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Abstract

Background: Early and reliable identification of patients with sepsis who are at high risk of mortality is important to improve
clinical outcomes. However, 3 major barriers to artificial intelligence (AI) models, including the lack of interpretability, the
difficulty in generalizability, and the risk of automation bias, hinder the widespread adoption of AI models for use in clinical
practice.

Objective: This study aimed to develop and validate (internally and externally) a conformal predictor of sepsis mortality risk
in patients who are critically ill, leveraging AI-assisted prediction modeling. The proposed approach enables explaining the model
output and assessing its confidence level.

Methods: We retrospectively extracted data on adult patients with sepsis from a database collected in a teaching hospital at
Beth Israel Deaconess Medical Center for model training and internal validation. A large multicenter critical care database from
the Philips eICU Research Institute was used for external validation. A total of 103 clinical features were extracted from the first
day after admission. We developed an AI model using gradient-boosting machines to predict the mortality risk of sepsis and used
Mondrian conformal prediction to estimate the prediction uncertainty. The Shapley additive explanation method was used to
explain the model.

Results: A total of 16,746 (80%) patients from Beth Israel Deaconess Medical Center were used to train the model. When tested
on the internal validation population of 4187 (20%) patients, the model achieved an area under the receiver operating characteristic
curve of 0.858 (95% CI 0.845-0.871), which was reduced to 0.800 (95% CI 0.789-0.811) when externally validated on 10,362
patients from the Philips eICU database. At a specified confidence level of 90% for the internal validation cohort the percentage
of error predictions (n=438) out of all predictions (n=4187) was 10.5%, with 1229 (29.4%) predictions requiring clinician review.
In contrast, the AI model without conformal prediction made 1449 (34.6%) errors. When externally validated, more predictions
(n=4004, 38.6%) were flagged for clinician review due to interdatabase heterogeneity. Nevertheless, the model still produced
significantly lower error rates compared to the point predictions by AI (n=1221, 11.8% vs n=4540, 43.8%). The most important
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predictors identified in this predictive model were Acute Physiology Score III, age, urine output, vasopressors, and pulmonary
infection. Clinically relevant risk factors contributing to a single patient were also examined to show how the risk arose.

Conclusions: By combining model explanation and conformal prediction, AI-based systems can be better translated into medical
practice for clinical decision-making.

(J Med Internet Res 2024;26:e50369) doi: 10.2196/50369
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Introduction

Sepsis is a life-threatening systemic illness resulting from a
dysregulated host response to microbial invasion (infection)
and is associated with high morbidity and mortality [1,2].
According to the most recent Global Burden of Diseases study,
nearly 49 million people experience sepsis each year and
approximately 11 million die from sepsis and its complications,
accounting for 19.7% of all deaths worldwide [3]. In addition,
a Chinese epidemiological study in 2020 showed that the
incidence of sepsis in intensive care units (ICUs) was 20.6%,
with a mortality rate of 35.5% [4]. Recent evidence suggests
that early identification of patients who are critically ill with
the potential for acute deterioration is effective in improving
clinical outcomes [5]. Therefore, a pragmatic model that could
help identify high-risk patients and further improve the
prognosis of patients with sepsis is critical.

Recent significant increases in electronic health record data and
advancements in artificial intelligence (AI) have led to rapid
growth in the development of machine learning algorithms to
identify patients with sepsis at high risk of in-hospital mortality
[6-8]. However, there are 3 major barriers to the widespread
adoption of AI models for their deployment in clinical practice:
first, the lack of interpretability of AI models; second, the lack
of external validation so that the model generalizability across
institutions cannot be guaranteed; and third, the risk of
automation bias, where users tend to rely too much on the
system output rather than actively seeking information and
assessing the model uncertainty.

Although numerous AI methods, especially deep learning, have
demonstrated remarkable performance in medicine, surprisingly,
few constructed models have been used in clinical practice, with
poor interpretability being a major reason [9]. Clinicians need
to understand how AI-based algorithms generate their
predictions and gain insight into the precise changes in risk
induced by certain factors of an individual patient [10,11].
Moreover, the majority of current sepsis mortality prediction
models published are built on data from a single hospital or a
uniform health care system, where the care processes are
standardized or similar [6-8]. It is challenging for AI models to
ensure accuracy in different hospital settings [7,12]. Therefore,
another challenge in predictive modeling is how to quantify the
reliability of the model predictions for new patients, especially
when such data are outside the “domain” on which the model
was trained [13]. Furthermore, most AI models only provide
binary predictions, that is, yes or no, without assessing how
reliable a prediction is [14]. However, when using AI models
in high-risk environments (such as ICUs), uncertainty

quantification is required to avoid unexpected model failures
by gaining insight into the confidence of the predictions made
by an AI algorithm [15].

