for other clinical
parameters (Figure 2).
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Figure 2. Subgroup analysis results for predicting in-hospital cardiac death. Adjusted ORs are presented for a 0.1 increase in the QCG-Critical score
*Adjusted for age, sex, hypertension, diabetes, chronic kidney disease, cerebrovascular disease, ischemic heart disease, valvular heart disease, HF type,
atrial fibrillation, and QRS duration (QRSd). ADHF: acute decompensated heart failure; CMP: cardiomyopathy; HF: heart failure; LVEF: left ventricular
ejection fraction; OR, odds ratio.

QCG-Critical Score and In-Hospital Cardiac Death
The QCG-Critical score was significantly higher in patients
who experienced cardiac death within 1 day, 2 days, or during
hospitalization than in survivors (Figure 3A). When the

performance of the QCG-Critical score for predicting these
events was analyzed using ROC curves, the AUC values for 1-
and 2-day mortality and in-hospital cardiac death were 0.936,
0.917, and 0.821, respectively (Figure 3B).

Figure 3. Performance of the QCG-Critical score for predicting in-hospital cardiac death (IHCD). (A) The QCG-Critical score was significantly higher
in patients who experienced cardiac death within 1 day (D1), 2 days (D2), and during hospitalization than in survivors. The box-and-whisker plot is
presented with 5th to 95th percentiles. (B) Performance of the QCG-Critical score presented as receiver operating characteristic curves. AUC: area
under the curve; QCG: Quantitative electrocardiogram.

Comparatively, the AUC values of echocardiographic LVEF
and NT-proBNP level for predicting in-hospital cardiac death
were 0.642 (P<.001 vs QCG-Critical) and 0.720 (P=.07 vs
QCG-Critical) (Figure 4A). The AUC value of the QCG-Critical
score (0.821) was significantly (P=.02). higher than that of
model 1 (0.705) established using traditional clinical variables,
including age, sex, hypertension, diabetes, chronic kidney
disease, cerebrovascular disease, ischemic heart disease, valvular
heart disease, HF type, AF, and QRS duration. In addition, when

the QCG-Critical score was added to model 1, it significantly
enhanced the prediction for in-hospital cardiac death (AUC of
model 1=0.705 vs AUC of model 1 with QCG-Critical=0.843;
P<.001) (Figure 4B). When NT-proBNP and LVEF were further
included in model 1 (model 2), the QCG-Critical score again
demonstrated additional predictive value for in-hospital cardiac
death compared to model 2 alone (AUC of model 2=0.787 vs
AUC of model 2 with QCG-Critical=0.863; P=.01) (Figure 4C).
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Figure 4. Receiver operating characteristic curves for predicting in-hospital cardiac mortality. (A) The AUC value of the QCG-Critical score was 0.821
and tended to be higher than that of echocardiographic LVEF, NT-proBNP, or a model utilizing traditional clinical variables (model 1). (B) Performance
of prediction model 1 and with the addition of the QCG-Critical score. (C) Further incorporation of NT-proBNP and LVEF into the model 1 (model 2).
The QCG-Critical score demonstrated additional predictive value for in-hospital cardiac mortality than model 2 alone. Model 1 includes age, sex,
hypertension, diabetes, chronic kidney disease, cerebrovascular disease, ischemic heart disease, valvular heart disease, heart failure type, atrial fibrillation,
and QRS duration. NT-proBNP and LVEF were further incorporated into model 2. *P value for comparison with the AUC of QCG-Critical score. AUC:
area under the curve; LVEF: left ventricular ejection fraction; NT-proBNP: N-terminal prohormone of brain natriuretic peptide; QCG: Quantitative
electrocardiogram.

QCG-Critical Score and Long-Term Outcomes
During a median follow-up of 2.7 years, 508 deaths occurred
in the study population. To further analyze the performance of

the QCG-Critical score for outcome prediction, we divided
patients into three QCG-Critical score groups based on arbitrary
cut-off values of 0.25 and 0.50 and then conducted survival
analysis (Figure 5).

Figure 5. Kaplan-Meier curves for long-term mortality according to QCG-Critical scores. HR: hazard ratio; QCG: Quantitative electrocardiogram.

After adjustment for age, sex, comorbidities, HF etiology and
type, AF, and QRS widening, patients with higher QCG-Critical
scores had significantly higher all-cause mortality rates during
follow-up than those with lower QCG-Critical scores (<0.25).
The adjusted HRs for patients with QCG-Critical scores between
0.25 and 0.50 and for patients with QCG-Critical scores higher
than 0.50 were 1.57 (95% CI 1.28-1.93) and 2.69 (95% CI
2.14-3.38), respectively (all P<.001). With additional adjustment
for LVEF and NT-proBNP to the previous model, the adjusted
HRs were 1.61 and 2.27, respectively, consistent with the main
analysis (Figure S2 in the Multimedia Appendix 1).

