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Abstract

Background: With the progressive increase in aging populations, the use of opportunistic computed tomography (CT) scanning
is increasing, which could be a valuable method for acquiring information on both muscles and bones of aging populations.

Objective: The aim of this study was to develop and externally validate opportunistic CT-based fracture prediction models by
using images of vertebral bones and paravertebral muscles.

Methods: The models were developed based on a retrospective longitudinal cohort study of 1214 patients with abdominal CT
images between 2010 and 2019. The models were externally validated in 495 patients. The primary outcome of this study was
defined as the predictive accuracy for identifying vertebral fracture events within a 5-year follow-up. The image models were
developed using an attention convolutional neural network–recurrent neural network model from images of the vertebral bone
and paravertebral muscles.

Results: The mean ages of the patients in the development and validation sets were 73 years and 68 years, and 69.1% (839/1214)
and 78.8% (390/495) of them were females, respectively. The areas under the receiver operator curve (AUROCs) for predicting
vertebral fractures were superior in images of the vertebral bone and paravertebral muscles than those in the bone-only images
in the external validation cohort (0.827, 95% CI 0.821-0.833 vs 0.815, 95% CI 0.806-0.824, respectively; P<.001). The AUROCs
of these image models were higher than those of the fracture risk assessment models (0.810 for major osteoporotic risk, 0.780
for hip fracture risk). For the clinical model using age, sex, BMI, use of steroids, smoking, possible secondary osteoporosis, type
2 diabetes mellitus, HIV, hepatitis C, and renal failure, the AUROC value in the external validation cohort was 0.749 (95% CI
0.736-0.762), which was lower than that of the image model using vertebral bones and muscles (P<.001).

Conclusions: The model using the images of the vertebral bone and paravertebral muscle showed better performance than that
using the images of the bone-only or clinical variables. Opportunistic CT screening may contribute to identifying patients with
a high fracture risk in the future.
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Introduction

The globally aging society has driven an increase in the
incidence of fragility fractures and imposed a significant burden
on health care systems, societies, and most importantly, on
patients and their families [1-3]. Thus, proactively identifying
patients with a high risk of fractures is vital. There are
well-established methods to evaluate the risk of fractures, such
as dual-energy X-ray absorptiometry (DXA) to assess bone
mineral density (BMD), which is a reference standard for the
diagnosis of osteoporosis [4]. However, a large proportion of
patients have never undergone DXA, and 60% of the patients
with major osteoporotic fractures do not receive proper treatment
to reduce the risk of fractures [5].

Opportunistic computed tomography (CT) scans can be a novel
approach for identifying patients with a high risk of fractures.
Along with the increase in progressively aging populations, the
use of opportunistic CT scanning is increasing, with over 80
million examinations performed each year in the United States
[6]. Retrieval of information that can help assess the fracture
risks from opportunistic CT scans does not require additional
costs, time, or equipment, and data can be retrospectively
acquired. Thus, it may help reduce the efforts associated with
screening patients with high risks of fractures. Several studies
have assessed BMD by using opportunistic CT scans [7], mainly
utilizing the attenuation data of the trabecular bone of the spine
[8,9].

There have been significant advances in deep learning
techniques for medical image analysis, such as the convolutional
neural network (CNN) method [10]. The CNN method facilitates
the utilization of highly representative, data-driven image
features, arranged in a layered hierarchical structure, which are
effective in successfully classifying medical images. Various
images have been used in CNN to classify patients with a high
fracture risk [11-14]. Previous studies have primarily focused
on the use of radiographic images for fracture detection, with
AUROCs reported in the range of 0.73-0.80 [14,15]. However,
there is scarcity of research utilizing CT images, and this is
limited to bone texture analysis. Our study may fill this gap by
applying CNN techniques to CT scans, which may provide a
more accurate assessment of fracture risk due to the detailed
and comprehensive nature of CT imaging. Further, as
paravertebral muscles are among the critical contributing factors
to vertebral fractures [16,17], CT could be a valuable method
for acquiring information on both the muscle and vertebral bone.
Nevertheless, to our knowledge, no previous study has reported
using images of both the vertebral bone and muscle from CT
scans by using the CNN method. Therefore, we aimed to

develop and externally validate a CT-based fracture prediction
model by using images of vertebral bones and muscles by
employing a deep learning method. This study may help identify
patients having high risk of fractures among those who undergo
opportunistic CT scans for screening or other purposes.

