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Abstract

Background: Sharing data from clinical studies can accelerate scientific progress, improve transparency, and increase the
potential for innovation and collaboration. However, privacy concerns remain a barrier to data sharing. Certain concerns, such
as reidentification risk, can be addressed through the application of anonymization algorithms, whereby data are altered so that
it is no longer reasonably related to a person. Yet, such alterations have the potential to influence the data set’s statistical properties,
such that the privacy-utility trade-off must be considered. This has been studied in theory, but evidence based on real-world
individual-level clinical data is rare, and anonymization has not broadly been adopted in clinical practice.

Objective: The goal of this study is to contribute to a better understanding of anonymization in the real world by comprehensively
evaluating the privacy-utility trade-off of differently anonymized data using data and scientific results from the German Chronic
Kidney Disease (GCKD) study.

Methods: The GCKD data set extracted for this study consists of 5217 records and 70 variables. A 2-step procedure was followed
to determine which variables constituted reidentification risks. To capture a large portion of the risk-utility space, we decided on
risk thresholds ranging from 0.02 to 1. The data were then transformed via generalization and suppression, and the anonymization
process was varied using a generic and a use case–specific configuration. To assess the utility of the anonymized GCKD data,
general-purpose metrics (ie, data granularity and entropy), as well as use case–specific metrics (ie, reproducibility), were applied.
Reproducibility was assessed by measuring the overlap of the 95% CI lengths between anonymized and original results.

Results: Reproducibility measured by 95% CI overlap was higher than utility obtained from general-purpose metrics. For
example, granularity varied between 68.2% and 87.6%, and entropy varied between 25.5% and 46.2%, whereas the average 95%
CI overlap was above 90% for all risk thresholds applied. A nonoverlapping 95% CI was detected in 6 estimates across all
analyses, but the overwhelming majority of estimates exhibited an overlap over 50%. The use case–specific configuration
outperformed the generic one in terms of actual utility (ie, reproducibility) at the same level of privacy.

Conclusions: Our results illustrate the challenges that anonymization faces when aiming to support multiple likely and possibly
competing uses, while use case–specific anonymization can provide greater utility. This aspect should be taken into account when
evaluating the associated costs of anonymized data and attempting to maintain sufficiently high levels of privacy for anonymized
data.
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Introduction

Sharing data from clinical studies can accelerate scientific
progress, improve transparency, and increase the potential for
innovation and collaboration [1]. Scientific data sharing has
been encouraged by a range of regulatory agencies [2] and is
required by many scientific journals [3]. However, there are
various challenges to realizing data sharing in practice. For
example, the data should satisfy FAIR (findable, accessible,
interoperable, and reusable) principles [4], while sharing policies
need to comply with relevant privacy laws, such as the European
General Data Protection Regulation [5]. Uncertainty in handling
personal data is one of the major challenges to collaborative
research [6-9].

Privacy-enhancing technologies, including anonymization
algorithms, can maintain the privacy of study participants when
sharing data [10,11]. Anonymization reduces privacy risks by
altering data in a manner such that it is highly unlikely that it
can be related to a person. Anonymization can be performed
using various transformation mechanisms, such as suppression,
randomization, or generalization. Software-enabled solutions
have been developed with implementations of published
algorithms to support this process [12]. Yet, there is an inherent
trade-off between the reduction of privacy risks and the utility
of the data that can be shared [13]. In this respect, a key concern
is that the amendments needed to maintain privacy at a certain
level may adversely influence the inherent statistical properties
of the data.

This challenge has been studied extensively in theory [14], and
the evidence for utility-preserving anonymization is growing
[12,15-18]. However, anonymization has not been broadly
adopted in clinical practice. Multiple studies report substantial
gaps in data availability and stress the lack of practical guidance
[8,9,19-22]. The need for a better understanding is also
supported by a review that found most reported successful
disclosure attacks on anonymized data were enabled by
incorrectly applying anonymization algorithms [23]. In addition,
while many approaches have been developed for capturing and
reducing privacy risks, these are typically evaluated using
general-purpose utility measures and only rarely real-world
individual-level clinical data, providing little insights into their
performance in real-world applications [21,22,24]. Metrics
based on such applications are comparatively less reported
[15,25-28], yet greatly needed to gain a better understanding of
privacy-utility trade-offs as well as to provide targeted
recommendations for data providers.

In this study, we aim to provide a better understanding of the
opportunities for sharing individual-level data from clinical

studies. Specifically, we investigate how different
anonymization algorithms affect the utility in a real-world
application using data and scientific results from the German
Chronic Kidney Disease (GCKD) study [29].