To the best of our knowledge, no models have been explicitly
developed to estimate the uncertainty of AI-assisted critical
illness risk predictions in patients admitted to the ICU using
electronic health record data. In this study, we aimed to develop
and validate an AI model, called CPMORS (Conformal Predictor
for Mortality Risk in Sepsis), to assess the risk of in-hospital
sepsis mortality in ICU admissions. To mitigate the impact of
insufficient model generalization performance and automation
bias on its clinical application, we expected the model to provide
confidence measures to monitor predictions and flag uncertain
predictions at a customized confidence level for human
intervention, as well as to provide interpretable risk factors, in
this case, to improve the translation of AI-assisted sepsis
prediction systems into medical practice and enable intensivists
to use them in clinical decision-making.

Methods

Data Sources
The data used in this retrospective study were obtained from 2
different databases with different clinical information systems:
Medical Information Mart for Intensive Care database-IV
(MIMIC-IV; version 2.2; MetaVision system) [16] and eICU
Collaborative Research Database (eICU-CRD; Philips eICU
system) [17]. MIMIC-IV provided critical care data of 73,181
patients admitted to the ICUs at Beth Israel Deaconess Medical
Center between 2008 and 2019. eICU-CRD is a large
multicenter ICU database including more than 200,000 ICU
admissions from 335 units in 208 hospitals across the United
States between 2014 and 2015.

Ethical Considerations
The MIMIC-IV and eICU-CRD were publicly available
databases and were previously ethically approved by the
institutional review boards at Beth Israel Deaconess Medical
Center and the Massachusetts Institute of Technology in
accordance with the tenets of the Declaration of Helsinki. The
waiver of the requirement for informed consent was included
in the institutional review board approval as all protected health
information was deidentified [16,17]. The authors were granted
access to the database after completing training in human
research and signing a data use agreement in PhysioNet
(certification number: 27252652).

J Med Internet Res 2024 | vol. 26 | e50369 | p. 2https://www.jmir.org/2024/1/e50369
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/50369
http://www.w3.org/Style/XSL
http://www.renderx.com/


Participant Selection
In MIMIC-IV, participants were enrolled based on the sepsis-3
criteria [2], that is, known or suspected infection and a
Sequential Organ Failure Assessment (SOFA) score ≥2 points.
In eICU-CRD, patients with sepsis were identified according
to the admission diagnosis recorded in the Acute Physiology
and Chronic Health Evaluation IV data set [18]. For those with
multiple ICU admissions, only the first ICU admission was
included. Patients who were discharged from the ICU within
24 hours and were aged <18 years were excluded. Patients with
>30% missing individual data were also excluded.

Data Extraction and Preprocessing
Patient data from the first 24 hours after ICU admission were
retrieved from the MIMIC-IV and eICU-CRD databases to
predict in-hospital mortality risk. The study retrospectively
collected the following data: (1) demographic characteristics,
including sex, age, BMI, and ethnicity; (2) site of infection,
including pulmonary and gastrointestinal infections; (3)
comorbidities, including chronic kidney disease, congestive
heart failure, chronic pulmonary disease, diabetes, and liver
disease; (4) worst reported Glasgow Coma Scale, Acute
Physiology Score III (APS III), and SOFA score; (5) vital signs,
including heart rate, respiratory rate, systolic blood pressure,
mean blood pressure, diastolic blood pressure, temperature, and
oxygen saturation; (6) laboratory data, including pH, lactate,
bicarbonate, base excess, PaO2, PaCO2, FiO2, PaO2/FiO2 ratio,
hematocrit, hemoglobin, platelets, white blood cells count,
albumin, anion gap, blood glucose, blood urea nitrogen, serum
calcium, serum creatinine, serum sodium, serum potassium,
international normalized ratio, prothrombin time, partial
thromboplastin time, alanine transaminase, alkaline phosphatase,
aspartate aminotransferase, and total bilirubin; (7) therapeutic
management, including the use of vasopressors; and (8) total
urine output.

We used one-hot encoding for the representation of categorical
variables. For vital signs with multiple measurements during

the first day, we included the maximum, minimum, mean, and
SD values for analysis. For laboratory values with multiple
measurements, we included the maximum and minimum values
for analysis. This resulted in a total of 103 features used to train
and validate AI models for in-hospital mortality risk prediction
(Multimedia Appendix 1). For missing data, the BMI was
imputed with the k-nearest neighbors algorithm using the
demographic characteristics. For the remaining missing values,
if the predictive models could not support the missing data, the
mean value from the training data was used to fill the remaining
missing values; if the predictive models could support the
missing data, no imputation was performed. All numerical
features were standardized by removing the mean and scaling
to unit variance. To avoid information leakage, the preprocessing
operations were derived from the training data and applied to
other validation data sets.