In a subgroup analysis, a higher QCG-Critical score (>0.50 vs
≤0.50) was significantly correlated with all-cause mortality
during follow-up, regardless of the initial rhythm (AF or sinus
rhythm), QRS width (wide or narrow), hypertension, diabetes,
HF etiology, HF type (de novo or acute decompensated HF),
and LVEF (HF with reduced ejection fraction vs HF with
preserved or mildly reduced ejection fraction), after adjustment
for other clinical parameters (Figure S3 in Multimedia Appendix
1).
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Discussion

Predicting outcomes in patients with HF is important for guiding
management and improving prognosis [15] but is often hindered
by the complexity of HF pathophysiology and the presence of
other comorbidities. Recently, AI algorithms based on big data
from medical records have been found to be helpful in predicting
the outcomes of patients with HF [16,17]; however, these
algorithms are difficult to apply in daily practice and their
performance requires further improvements. In this study, the
QCG-Critical score, a newly developed AI-based ECG score,
was well correlated with early mortality and in-hospital cardiac
death during the index after adjusting for traditional clinical
risk factors. Moreover, the QCG-Critical score was an
independent predictor of long-term all-cause mortality in this
population, suggesting that this AI-based ECG score may serve
as a novel biomarker for these patients.

ECG is a cost-effective, widely available, and easy-to-perform
test, and is therefore often used as a first-line evaluation for
patients with cardiovascular diseases. ST-elevation myocardial
infarction is a quintessential disease where ECG evaluation is
critical for a timely diagnosis. Although ECG is not
deterministic for an HF diagnosis, several studies have
demonstrated that some ECG features are correlated with the
characteristics of HF [18]. In addition, the presence of AF or
QRS widening may represent ECG features reflecting
unfavorable underlying hemodynamics, thus correlating with
a poor prognosis [19,20]. More subtle ECG changes have also
been suggested as predictors of a poor prognosis in patients
with HF; however, these require high levels of experience and
skill for interpretation, which may limit their applicability [21].

Theoretically, the ECG signal may contain information
regarding the electric and mechanical activities of the diseased
heart beyond a physician’s perception. With the assistance of
AI, ECG may provide valuable information beyond its current
usage. For example, Attia et al [22] reported that LVEF
reduction may be detected by ECG using AI. This new
application of AI-ECG was reproduced by other researchers
[23,24]. In this study, the QCG-HF score also showed good
performance in predicting reduced echocardiographic LVEF of
less than 40%, with an AUC value of 0.884 (Figure S4 in
Multimedia Appendix 1). Notably, in the above-mentioned
studies, the AI-ECG–predicted LVEF was correlated with the
prognosis of patients with chronic HF, whereas the AI-based
ECG score had a predictive value in patients with acute HF in
this study. Thus, to the best of our knowledge, this study
represents an initial effort in terms of predicting the outcomes
of acute HF using AI-based ECG interpretation.

The QCG-Critical score was originally trained to detect critical
medical conditions that may result in shock or mortality within
1 day [12]. In this study, the QCG-Critical score predicted early
cardiac mortality in patients with acute HF with high accuracy.
The AUC value of the QCG-Critical score was higher than that
of echocardiographic LVEF for the prediction of in-hospital
cardiac death and was also higher than the AUC value of the

serum NT-proBNP level, but without statistical significance.
Notably, the QCG-Critical score was available for all 1254
patients enrolled in the KorAHF study, whereas LVEF and
NT-proBNP results were not available in 68 (5.4%) and 168
(13.4%) patients, respectively. Considering that the KorAHF
study enrolled patients from tertiary centers in Korea, a high
proportion of patients with acute HF might not have the
opportunity to benefit from these echocardiographic or serum
biomarker tests in real-world practice. Because ECG is a widely
available evaluation tool and QCG scores are derived from ECG
images, the QCG-Critical score may serve as an adequate
alternative biomarker for risk stratification of patients with acute
HF in real-world settings with limited resources. This score
may also be useful even in well-equipped centers because it
would be available immediately after the ECG exam, without
requiring additional waiting for echocardiography or laboratory
tests. This may be beneficial for timely risk stratification in the
emergency department. The QCG-Critical score was not only
correlated with in-hospital cardiac death but also showed a
strong association with long-term mortality. In addition, the
subgroup analysis demonstrated a consistent correlation between
the QCG-Critical score and clinical outcomes. These results
emphasize the potential of AI-based ECG interpretation as a
novel biomarker in this field.

This study has several limitations. First, the study population
predominantly consisted of Asian patients; hence, further studies
are needed to validate our results across different ethnicities.
Second, the AI algorithm tested in this study was derived from
one of the participating centers (Seoul National University
Bundang Hospital). However, there was a temporal difference
between patient enrollment for algorithm training (2017 to 2019)
and the test population (KorAHF enrollment, 2011 to 2014),
and another external center (Severance Hospital) was involved
in this study. Nevertheless, this may limit the generalizability
of our findings. Third, the ECG format may affect the
algorithm’s performance. Although the manufacturers of the
ECG devices used in the two participating hospitals differed
(Philips PageWriter TC 30 and TC 70 at Seoul National
University Bundang Hospital and GE Healthcare MAC 5500
and MAC VU360 at Severance Hospital), there was no
significant difference in the AI algorithm performance between
the hospitals. However, because the system uses printed ECG
images as input, there may be problematic scenarios where the
qualities of the images influence the predictive power of the
biomarkers. Although some recent AI algorithm–based studies
suggest further interpretation analysis, the QCG system does
not support gradient-weighted class-activation mapping or
similar visualization for model explainability due to the custom
network architecture used. Therefore, we could not evaluate
which part of the ECG images the system uses for each
prediction.

In conclusion, predicting outcomes in patients with acute HF
using the newly developed AI-based ECG score appears to be
feasible. Thus, this score may serve as a novel biomarker for
patients with HF, potentially overcoming the cost and
availability constraints of current biomarkers.
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