Methods

Data and Real-World Application
The GCKD study is a nationwide prospective observational
cohort to study the natural course of chronic kidney disease
(CKD) and to better understand associations between patient
characteristics and disease progression [29]. More than 150
outpatient and 11 university-hospital study sites contributed to
the recruitment of 5217 patients between March 2010 and March
2012 and subsequent follow-up. Data collection resulted in a
high-dimensional data set of more than 4000 variables.

To assess the utility of anonymized data in a real-world
application, we studied its performance in downstream analyses.
These aimed at describing the disease burden and risk profile
of patients with CKD at baseline as previously published by
Titze et al [30]. The variables relevant for this application were
selected, aggregated, and calculated through multiple
preprocessing steps (Figure S1 in Multimedia Appendix 1). The
final curated data set was composed of 70 variables and referred
to as original for the remainder of this paper.

Threat Model
Based on the assumption that the data will be disclosed through
some web-based platform for sharing data from clinical studies
[31-33] with additional measures of control in place (ie, data
use agreements and compatible legal environment), we assumed
a controlled access scenario [34]. In this context, the aim of
anonymization was to provide safeguards in case of an
accidental disclosure, for example, a breach of the recipient’s
local security measures [35].

In line with guidelines and recommendations on clinical trial
data sharing, we focused on protecting the data from linkage
and recognition of subject identities (ie, reidentification) [10].
To detect variables that could be used for reidentifying study
participants, a 2-step procedure was adopted. First, a qualitative
risk assessment was performed based on international guidelines
that document lists of potentially linkable variables [36-39].
Next, a semiquantitative risk assessment was performed by
studying the variables’availability (variables likely to be known
to adversaries), replicability (variables that occur repeatedly in
relationship to the individual), and distinguishability (variables
that make, alone or in combination, individuals unique) [40].
This method has been successfully applied for several real-world
data sets [41-43]. The scoring system was adapted to our

J Med Internet Res 2024 | vol. 26 | e49445 | p. 2https://www.jmir.org/2024/1/e49445
(page number not for citation purposes)

Pilgram et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/49445
http://www.w3.org/Style/XSL
http://www.renderx.com/


real-world application according to literature and expert
knowledge. In brief, availability, replicability, and
distinguishability were quantified from low (1) to high (3), and
the sum was calculated as the score per variable. A score of
greater than 5 was applied as a threshold for the recognition of
a “risky” variable. Overall, we determined that 6 of the 70
variables needed to be protected against reidentification: age,
gender, height, weight, BMI, and history of renal biopsy. The
underlying reasons and results of the 2-step procedure are
provided in Table S1 in Multimedia Appendix 1 [40,44].

We further screened for interdependent relationships between
variables in the data set (eg, height, weight, and BMI).
Transforming them independently can result in 2 issues. First,
the transformed values may no longer be logically consistent.
Second, back-calculation may narrow down intended
generalization intervals and leak information that undermines
established risk thresholds. Among our variables, this was true
for the anthropometric data height, weight, and BMI. To account
for this, we removed either height and weight or BMI from the
data depending on the configuration scenario (see Data
Transformation section).

Reidentification Risk Assessment and Thresholds
Following guidelines for clinical trial data anonymization, we
quantified and reduced reidentification risks according to
probabilistic prosecutor risk (PR) and marketer risk (MR)
models [38]. The prosecutor model provides risk estimates under
the assumption that the data recipient attempts reidentification
against a specific record for which he or she already knows its
membership in the data set. Protecting against such attacks also
protects the data from reidentification by less knowledgeable
data recipients who do not have prior knowledge about
membership. By contrast, the marketer model provides an
estimate of the average success probability that can be expected
of such a less knowledgeable data recipient. Both risk estimates
can be calculated from the distinguishability of records in the
data set regarding the risky variables. Let u(r) be the number
of records indistinguishable from a record r regarding the risky
variables (including r itself). Then, the risk of each record is
1/u(r). Data set–level risk estimates can be derived from the
distribution of the risks of all records, with the PR referring to
the maximum and MR to the average of this distribution [45].
A data set can then be protected from reidentification by
transforming it in a way that those risk estimates fall below
given thresholds. The privacy model aiming at the PR is
typically called k-anonymity, whereas the privacy model that
addresses a combined view of the PR and MR is called
strict-average risk [38]. We studied anonymized data sets with
PR and MR thresholds ranging from 1 to 0.02, respectively.