Model Development and Validation
The CPMORS model was developed to predict in-hospital
mortality risk from sepsis and provide uncertain predictions and
risk factors for further possible active management (Figure 1).
Patients with sepsis from the MIMIC-IV database were
randomly divided into a development set (n=16,746, 80%) for
model training and an internal validation set (n=4187, 20%) for
testing (Figure 2). Septic ICU admissions derived from the
eICU-CRD database were used for external validation. The
CPMORS model was constructed using the gradient boosting
machines [19] prediction algorithm. Three common machine
learning algorithms were also constructed for comparative
purposes, including neural decision forest [20], random forest
[21], and logistic regression [7]. Conventional scoring systems
that have been widely used in clinical practice without machine
learning, including APS III and SOFA, were also tested for
comparison. Missing data were handled with a mean imputation
method for neural decision forest, random forest, and logistic
regression, while the gradient boosting machines did not require
imputation.
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Figure 1. Visualization of the use of CPMORS in AI-assisted sepsis mortality risk prediction. The implication of multiple predictions is that there is
insufficient information for the model to discriminate between survival and nonsurvival outcomes, which are flagged for clinician review. Risk factors
are the explanations provided by the Shapley values. Risk factors in red are more serious and risk factors in green are in the normal range. AI: artificial
intelligence; APS III: Acute Physiology Score III; BUN: blood urea nitrogen; CPMORS: Conformal Predictor for Mortality Risk in Sepsis; GCS:
Glasgow Coma Scale; HR: heart rate; MBP: mean blood pressure; SOFA: Sequential Organ Failure Assessment; SpO2: oxygen saturation; WBC: white
blood cell.

To estimate the uncertainty of the model outputs at a customized
or user-specified confidence level that can be set by clinicians,
we used the conformal prediction (CP) framework built on top
of the prediction algorithm. CP is a user-friendly paradigm for
generating statistically rigorous uncertainty sets or intervals for
the predictions of unknown samples that differ from the training
data [15]. This approach could provide reliable predictions at
a user-specified desired error rate (equal to the significance
level and 1-confidence). The output of CP is a prediction region,
that is, sets of labels, rather than a single value prediction (point
prediction) for classification problems. In this study, the possible
prediction sets were {survival} or {nonsurvival}, called a single
prediction, {survival, nonsurvival}, called multiple predictions,
or {null} called the empty set. Central to CP is the use of
nonconformity measures to assess how dissimilar a new sample
is from the data on which the model was built. In this study, we
used a common nonconformity measure, that is, using the
predicted probability of an example belonging to a given class
to calculate the nonconformity score. The nonconformity was
then used to calculate a P value for each possible class label
when making a prediction using the conformal predictor. The

P value represented the proportion of observations with more
extreme nonconformity scores. Labels were included in the
prediction set if the P value exceeded a user-specified desired
significance level (1-confidence), such as .05 (Table 1). A
multiple prediction meant that the prediction was uncertain, and
the model could not distinguish between survival and
nonsurvival. Empty predictions were examples where the model
could not assign any label, typically meaning that the example
differed from the data the model was trained on. In this study,
a Mondrian CP was specifically implemented to handle
classification tasks with unbalanced data [22]. It could work on
a class basis to ensure the desired error rate within each class.
At a higher confidence level, we got fewer error predictions but
more multiple predictions (Table 2). To develop the Mondrian
conformal predictor, we further split the development set into
a training set (n=13,397, 80%) and a calibration set (n=3349,
20%; Figure 2). The training set was used to train the AI
prediction algorithm, while the calibration set was used to
construct the conformal predictor and also to tune the model
hyperparameters using a Bayesian optimizer [23].
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Table 1. Examples of the formation of the prediction set.

Prediction setHigher than the significance level (yes or no)Significance levelConfidence level

P for nonsurvival=.08P for survival=.37

{null}NoNo.400.60

{survival}NoYes.150.85

{survival, nonsurvival}YesYes.050.95

Table 2. Examples of predictions at 2 different confidence levels.

Confidence level=95%Confidence level=85%ID

Prediction typebPrediction setaTrue labelaPrediction typebPrediction setaTrue labela

Multiple{0, 1}0Multiple{0, 1}01

Correct{1}1Correct{1}12

Multiple{0, 1}1Error{0}13

Multiple{0, 1}1Multiple{0, 1}14

Error{1}0Empty{null}05

Error{1}0Error{1}06

Correct{0}0Correct{0}07

Correct{1}1Correct{1}18

Multiple{0, 1}1Error{0}19

Multiple{0, 1}1Correct{1}110

aLabel 0=survival, label 1=nonsurvival.
bCorrect and error predictions refer to single predictions.
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Figure 2. Workflow for the proposed CPMORS model. CPMORS: Conformal Predictor for Mortality Risk in Sepsis; SHAP: Shapley additive explanation.

To explain the model, the impact of the features on the risk
output was quantified using Shapley additive explanation
(SHAP) values [24] to obtain interpretability for the developed
model. We provide both global feature importance from the
whole population outputs and individual interpretability for a
single patient output.

Statistical Analysis
Continuous variables were expressed as median with IQR, and
2 groups were compared using the Wilcoxon rank sum test.
Categorical variables were expressed as numbers and
percentages and compared using chi-square tests. The
discriminative performance of the model for predicting sepsis
mortality was assessed using the area under the curve (AUC),
and calibration was performed using calibration curves and the
Brier score (the lower the better). We calculated the 95% CIs
for these metrics using bootstrapping (2000 stratified bootstrap
replicates).