Methods

Study Design and Participants
This study was based on a retrospective longitudinal cohort
study of 32,435 patients having abdominal CT images at Seoul
National University Bundang Hospital between 2010 and 2019.
Patients who met all the inclusion criteria were included.
Inclusion criteria were as follows: (1) patients who had
abdominal CT imaging at Seoul National University Bundang
Hospital between 2010 and 2019 and had follow-up images at
the 5-year timepoint, (2) those who were aged between 50 and
80 years, and (3) those who were followed up for over a year.
Further, patients who met any one of the exclusion criteria were
excluded. The exclusion criteria and the number of excluded
patients were as follows: (1) patients who were younger than
50 years or older than 80 years (n=2643), (2) those whose
follow-up periods were less than a year (n=8029), and (3) those
who had compression fractures or spinal surgery at the baseline
(n=3258) (Figure 1). Finally, 18,505 patients were included in
the analysis. During follow-up, 693 patients experienced
vertebral fractures, while the remaining 17,812 patients did not.
Among the 693 patients, after excluding 85 patients owing to
the poor image quality or inappropriate CT protocols, 608
patients remained as cases.

For the control group, we selected individuals from the same
time frame as the fracture cases. Among 17,812 patients who
did not experience fracture, after excluding 2141 patients with
poor image quality, we selected 606 age-, sex-, and
BMI-matched individuals at a ratio of 1 patient to 1 control
within a similar follow-up period. The fracture events were
determined by reviewing medical records, with efforts to exclude
any fractures associated with trauma. If patients had multiple
CT scans during the follow-up, the earliest CT scan was used.

As a result, 1214 patients were eligible for analysis and
constituted the development set. In addition, we developed an
external validation set of 495 patients from Seoul National
University Boramae Hospital by using the same protocol but
without case-control matching between 2012 and 2013. An
external validation set was developed to assess the performance
of the intervention. The same protocol was used to ensure
consistency in evaluation while allowing for a broader
application of the findings in real-world settings.
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Figure 1. Flowchart of participant selection for this study on vertebral fracture prediction. CT: computed tomography; SNUBH: Seoul National
University Bundang Hospital.

Ethics Approval
This study protocol was approved by the institutional review
board of the Seoul National University Bundang Hospital
(B-2104-677-402). The requirement for informed consent was
waived owing to the retrospective design of this study. This
study was conducted in accordance with the ethical standards
laid down in the 1964 World Medical Association Declaration
of Helsinki and its later amendments. This study also complies
with the ethical principles for medical research.

Primary Outcome
The primary outcome of this study was the predictive accuracy
of vertebral fracture events between T12 and L4 occurring
within 5 years. Vertebral fractures were defined as morphometric
fractures and were confirmed using radiographic or CT images.
These images were adjudicated by SHK and JHK, who were
blinded to any patient information prior to their assessments.
Morphometric vertebral fractures were confirmed by
radiographic or reconstructed CT images with measurements
of anterior (Ha), middle (Hm), and posterior (Hp) height of each
vertebral body from T11 to L4 measured. Normal population
was classified as having no vertebral fracture by gross visual
inspection as being within normal range for vertebral height
and shape. The mean (SD) of ratio of normal vertebral height
was obtained from patients without incident fractures. We first
calculated the anterior to posterior (Ha/Hp), middle to posterior
(Hm/Hp), and posterior to posterior above and below
(Hpi/Hpi+1 and Hpi/Hpi–1) ratios. Vertebral fracture was
defined if any of the following ratios were more than 3 SDs
below the normal mean for that vertebral level, which was 0.91
(SD 0.08), as described in previous reports [18,19].

Measurements of Clinical Factors
Sociodemographic factors, including age, sex, and medical
history, were obtained from a review of electronic medical
records at baseline. Height and body weight were measured
using standard methods by trained staff with a scale and
wall-mounted extensometer, and the participants wore
lightweight clothes. BMI was calculated as weight divided by

height in meters squared (kg/m2). Current smokers were defined
as patients who were smoking during the study period, while
current alcohol consumers were defined as those who consumed
3 or more units of alcohol daily. The use of glucocorticoids was
defined as using oral glucocorticoids or having been exposed
to oral glucocorticoids for more than 3 months at a prednisolone
dose >5 mg or its equivalent doses. Possible secondary
osteoporosis is defined as osteoporosis that occurs due to factors
other than primary menopause or age-related causes. It includes
patients with osteoporosis and concurrent diagnosis with type
1 diabetes, osteogenesis imperfecta in adulthood,
hyperthyroidism, hypogonadism, premature menopause (age<45
years), chronic malnutrition, malabsorption, or chronic liver
disease [20].