In our analysis, we put a special focus on three risk thresholds:
(1) 0.5 (ie, a group size of 2), as this is the greatest risk smaller
than 1 that can be measured in approaches built upon
distinguishability; (2) 0.09 (ie, a group size of 11), as this is a
threshold that has been recommended for sharing data from
clinical studies [42,43]; and (3) 0.03 (ie, a group size of 33), as
this is the smallest threshold that could be enforced without
resulting in additional variables being fully censored in the
anonymization process. From these thresholds, 4 privacy levels
from moderate to very strict that we highlight in our analyses
were derived. We denoted the privacy levels as percentages:
(1) 50% PR combined with 9.09% MR, denoted 50% PR+9.09%
MR, (2) 50% PR+3.03% MR, (3) 9.09% PR, and (4) 3.03% PR.

Data Transformation
The anonymized data sets were realized by generalizing and
suppressing variables using the open-source tool ARX (Institute
of Medical Informatics, Statistics and Epidemiology at Technical
University of Munich and Medical Informatics Group at the
Berlin Institute of Health, Charité—Universitätsmedizin Berlin)
[46]. Generalization categorized continuous data into intervals
of different sizes (hierarchies) to prevent distinguishability. Its
configuration included the definition of hierarchies, grouping
factors, and maximum and minimum values (Table 1). Values
of 1 variable were transformed consistently (ie, to the same
hierarchy level). We chose this process because it simplifies
downstream statistical analyses. According to generally accepted
rates of missing data for statistical analyses, an overall limit of
10% on the number of records that could be suppressed was
specified [47,48]. In the dichotomous variables (ie, gender and
renal biopsy), only suppression was applied.

Two different configurations were investigated: (1) a generic
scenario that aims to support multiple general medical uses
without restriction in the generalization hierarchies applied and
(2) a use case–specific scenario in which generalization was
restricted in variables that were important for our real-world
application [30]. Different strategies were also followed to
account for the interdependent relationship between the
anthropometric data. In the generic scenario, we transformed
height and weight and removed BMI from the data to simulate
a situation where it was unknown if BMI would be of relevance
to the study. In the use case–specific scenario, we took the
relevance of BMI into account and removed height and weight
from the data but preserved BMI. Table 1 illustrates the
characteristics of the 2 scenarios. In total, we created 200
anonymized data sets based on 100 different risk thresholds in
2 configuration scenarios (Figure S1 in Multimedia Appendix
1).
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Table 1. Differences in generalization between the generic and the use case–specific scenario.a

Use case–specific scenarioGeneric scenario

Maximum generalizationMinimum-maximum valueMaximum generalizationMinimum-maximum value

10-year intervals18-80Not defined15-80Age (years)

RemovedRemovedNot defined20-280Height (cm)

RemovedRemovedNot defined0-160Weight (kg)

<25.0b; 25.0-29.9c; ≥30.0d15-70RemovedRemovedBMI (kg/m2)

aTo account for collinearity, we generalized height and weight and removed BMI in the generic scenario. In the use case–specific scenario, BMI was
generalized, and height and weight were removed. In this scenario, explicit minimum and maximum values were extracted from the original data set,
and generalization was restricted in variables that were relevant to our real-world application. The hierarchies have been archived on the web [49].
bUnderweight or normal weight.
cOverweight.
dObesity.

Privacy Assessment of Anonymized Data
Due to the consistent transformation of variables, predefined
thresholds did not necessarily translate into the actual risk. We
therefore calculated the empirical PR and MR and screened for
differences from our predefined thresholds (ie, overprotection).
In our figures, we present privacy as a spectrum from
1–maximum PR to 1–average PR (ie, MR) and 1–minimum PR.
Apart from maximum PR, we chose to include average and
minimum PR in our assessment. Considering the potential to
overestimate reidentification risks [23], the average and
minimum PR represent important additional guiding factors
when implementing real-world anonymization algorithms [43].

Utility Assessment of Anonymized Data
We analyzed general-purpose (ie, generic) utility of the
anonymized data sets as well as the degree to which they could
be relied upon to reproduce results from the original data
describing the disease burden and risk profile of patients with
CKD at baseline (use case–specific utility) [30].

To determine general-purpose utility (1) at the cell level, we
measured the granularity of the variables in the data set and (2)
on the variable level, we applied the nonuniform entropy model
that measures deviations in variable distributions. Both were
compiled into data set–level measures by averaging their results
across all records or all variables, respectively [50-52]. All
results were normalized into the range of 0% (all information
removed) to 100% (no information modified at all).