The conformal predictor could produce multiple predictions or
empty predictions in cases where it could not assign reliable
single predictions. Therefore, it was not possible to directly
calculate the sensitivity and specificity of the CP. To evaluate
the CP framework, we assessed efficiency, defined as the
proportion of all predictions that resulted in a single correct

prediction, and validity (the error rate), the proportion of all
predictions that did not exceed the prespecified significance
level [15]. All statistical analysis and calculations were
performed using R (version 4.2.2; R Foundation for Statistical
Computing) and Python (version 3.8.16; Python Software
Foundation).

Results

Patient Description
This study follows the Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research
[25]. A total of 20,933 adult patients from the MIMIC-IV
database meeting the sepsis-3 criteria were analyzed, of whom
3457 (16.5%) were nonsurvivors. The external validation cohort
from the eICU-CRD included 10,362 patients with sepsis
(n=1757, 17% for nonsurvivors). Table 3 describes the baseline
characteristics between survivors and nonsurvivors of patients
with sepsis admitted to the ICU. Multimedia Appendix 1 shows
that 93 out of 103 features were statistically different (P≤.05)
between MIMIC-IV and eICU-CRD. In both data sets, compared
with patients whose outcome was in-hospital survival,
nonsurvivors were older, had a higher BMI, had more pulmonary
infections, were more likely to receive vasopressors, had higher
APS III and SOFA scores, and had a longer ICU stay.
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Table 3. Baseline characteristics of the patients with sepsis following ICUa admission.

eICU-CRDc (n=10,362)MIMIC-IVb (n=20,933)Variables

P valueNonsurvivors
(n=1757)

Survivors (n=8605)P valueNonsurvivors
(n=3457)

Survivors (n=17,476)

<.00170 (60-80)66 (54-76)<.00171 (60-81)67 (56-77)Age (years), median (IQR)

.62952 (54.2)4606 (53.5).0021938 (56.1)10,285 (58.9)Male, n (%)

<.00125.9 (22.0-31.1)27.3 (23.1-33.2)<.00126.5 (23.1-31.3)27.2 (23.8-31.7)BMI (kg/m2), median (IQR)

.97<.001Ethnicity, n (%)

27 (1.5)140 (1.6)100 (2.9)508 (2.9)Asian

181 (10.3)868 (10.1)315 (9.1)1739 (10)Black

1361 (77.5)6699 (77.9)2134 (61.7)11.972 (68.5)White

188 (10.7)898 (10.4)908 (26.3)3257 (18.6)Other

Comorbidities, n (%)

<.001277 (15.8)1040 (12.1)<.001673 (19.5)2913 (16.7)Chronic kidney disease

.04429 (24.4)1907 (22.2)<.0011332 (38.5)5575 (31.9)Congestive heart failure

.86415 (23.6)2015 (23.4).0021055 (30.5)4882 (27.9)Chronic pulmonary disease

<.00179 (4.5)96 (1.1)<.001487 (14.1)1209 (6.9)Liver disease

.04562 (32)2976 (34.6).091103 (31.9)5832 (33.4)Diabetes

.02933 (53.1)4299 (50)<.0011983 (57.4)6958 (39.8)Pulmonary infection, n (%)

<.001835 (47.5)2450 (28.5)<.0012518 (72.8)8836 (50.6)Vasopressors, n (%)

<.001700 (250-1351)1320 (689-2223)<.001956 (445-1715)1640 (1030-2465)Urine output (mL), median
(IQR)

<.00110 (6-14)14 (9-15).0215 (12-15)15 (13-15)Glasgow Coma Scale (score),
median (IQR)

<.00171 (54-92)51 (38-67)<.00166 (51-84)46 (35-60)APS IIId (score), median (IQR)

<.0017 (4-10)4 (2-7)<.0018 (6-11)5 (4-8)SOFAe (score), median (IQR)

<.00186 (46-170)68 (43-121)<.001109 (58-208)72 (44-138)Length of ICU stay (hours),
median (IQR)

aICU: intensive care unit.
bMIMIC-IV: Medical Information Mart for Intensive Care database-IV.
ceICU-CRD: eICU Collaborative Research Database.
dAPS III: Acute Physiology Score III.
eSOFA: Sequential Organ Failure Assessment.