To evaluate use case–specific utility, all analyses were
performed on the original and the 200 anonymized data sets.
To measure reproducibility, we made use of the estimate
agreement as described in the context of real-world evidence
versus randomized controlled trials [53]. As an estimate
agreement, we introduced the relative overlap in 95% CI lengths
of the numbers and percentages between the original and
anonymized data sets. For this purpose, the proportion or mean
95% CI was determined by the Wilson score interval and
2-tailed t test, respectively, and the 95% CI lengths in the
anonymized data sets were compared to those in the original
data set as proposed by Karr et al [24]. We compiled the relative
overlap in 95% CI lengths into table-level measures by
averaging all table cells and into data set–level measures (overall

average 95% CI overlap) by averaging all analyses including
the ones covering only variables that were not affected by the
anonymization procedure.

The use case–specific metrics based on 95% CI overlap
neglected variables with scale transformation through the
anonymization process (ie, age, height, weight, and BMI). In
these variables, we compared resulting hierarchy levels and
presented their effect on the results visually.

Technical Implementation
ARX (version 3.9.1; published November 2022) was used for
anonymization of the data. The data management, analyses, and
visualizations were performed using R (version 4.1.0; R
Foundation for Statistical Computing), Python (version 3.11;
Python Software Foundation), and built-in functions of ARX
for general-purpose metrics and the risk models [46].

Ethical Considerations
All methods were carried out in accordance with the Declaration
of Helsinki. The GCKD study was approved by local ethics
committees (Friedrich-Alexander University Erlangen-Nürnberg,
Germany, 3831) and registered in the national registry for
clinical studies (DRKS 00003971). Informed consent was
obtained from all participants prior to enrollment. The
participants did not receive any form of compensation. Approval
for this study was covered by the approval of the ethics
committees of the GCKD study. Participants’ data are stored
in pseudonymized form in the study database. The database is
on a server at the Regional Computer Centre of the University
Hospital in Erlangen. All aspects of data backup and security
are based on relevant guidelines and in accordance with the
German Federal Data Protection Act.

Results

Empirical Residual Risks
Prior to anonymization, 5112 (98%) records in the original data
set were unique regarding the variables that could be used for
reidentification. Table 2 presents the empirical PR and MR after
having transformed the data set considering different risk
thresholds. As can be seen, the process of consistent
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transformation often resulted in overprotection, with minimal and average PR (ie, MR) being below the specified thresholds.

Table 2. Empirical minimum, average, and maximum prosecutor risk (PR) and marketer risk (MR).a

Use case–specific scenarioGeneric scenario

Minimum PR,
%

Average PR, % (ie, MR)Maximum PR,
%

Minimum PR,
%

Average PR, % (ie,
MR)

Maximum
PR, %

0.56.9500.78.75050% PR+9.09% MR

0.32.5500.2333.350% PR+3.03% MR

0.31.69.10.11.49.19.09% PR

0.20.930.10.62.93.03% PR

aWe report results for the following four risk thresholds: (1) 50% PR+9.09% MR, (2) 50% PR+3.03% MR, (3) 9.09% PR, and (4) 3.03% PR. It can be
seen that empirical risks can be lower than the specified risk thresholds due to consistent data transformation (ie, overgeneralization).

Privacy-Utility Trade-Off
Next, we studied how well the anonymization approach enabled
trading off data privacy against utility. Figure 1 presents
privacy-utility trade-off curves when scaling risk thresholds for
PR against granularity and entropy as general-purpose utility
metrics. Privacy was calculated as 1–empirical PR for minimum,
average (ie, MR), and maximum PR, respectively. Figure 2
presents analogous curves for use case–specific utility metrics
(ie, 95% CI overlap). When scaling risk thresholds for MR in
50% PR+MR, similar results were observed, such that they are
deferred to Figures S2 and S3 in Multimedia Appendix 1.

As can be seen from the results shown in Figure 1, the curve is
flatter between the 50% PR and 9.09% PR threshold than
between 9.09% PR and 3.03% PR. Thus, a gain in privacy was
accompanied by a comparatively lower loss in utility across
this risk-utility space. At lower privacy levels than the 50% PR
threshold, a high initial loss was observed in entropy but not in
granularity. It can be seen from these results that the process

had a nontrivial impact on variable distributions, pushing it
toward a greater amount of privacy than (general-purpose)
utility. For example, in the generic scenario, granularity varied
between 87.6% (50% PR+9.09% MR) and 68.2% (3.03% PR),
while entropy was generally lower with estimates between
46.2% and 25.5%, respectively.

The use case–specific utility is presented as an overall 95% CI
overlap and as an 95% CI overlap on the analysis level in Figure
2 when scaling thresholds for PR and in Figure S3 in Multimedia
Appendix 1 for 50% PR+MR. Compared to Figure 1
(general-purpose utility), privacy gain could be achieved with
a minor impact on utility in this case. The overall 95% CI
overlap in the generic scenario varied from 98.4% at 50%
PR+9.09% MR to 96.7% at 3.03% PR.

Figure 3 illustrates the differences between the applied utility
metrics to point out the multidimensionality of utility. In our
real-world application, results from use case–specific metrics
were consistently above the ones from general-purpose metrics.

Figure 1. Privacy-utility curves based on general-purpose utility metrics. Granularity and nonuniform entropy served as general-purpose utility metrics.
Privacy is demonstrated as 1–empirical maximum PR, average PR (ie, MR), and minimum PR. We used the anonymization processes implementing
thresholds on PR for generating the points on the curve: 50% PR, 9.09% PR, and 3.03% PR. Results of granularity in the (A) generic and (C) use
case–specific anonymized data sets and results of entropy in the (B) generic and (D) use case–specific anonymized data sets are shown. Results for 50%
PR+MR were analogous and are illustrated in Figure S2 in Multimedia Appendix 1. The extreme points at (0,100) and (100,0) have been added to the
graph but were not directly measured. MR: marketer risk; PR: prosecutor risk.
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Figure 2. Privacy-utility curves using use case–specific utility metrics based on 95% CIO. 95% CIO was calculated on the data set level (overall 95%
CIO) and analysis level. Two analyses (glomerular filtration rate and albuminuria categories and comparison of estimated glomerular filtration rate
equations) were not affected by anonymization at all (100% overlap) and are therefore not displayed separately. Privacy is demonstrated as 1–maximum
PR, average PR (ie, MR), and minimum PR. We used the anonymization processes implementing thresholds on PR for generating the points on the
curve: 50% PR, 9.09% PR, and 3.03% PR. Results of the overall 95% CIO in the (A) generic and (G) use case–specific anonymized data sets and results
of the 95% CIOs on analysis level in the (B-F) generic and (H-L) use case–specific anonymized data sets are shown. Results at the estimate level are
shown in Tables S2-S10 in Multimedia Appendix 1. Results for 50% PR+MR were analogous and are illustrated in Figure S3 in Multimedia Appendix
1. The extreme points at (0,100) and (100,0) have been added to the graph and were not directly measured. CIO: CI overlap; MR: marketer risk; PR:
prosecutor risk.

Figure 3. Generic and use case–specific utility metrics. Calculated utility metrics are illustrated in comparison. Granularity and nonuniform entropy
served as general-purpose utility metrics. 95% CIO was calculated on the data set level (overall 95% CIO) and analysis level. The latter is exemplary
illustrated for the main analysis (Tables S2-S5 in Multimedia Appendix 1, 95% CIO). 95% CIO excluded variables with scale transformation. Privacy
is illustrated as 1–maximum PR. We calculated metrics in (A) generic and (B) use case–specific anonymized data sets. Results for 50% PR+MR were
analogous and can be drawn from the privacy-utility curves in Figures S2 and S3 in Multimedia Appendix 1. The extreme points at (0,100) and (100,0)
have been added to the graph and were not directly measured. CIO: CI overlap; PR: prosecutor risk.

Reproducibility of Prior Study Results
A more detailed analysis of reproducibility was performed by
comparing analyses on estimate level for the selected privacy
levels: (1) 50% PR+9.09% MR, (2) 50% PR+3.03% MR, (3)
9.09% PR, and (4) 3.03% PR. We conducted 7 analyses to
describe the disease burden and risk profile of patients with
CKD at baseline: the disease burden and risk profile stratified
by gender and presence of diabetes mellitus (main results, Tables
S2-S5 in Multimedia Appendix 1 [24]), characteristics stratified
by inclusion criteria (Table S6 in Multimedia Appendix 1),

biopsy rates per leading cause (Table S7 in Multimedia
Appendix 1), cardiovascular disease burden stratified by gender
and the presence of diabetes mellitus (Tables S8 and S9 in
Multimedia Appendix 1), the characteristics stratified by
diabetes mellitus and diabetic nephropathy (Table S10 in
Multimedia Appendix 1), the distribution of glomerular filtration
rate and albuminuria categories, and the comparison of estimated
glomerular filtration rate (eGFR) equations. The last 2 analyses
are not shown as they only covered variables that were not
affected by the anonymization procedure resulting in a 100%
95% CI overlap. Additional information on the presumed cause
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of CKD, patient awareness, and the age distribution of patients
stratified by gender and the presence of diabetes mellitus was
calculated and illustrated as figures. While no variable was
affected by the anonymization process in the first 2 analyses
(results not shown), the effects of anonymization for the last
one are depicted in Figure 4.