Prediction Performance and Explanation
Figure 3 shows the prediction performance of the developed 6
models in terms of receiver operating characteristic curves.
When tested on the internal validation population for
MIMIC-IV, the AUC value obtained using the proposed
CPMORS model was 0.858 (95% CI 0.845-0.871), which is
significantly higher than the other 3 machine learning models
ranging from 0.829 (95% CI 0.811-0.844) to 0.853 (95% CI
0.838-0.867) and the 2 scoring systems with 0.708 (95% CI
0.685-0.728) of SOFA and 0.757 (95% CI 0.737-0.774) of APS

III. When externally validated on the multicenter database
eICU-CRD, the performance of all models deteriorated due to
interdatabase heterogeneity. Nevertheless, CPMORS still
showed the best performance with AUC 0.800 (95% CI
0.789-0.811) versus other models ranging from 0.693 (95% CI
0.680-0.706) to 0.786 (95% CI 0.775-0.798). In addition, the
model showed good calibration (Figure 3C), where the curves
were close to the diagonal dash line. The Brier score was 0.101
(95% CI 0.096-0.106) in MIMIC-IV and 0.116 (95% CI
0.113-0.119) in eICU-CRD, indicating its high calibration
ability.

J Med Internet Res 2024 | vol. 26 | e50369 | p. 7https://www.jmir.org/2024/1/e50369
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Prediction performance and explanation. (A,B) Receiver operating characteristic curves of MMIC-IV and eICU-CRD validation performance
of different models in predicting sepsis mortality. (C) Calibration plots of the proposed CPMORS model. (D) Summary of the interpretability of the
CPMORS. Beeswax plots show the feature importance across patients for the top 15 features, where each point indicates the feature importance value
for 1 patient sample. Where multiple dots fall on the same x position, they are stacked to show density. Features with positive impact values push the
risk up, while negative impact values push the risk down. Long tails indicate features that are extremely important for some patients. (E) Examples of
the relationship between SHAP value and feature value. (F) Explanation of how the sepsis risk score is output for a nonsurvivor. (G) Explanation of
how the sepsis risk score is output for a survivor. APS III: Acute Physiology Score III; aPTT: activated partial thromboplastin time; AUC: area under
the curve; BUN: blood urea nitrogen; CPMORS: Conformal Predictor for Mortality Risk in Sepsis; eICU-CRD: eICU Collaborative Research Database;
LR: logistic regression; MMIC-IV: Medical Information Mart for Intensive Care database-IV; NDF: neural decision forest; PLT: platelet; RF: random
forest; SHAP: Shapley additive explanation; SOFA: Sequential Organ Failure Assessment; SpO2: oxygen saturation; WBC: white blood cell.

The top 15 clinical features that contributed to the prediction
of sepsis mortality risk are summarized in Figure 3D. The
interpretable summary of the impact of the features across
patients showed that a higher APS III score, older age, oliguria,
the use of vasopressor, pulmonary infection, a higher lactate, a
lower BMI, a higher white blood cell count, an unstable oxygen
saturation, and a lower platelet count were associated with a
higher mortality risk, which are consistent with the previous
statistical analysis. Figure 3E shows examples of the relationship
between SHAP value and feature value. Explanations
representing the effects of interpretable sets of extracted features
for an individual nonsurvivor and survivor are shown in Figure
3F and G. These effects explained why the model predicted a
particular risk, allowing a clinician to plan appropriate
interventions.

Results for CP
Calibration curves of the observed prediction error at a
significance (1-confidence) level between 0% and 100% showed

that CPMORS was well calibrated for the internal MIMIC-IV
validation when the populations were from the same hospital
system (Figure 4). The calibration curve for external eICU-CRD
populations deviated from the ideal diagonal line but was good
when the significance level was below 20%. When the
conformal predictor was set at a prespecified confidence level
of 90% to provide valid predictions, for the MIMIC-IV
validation cohort, there were 2520 (efficiency=60.2%) single
correct predictions and 1229 (29.4%) multiple predictions (Table
4). The overall validity, the percentage of error predictions
(n=438) out of all predictions (n=4187), was 10.5%. In contrast,
the AI model without CP made 1449 (34.6%) errors in predicting
sepsis mortality risk. When the model was externally validated
on a large multicenter database, that is, eICU-CRD, more
multiple predictions (n=4004, 38.6%) were flagged for clinician
review. In this case, the conformal predictor still produced
significantly lower error rates compared to the point predictions
by AI (n=1221, 11.8% vs n=4540, 43.8%). No empty predictions
were made in either validation cohort.
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Figure 4. Plots of conformal prediction for the 2 validation data sets. (A,B) Calibration curves of observed prediction error (the fraction of true labels
not included in the prediction region) for different prespecified significance (1-confidence) levels. (C,D) Label distribution plots at different prespecified
significance levels, with the model incorporating more multiple predictions at lower significance (higher confidence) levels. The white dotted line
indicates the corresponding significance level that produces the highest number of single-label predictions. Single predictions output {survival} or
{nonsurvival}, multiple predictions output {survival, nonsurvival}, empty means {null}. eICU-CRD: eICU Collaborative Research Database; MIMIC-IV:
Medical Information Mart for Intensive Care database-IV.
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Table 4. Prediction regions on the internal validation and external validation populations.

eICU-CRDb external validationMIMIC-IVa internal validationPrediction regionsConfidence level

Overall
(n=10,362), n
(%)

Nonsurvivors
(n=1757), n (%)

Survivors
(n=8605), n
(%)

Overall
(n=4187), n
(%)