We focused on the reproducibility of the main results (Tables
S2-S5 in Multimedia Appendix 1). This included the 95% CI
overlap and whether the result of anonymized data was within
the original 95% CI (Figure 5 and Tables S2-S5 in Multimedia
Appendix 1). The main results were stratified by gender and
the presence of diabetes mellitus. For the subset of female
participants who did not have diabetes, the results of the 95%
CI overlaps at estimate level are shown in Tables S2 and S3 in
Multimedia Appendix 1 as well as Figure 5. The original data
set included 1462 female participants who did not have diabetes.
Due to suppression in the anonymization process, the number
decreased at (1) 50% PR+9.09% MR, (2) 50% PR+3.03% MR,
(3) 9.09% PR, and (4) 3.03% PR to 1385, 1407, 1360, and 1309,
respectively, in the generic scenario and to 1414, 1451, 1342,
and 1218, respectively, in the use case–specific scenario. We
detected modestly overlapping 95% CIs (<50%) in estimates
of the variables renal biopsy (12.4%), urine
albumin-to-creatinine ratio (UACR)>300 mg/g (46.2%), and
eGFR (47.4%) at 3.03% PR in the generic scenario. In the use
case–specific scenario, this was true for estimates of the
variables UACR>300 mg/g (19.6%), UACR<30 mg/g (23.9%),
eGFR≥60 mL/min (41.6%), eGFR (21.6%), and systolic blood
pressure (41.7%) at 3.03% PR. At this privacy level, there was
also a nonoverlapping 95% CI (0%) measured for renal biopsy
(95% CI 22.2-27.1 vs 29.7-34.5). The modest and
nonoverlapping 95% CIs were accompanied by results that were
not within the original 95% CI. At lower privacy levels, there
were no such constraints. When looking at the other subsets
(Tables S4 and S5 in Multimedia Appendix 1), the 95% CI
overlap at the estimate level revealed similar results with
sporadic modestly (n=7) and nonoverlapping (n=3) 95% CIs.

Considering all analyses, the main results and the results on
cardiovascular disease burden were most influenced by a lower
95% CI overlap (Figure 2B, E, H, and K). This is most likely
due to the stratification by the variable gender and the large
amount of further modified variables in these analyses.
Completely overlapping 95% CIs (100%) were reached for 2
of the 7 analyses (glomerular filtration rate and albuminuria
categories and comparison of eGFR equations) and for 2 of the
3 figures (presumed cause of CKD and patient awareness). In
these analyses, there was no variable affected by the

anonymization process, and the results are therefore not shown
separately. The trends of affected tables (Tables S6-S10 in
Multimedia Appendix 1) at the estimate level were similar to
the main results. Two analyses (Tables S7-S9 in Multimedia
Appendix 1) could be replicated without modestly overlapping
95% CIs. Within the other tables, estimates exhibited sporadic
modestly (n=11) and nonoverlapping (n=2) 95% CIs but by far
the majority of estimates exhibited a 95% CI overlap of over
50% across all privacy levels.

The age, height, weight, and BMI variables were converted
from a numerical to a categorical scale during the anonymization
process. In the use case–specific scenario, the degree of
generalization in scale transformation was preconfigured to
preserve relevant information. In the generic scenario, there
were no restrictions in the generalization hierarchies. The
resulting loss of information is visualized in Figure 6 for age
and BMI for the subset of female participants who did not have
diabetes. In the generic scenario, generalization of age leads to
20-year intervals at 50% PR+3.03% MR, 9.09% PR, and 3.03%
PR. In contrast, as predefined, the intervals did not exceed 10
years in the use case–specific scenario. For BMI, generalization
was more complex. In the generic scenario, BMI was calculated
using the generalized data of height and weight (Figure S5 in
Multimedia Appendix 1), which resulted in diverse, partly
overlapping, intervals. As demonstrated in Figure S4 in
Multimedia Appendix 1, the number of intervals decreased with
increasing protection, while their length increased. This resulted
in relevant information loss with intervals covering a range from

normal weight (24.7 kg/cm2) to severe obesity (≥40 kg/cm2).
As for age, the use case–specific scenario had restrictions in
generalization hierarchies for BMI, which resulted in commonly
accepted categories (normal weight, overweight, and obesity)
and a good approximation to the original distribution.
Reasonable semantics were maintained even at 3.03% PR. Thus,
use case–specific configurations were important to obtain
reasonable semantics of the variables. Height and weight were
considered less relevant for the research focus and therefore
removed in favor of preserving the BMI in the use case–specific
scenario.