Nonsurvivors
(n=691), n (%)

Survivors
(n=3496), n
(%)

99.9%

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

94 (0.9)13 (0.7)81 (0.9)44 (1.1)1 (0.1)43 (1.2)Single error

1262 (12.2)263 (15)999 (11.6)1013 (24.2)145 (21)868 (24.8)Single correct

9006 (86.9)1481 (84.3)7525 (87.4)3130 (74.8)545 (78.9)2585 (73.9)Multiple

95%

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

541 (5.2)80 (4.6)461 (5.4)210 (5)28 (4.1)182 (5.2)Single error

3320 (32)616 (35.1)2704 (31.4)1904 (45.5)306 (44.3)1598 (45.7)Single correct

6501 (62.7)1061 (60.4)5440 (63.2)2073 (49.5)357 (51.7)1716 (49.1)Multiple

90%

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

1221 (11.8)224 (12.7)997 (11.6)438 (10.5)77 (11.1)361 (10.3)Single error

5137 (49.6)852 (48.5)4285 (49.8)2520 (60.2)397 (57.5)2123 (60.7)Single correct

4004 (38.6)681 (38.8)3323 (38.6)1229 (29.4)217 (31.4)1012 (28.9)Multiple

85%

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Empty

1776 (17.1)322 (18.3)1454 (16.9)611 (14.6)109 (15.8)502 (14.4)Single error

6189 (59.7)1018 (57.9)5171 (60.1)2860 (68.3)470 (68)2390 (68.4)Single correct

2397 (23.1)417 (23.7)1980 (23)716 (17.1)112 (16.2)604 (17.3)Multiple

AIc point predictiond

4540 (43.8)224 (12.7)4316 (50.2)1449 (34.6)77 (11.1)1372 (39.2)Error

5822 (56.2)1533 (87.3)4289 (49.8)2738 (65.4)614 (88.9)2124 (60.8)Correct

aMIMIC-IV: Medical Information Mart for Intensive Care database-IV.
beICU-CRD: eICU Collaborative Research Database.
cAI: artificial intelligence.
dFor comparison with the AI model with conformal prediction at a user-specified 90% confidence level, the AI point prediction without conformal
prediction was made when setting the error rate in nonsurvivors as 11.1% for MIMIC-IV validation and 12.7% for eICU-CRD validation.

The top 15 features summarized by the SHAP values could not
be well differentiated between the multiple predictions in
survivors and nonsurvivors (Table 5 and Multimedia Appendix
2). In addition, for those patients who survived, the analysis
showed that patients identified for clinician review (those with
uncertain predictions) were more likely to develop new acute
kidney injury after the first day of ICU admission (n=227, 22.4%

vs n=428, 20.2% for MIMIC-IV; n=799, 24% vs n=875, 20.4%
for eICU-CRD) and had longer ICU stays with a median of 89
(IQR 54-173) hours versus 55 (IQR 37-99) hours for MIMIC-IV,
and 78 (IQR 48-141) hours versus 55 (IQR 40-91) hours for
eICU-CRD, compared to the patients who were not flagged for
review.
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Table 5. Statistical analysis of the top 15 features between the single correct prediction patients and the multiple prediction patients in the MIMIC-IVa

validation populations.

NonsurvivorsSurvivorsVariables

P valuebP valueMultiple (n=217)Single correct
(n=397)

P valueMultiple
(n=1012)

Single correct
(n=2123)

.05<.00158 (47-68)78 (64-94)<.00155 (44-66)39 (31-49)APS IIIc (score), median (IQR)

.57.4075 (60-81)71 (59-82)<.00172 (61-82)64 (54-74)Age (years), median (IQR)

.31<.0011278 (845-1815)635 (206-1171)<.0011350 (808-
2065)

1900 (1310-
2675)

Urine output (mL), median (IQR)

.005<.001134 (61.8)347 (87.4).01520 (51.4)959 (45.2)Vasopressor, n (%)

.77.89127 (58.5)230 (57.9)<.001603 (59.6)585 (27.6)Pulmonary infection, n (%)

.72<.0011.4 (1.1-1.9)2.2 (1.5-3.4)<.0011.4 (1.1-1.9)1.2 (1.0-1.6)Lactate (min) (mmol/L), median
(IQR)

.61.5725.9 (23.2-31.4)26.8 (23.5-32.3)<.00126.5 (23.0-30.8)27.8 (24.5-32.3)BMI (kg/m2), median (IQR)

.50.0610.4 (6.6-14.4)11.7 (7.0-16.4)<.0019.9 (6.8-14.0)9.2 (6.6-12.1)WBCd count (min) (K/μL), median
(IQR)

.01<.0012.12 (1.43-2.89)2.45 (1.71-3.46).081.93 (1.34-2.55)1.86 (1.36-2.39)SpO2
e (std) (%), median (IQR)

.20.91205 (137-279)198 (128-298).11213 (147-286)204 (153-269)PLTf count (max) (K/μL), median
(IQR)

.22<.00120 (17-23)22 (19-25)<.00120 (17-22)18 (16-21)Respiratory rate (mean) (bpm), me-
dian (IQR)

.34<.00113 (11-16)15 (13-19)<.00113 (11-16)12 (10-14)Serum anion gap (min) (mmol/L),
median (IQR)

.43.00627 (17-42)33 (19-50)<.00125 (16-41)16 (12-24)BUNg (min) (mg/dL), median (IQR)

.83<.00134.4 (28.4-47.1)44.9 (33.1-64.3)<.00133.8 (29.0-44.5)32.3 (28.3-39.2)aPTTh (max) (s), median (IQR)

.54.98140 (136-143)140 (136-144).28140 (137-144)140 (138-142)Serum sodium (max) (mmol/L),
median (IQR)

aMIMIC-IV: Medical Information Mart for Intensive Care database-IV.
bStatistical analysis between survival and nonsurvival multiple predictions.
cAPS III: Acute Physiology Score III.
dWBC: white blood cell.
eSpO2: oxygen saturation.
fPLT: platelet.
gBUN: blood urea nitrogen.
haPTT: activated partial thromboplastin time.

Discussion

Principal Findings
This study proposed CPMORS, an AI model to provide reliable
predictions of mortality risk for patients with sepsis admitted
to the ICU. CPMORS was developed using gradient boosting
machines with 103 clinical features. Internal and external
validation assessed its best predictive performance in terms of
discrimination and calibration compared with several other
commonly used models. Global feature importance showed that
a higher APS III score, older age, oliguria, the use of
vasopressor, and pulmonary infection were most associated
with a higher mortality risk. A Mondrian CP was built on top
of the prediction algorithm to detect uncertain predictions.
Compared to traditional AI models that only provide point

predictions, our method could provide reliable and uncertain
predictions with user-specified confidence, especially when the
performance of the external validation could not be guaranteed
as good as the internal validation. Interpretable information and
estimates of prediction uncertainty enabled CPMORS to provide
informative support for clinical decision-making.

Recent guidelines on AI-based predictive models in health care
emphasize the importance of AI systems conveying their
prediction confidence to users while furnishing accurate
predictions and explanations [26]. In previous studies, Zhang
et al [27] developed a traditional sepsis mortality risk score
system that is interpretable and transparent, but the accuracy of
the model is limited, with AUC in the development and
validation sets of 0.789 and 0.765. Park et al [6] and Kong et
al [7] demonstrated that machine learning can improve the
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accuracy of sepsis mortality risk prediction, but there is a lack
of strong interpretable analysis. Hu et al [8] performed a detailed
and interpretable analysis. However, to date, no studies have
estimated the prediction uncertainty of sepsis mortality risk in
patients admitted to the ICU. In the case of physicians supported
by AI systems, such feedback of prediction uncertainty was
invaluable in enabling them to exercise caution and not rely
solely on the output of the AI system. This could serve to
safeguard patients from the potential hazards of automation bias
in AI systems [28]. Various methods for quantifying uncertainty,
such as the Gaussian process [29], Bayesian inference [30],
deep ensembles [31], and dropout [32], have been implemented
in computer vision and natural language processing applications.
However, their use in clinical decision-making has been limited
due to the accompanying computational cost and modeling
complexity. In addition, they did not provide adjustable
confidence levels to suit different clinical requirements for
predicting critical illness.

In this study, we used the CP framework, which is characterized
by its light mathematical nature and offers a potential solution
by generating prediction regions. These prediction regions are
similar to the confidence intervals used in statistics, except that
they are based on individual predictions rather than overall
statistics [14]. The use of CP-derived prediction regions could
therefore provide reliable and uncertain predictions in clinical
settings. In addition, clinicians would not rely entirely on the
model’s output and make immediate decisions [28]. They still
need to review patients’ critical information before making
decisions. Throughout this process, CPMORS could not only
provide explainable risk factors so that clinicians can
double-check the reasoning of AI systems and identify
problematic elements [9] but could also help to achieve stratified
patient management (Figure 1). The single predictions of
nonsurvival made by CPMORS could be treated as red flags,
meaning that clinicians should pay the most attention. The single
survival predictions could be treated as green flags, meaning
that the patients are relatively safe and would be monitored
regularly. For the multiple predictions, we flag the yellow
warnings as such unreliable cases require clinician review; it is
clinically very important that AI-based decision support systems
also flag uncertainty when they are not certain about the
produced output [13]. In this case, CPMORS could produce
much fewer false alarms to avoid exposing patients to
unnecessary tests and treatments [33]. The process also enables
a symbiotic interaction between AI and clinicians, which is the
key to AI adoption [34]. The AI system expertly identifies cases
where its predictions are highly reliable, allowing clinicians to
focus their attention on challenging and less reliable predictions.
Therefore, this process would not delay critical decisions.
Instead, the proposed AI model could provide explainable
information and also help take the pressure off clinicians by
stratifying patients. Furthermore, survivors whose predictions
were uncertain (multiple predictions) were more likely to
develop acute kidney injury and had a longer ICU stay, which
proves the validity of their clinician review. In this case, a
real-time compatible software pipeline can be developed into
clinical decision systems (Figure 1) by fulfilling the
requirements stated in de Hond et al [26]. This includes
providing an explanation of the model output, enabling end

users to visually comprehend the connection between the input
data and the predicted output, fostering feedback, and
improvement of the predictions.