We additionally plotted information on the age distribution
stratified by gender and the presence of diabetes mellitus for
the original and the anonymized data at the selected privacy
levels (Figure 4). In the generic scenario, the figure could only
be replicated at 50% PR+9.09% MR due to the large intervals
when stricter risk thresholds were enforced. By contrast, the
use case–specific scenario maintained the original interval
length.
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Figure 4. Age distribution stratified by gender and the presence of diabetes mellitus in the original and anonymized data sets. Anonymization was
applied as defined in the (A and B) generic and (C and D) use case–specific scenario. Bar plots illustrate counts for anonymized data at selected privacy
level: 9.09% MR+50% PR, 3.03% MR+50% PR, 9.09% PR, and 3.03% PR. The figure derived from the original data is illustrated in gray. MR: marketer
risk; PR: prosecutor risk.

Figure 5. Proportion, CIs, and overlap in the interval lengths for descriptive analyses of the subset of female participants who did not have diabetes.
Anonymization was applied as defined in the (A) generic and (B) use case–specific scenario. Results are shown for selected privacy levels: 9.09%
MR+50% PR, 3.03% MR+50% PR, 9.09% PR, and 3.03% PR. Only categorical parameters are presented as percentages referred to the numbers
excluding missing with proportion 95% CI. 95% CI for both original and anonymized data were calculated based on the Wilson score interval and are
displayed in the figure. For the original data, 95% CI is illustrated in gray, and for anonymized data, colors can be depicted from the legend. ACE:
angiotensin-converting enzyme; ARBs: Angiotensin II receptor blockers; BP: blood pressure; eGFR: estimated glomerular filtration rate; MR: marketer
risk; PR: prosecutor risk; UACR: urine albumin-to-creatinine ratio.
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Figure 6. Illustration of age and BMI of female participants who did not have diabetes in the original and anonymized data sets. Anonymization was
applied as defined in the (A and B) generic and (C and D) use case–specific scenario. Bar plots illustrate counts for anonymized data at selected privacy
level: 9.09% MR+50% PR, 3.03% MR+50% PR, 9.09% PR, and 3.03% PR. The original data are illustrated as a density plot in gray. In the generic
scenario, BMI was calculated using the generalized data of height and weight. MR: marketer risk; PR: prosecutor risk.

Discussion

Principal Results
This study provides an in-depth view into the use of
anonymization processes for sharing data from clinical studies.
Based on a state-of-the-art threat modeling methodology and
established risk models, a wide range of anonymization
configurations was compared to study the privacy-utility
trade-off. We further considered a use case–specific
anonymization approach tailored toward our real-world
application to optimize anonymization.

Our results exhibited quite high average privacy achieved for
all records (<10% empirical average PR, ie, MR) even at the
highest predefined thresholds for PR. At the same time, use
case–specific utility at the data set–level was high (>90%) across
all thresholds. Individual results disagreed in the sense of
nonoverlapping 95% CIs, but this was rare and mainly occurred
at 3.03% PR. We would not consider them as relevant in our
descriptive analyses where no direct implications were drawn
from individual estimates. General-purpose metrics, in contrast,
underestimated the actual utility in our real-world application.
The 95% CI overlap at the data set–level therefore seems to be
a useful proxy for actual utility in descriptive analyses.

Based on our investigation, it is evident that use case–specific
tailoring had a positive effect on the reproducibility. In assessing
anthropometric data, for example, use case–specific tailoring
unfolded its potential, BMI represents a screening tool for

chronic disease and mortality, while weight and in particular
height are not pathological factors by themselves [54].
Consequently, reasonable and use case–specific preprocessing
(removal of weight and height) resulted in preserved utility,
while generic configuration (removal of BMI) lost almost all
the information.

Comparison With Prior Work
While an increasing number of examples of real-world
applications of anonymization algorithms are published
[12,15,16], we did not come across any investigations that
measured the reproducibility (eg, by 95% CI overlap) of
descriptive real-world analyses except for prior work on the
GCKD study. However, several studies focusing on preserving
the utility of anonymized data for descriptive real-world analyses
without explicitly introducing use case–specific measures have
been published. For instance, in the Lean European Open Survey
on patients infected with SARS-CoV-2, an anonymization
pipeline using 9.09% PR as a threshold was established [25].
The anonymized data set was evaluated in selected clinical
parameters with reported maximum frequency differences of
only 0.11%. In addition, a real-world analysis on patients with
stroke presented with low error rates [15]. Interestingly, the
authors of this study evaluated a new method that limits the
degree to which generalization is applied. Analogously to what
we observed in the use case–specific scenario, these predefined
settings resulted in anonymized data that are closer to the
original data. In addition, prior work on anonymized data of the
GCKD study demonstrated preserved descriptive characteristics
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at 2 selected privacy levels and highlighted the limitations of
general-purpose utility metrics [28]. Similar to this study, the
95% CI overlap was used to confirm reproducibility, but it was
not evaluated throughout an entire research project or across
different anonymization processes, and only a small proportion
of the risk-utility space was covered.

In inferential statistics in general, there is evidence for a lack
of reproducibility. The evaluation of a low dimensionality data
set—that contains only 2 variables that needed to be
protected—concluded there were biased results across
differently anonymized data [27]. The authors reported a
decreasing accuracy of relative risk estimates by clustering
analyses independent of the applied privacy model. Similarly,
a use case–specific evaluation focusing on machine learning
models for early acute kidney injury risk prediction identified
a statistically relevant discrepancy in individual performance
measures while at the same time preserving overall prediction
accuracy [26]. This discrepancy points toward a need for
multidimensional utility assessment. As stated earlier and shown
in these published examples, individual estimate disagreements
might or might not result in false implications depending on the
affection of outcomes or potential confounders.

Data sharing has been mandated by several regulatory agencies
[2] and is desirable for many reasons (eg, transparency,
reproducibility, collaboration, and innovation). It is often subject
to institutional policies and laws, such as the General Data
Protection Regulation [5]. To promote data sharing, technical
conditions to satisfy FAIR need to be realized. However, at the
same time, privacy-enhancing technologies should be thoroughly
assessed. In this context, utility concerns can pose a real threat
and should be as much a part of discussion as privacy concerns.
We want to encourage data sharing in a way that does not
compromise patients’ privacy or research quality. The research
communicated through our project can contribute to a better
understanding of anonymization and potential pitfalls.

We also encourage regulators, policy makers, and society to
openly discuss the costs—in terms of domain expert knowledge,
time, technical requirements, and utility—that all stakeholders
are willing to bear to maintain high levels of privacy. Our results
highlight the weakness of generic anonymization when aiming
to support disparate uses of the data when high levels of privacy
need to be maintained. Conclusions might be either taking the
extra costs of use case–specific tailoring and additional measures
of control, agreeing on a lower privacy level in favor of

high-quality research, or accepting the limitations of studies
conducted on a generic anonymized data set.

Limitations
While our evaluation included a comprehensive assessment,
there are several limitations to this investigation. First, this study
focused on measuring and reducing specific privacy concerns,
namely, prosecutor and marketer reidentification risk, as well
as a certain type of anonymization framework that uses
generalization and suppression. There are certainly other privacy
risks and anonymization algorithms, and it is possible that some
may provide a better privacy-utility trade-off in certain
scenarios. Second, we did not protect the data against sensitive
attribute inference where confidential information is accessed
indirectly through inference. We made this decision because
we assumed a controlled access setting and the relevance of this
risk as well as its possible countermeasures are controversial
[55]. Third, the threat modeling approach we relied upon
requires assumptions about the goals and possibilities of
potential adversaries. Other researchers aiming to apply our
technique could consider running a structured assessment among
a panel of experts (eg, using the Delphi technique) to strengthen
the reliability of the threat modeling. Finally, while descriptive
analyses are a basic feature of almost any study, anonymization
must also stand up to more complex statistics. Individual
nonoverlapping 95% CIs as detected in this study might
relevantly affect inferential statistics. In this context, the estimate
agreement (ie, by 95% CI overlap) and direction of effect and
statistical significance need to be considered [53].

Conclusions
Against the background of increasing data sharing initiatives,
it should be highlighted that utility concerns should be as much
a part of discussion as privacy concerns. Our results highlight
the weakness of generic anonymization when high levels of
privacy are maintained. An anonymized data set aiming to
support multiple disparate and possibly competing likely uses
might allow exploratory analyses but may not be appropriate
for drawing conclusions from individual analyses. This
underscores the merit of applying case-specific tailoring and
may justify its extra costs, for example, in terms of time and
additional measures of control. However, the discussion about
the acceptable costs, both financial and in terms of utility, that
are required to uphold high levels of privacy should involve a
broad spectrum of stakeholders. It should include domain
experts, regulators, policy makers, patient representatives, and
society at large.
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GCKD: German Chronic Kidney Disease
MR: marketer risk
PR: prosecutor risk
UACR: urine albumin-to-creatinine ratio
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