A systematic review of AI in critical care concluded that it is
important to ensure the validity and reliability of predictive
models across clinical settings [35]. However, it has been
reported that only 6% of studies of AI applications in health
care have performed external validation [36], and the sepsis
mortality risk prediction model is no exception. Furthermore,
previous research on external validation shows a significant
decrease when the AI system is applied in different hospital
settings or data sets due to several potential threats, such as
population heterogeneity, differences in clinical practice, and
software diversity [11,37]. Consistent with these studies, the
prediction results in this study reported that all AI models
deteriorated when externally validated on eICU-CRD, with the
AUC of CPMORS decreasing from 0.858 to 0.800. Although
transfer learning (TL) methods have been proposed to improve
the model generalization ability, additional requirements are
needed. For example, additional labeled target data are required
for supervised TL (fine-tuning) [38] or many unlabeled data for
unsupervised TL (domain adaptation) [39]. Although model
performance can be improved, uncertainty estimation is not
guaranteed. In this study, the proposed CPMORS did not require
target data, could provide confidence measures, and was
mathematically proven to be valid, which were important for
application across hospital settings. For a given confidence
level, the conformal predictor provided a prediction interval
within which the true value should lie with a probability of the
given confidence, that is, the true class is in the prediction set.
Therefore, CPMORS did not aim to directly address the problem
of insufficient model generalization performance by simply
improving the model’s accuracy, as it is impossible for the
model to achieve 100% accuracy. CPMORS could help to
mitigate the risk of the model generalizability issue from another
perspective, by flagging those patients whose predictions are
uncertain due to dissimilarity to the training samples and
reminding clinicians to check. In addition, CP can also help to
detect systematic differences, as shown in Olsson et al [15] for
the diagnosis of prostate cancer.

However, we should carefully consider the trade-off between
producing single predictions and multiple predictions, as the
number of uncertain predictions should be kept limited to avoid
overloading clinicians and creating an unmanageable situation.
We can see that the proportions of single predictions, empty
predictions, and multiple predictions can vary for different levels
of significance (1-confidence; Figure 4). To increase confidence
in the estimates, a low level of significance must be set, but this
would generate an increase in the number of multiple predictions
(uncertain predictions). The findings of this study indicate that,
when the prespecified confidence level is set to 90%, the
CPMORS provides a prediction region around the point
prediction that contains the true label with a 90% probability.
Our results show that, for the MIMIC-IV and eICU-CRD data
sets, CPMORS generated a total of 217 (31.4%) and 681
(38.8%) multiple predictions for nonsurvivors, respectively,
and 1012 (28.9%) and 3323 (38.6%) multiple predictions for
survivors, respectively (Table 4). The implication of the multiple
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predictions in this study is that there is insufficient information
for the model to discriminate between survival and nonsurvival
outcomes. This is demonstrated by the inability to effectively
discriminate the top 15 features between the multiple predictions
of survivors and nonsurvivors (Table 5 and Multimedia
Appendix 2), which reminds us that new information from
patients should be provided to arrive at a single correct
prediction.

Limitations
This study has several limitations. First, although we have
demonstrated this model can help to mitigate the impact of
insufficient model generalization performance and automation
bias by providing the uncertainty estimation, we still need
further studies to collect weekly or monthly statistics of
uncertainty rates so that we can set a balanced confidence level
for more efficient patient management. Second, more advanced
nonconformal functions should be tested to achieve smaller
prediction regions and higher proportions of reliable single
predictions. Third, this work was not designed to directly address
generalizability and bias issues, although it touched upon them.
Future work is needed to solve these 2 issues more thoroughly.

Nevertheless, we provided an experimental example to describe
how a combination of model interpretability and CP could work
to assist clinicians in predicting sepsis mortality in ICU
admissions. Conformal predictors are built on top of the
underlying prediction algorithm; therefore, the framework can
be applied to all prediction algorithms and other predictive tasks
in critical illness prediction.

Conclusions
In summary, this study presents the development and validation
of an AI model, called CPMORS, for predicting sepsis mortality
risk in patients who are critically ill. CPMORS emerges as the
most effective model among all the predictive models tested in
this study. Importantly, CPMORS offers interpretability,
allowing for transparency in the prediction-making process.
The internal and external validation procedures demonstrate the
ability of CPMORS to make reliable predictions and flag
uncertain predictions. These findings suggest that the integration
of model explanation and CP can enhance the clinical
applicability of AI-assisted systems, thereby facilitating clinical
decision-making in the context of sepsis management.
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