CT Protocols, Image Preprocessing, and Deep Learning
Techniques
Intravenous contrast-enhanced images were obtained using CT
scanners with 64 detector rows (Brilliance; Philips Medical
Systems). All the patients were placed in a supine position and
scanned from the diaphragm to the symphysis pubis. The
reference tube current–time product was empirically set, aiming
at effective radiation doses of 2 mSv. The effective tube
current–time product generally ranges between 25 mA and 40
mA. The actual radiation dose was adjusted according to the
body size by automatically modulating the tube current
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(Dose-Right; Philips Medical Systems). The values of tube
voltage, collimation, rotation speed, and pitch were 120 kVp,
64 mm×0.625 mm, 0.5 seconds, and 0.891, respectively. Patients
were administered 2 mL iopromide/kg (Ultravist 370; Schering)
intravenously at a rate of 3 mL/s via the antecubital vein, and
scanning was initiated 60 seconds after the enhancement of the
descending aorta reached 150 HU. From each helical scan, the
images were reconstructed using a section thickness of 5 mm.

Consecutive image processing was applied to all the CT images
for accurate deep learning–based image analysis. Each axial
slice of the abdominal CT scan was resampled to obtain a pixel

spacing of 1×1 mm2. The signal intensity of each CT image was
min-max normalized to the –1 to 1 range after windowing the
Hounsfield unit values in the range of –200 to 1000.
Subsequently, 2 classes of image data, that is, vertebral body
only (bone-only) and vertebral body with paravertebral muscles
(bone+muscle) were extracted from each CT image. Based on
the manual annotations of the vertebral body, excluding the
intervertebral disc, the vertebral body regions from T12 to L4
were extracted from the CT images, where each bone-only
image had 96×96 pixels in the axial plane. Centered on the
vertebral body, the images of the paravertebral muscle were
automatically cropped using a rectangular box (96×144 pixels)
in the axial plane (Figure S1 in Multimedia Appendix 1).

Deep learning–based image features for the 5-year risk analysis
of vertebral fractures were extracted using the attention
CNN–recurrent neural network (CNN-RNN) model for image
data (Figure 2) [21,22]. In the CNN-RNN model,
ImageNet-pretrained ResNeXt-50 and gated recurrent units
were employed as the CNN encoder backbone and the RNN
recurrent decoder, respectively. As inputs of the model, 14

equidistant axial slices were extracted from the T12 to L4
vertebrae region of each CT image, where the starting slice was
randomly selected at each training iteration for data
augmentation. In the training phase, the CNN-RNN model was
optimized using the Adam optimizer and cross-entropy loss,
where the learning rate and batch size were 1e-5 and 128,
respectively. In our image-based fracture prediction model, the
utilization of CT images was primarily driven by deep learning
methods, particularly CNNs. Although specific imaging
parameters such as attenuation values and density were not
directly used as standalone inputs, the CNN’s learning process
inherently captured these aspects as part of the comprehensive
image analysis. The model processed the entire CT images,
extracting deep features that potentially included characteristics
related to bone and muscle attenuation and density, among
others. This approach allowed for a sophisticated interpretation
of the CT scans, identifying nuanced patterns indicative of
fracture risk. To incorporate clinical variables into our
image-based prediction model, we first standardized the clinical
variables to ensure consistency and comparability. Following
this, we concatenated the standardized variables to the image
features in the final layer of the CNN-RNN model.

To understand how the model identifies and differentiates key
areas for predicting vertebral fractures in CT images, we
employed the gradient-weighted class activation mapping
technique. This approach involves highlighting the most crucial
regions within the images, marked by a bright red overlay,
thereby revealing the model’s decision-making process and
focal areas for classification (Figure 3). The image models were
developed with a high-performance computing server with 4
NVIDIA GeForce GTX 1080 Ti (NVIDIA) graphic processing
units and the Ubuntu 16.04.4 operating system.

Figure 2. Architecture of the convolutional neural network–recurrent neural network model for vertebral fracture prediction. CNN: convolutional
neural network; FC, fully connected; RNN: recurrent neural network.
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Figure 3. Gradient-weighted class activation mapping heatmaps of image models using (A) bone-only and (B) bone+muscle images. A heatmap was
generated by gradient-weighted class activation mapping, a technique used to visualize those parts of an input image that are important for a neural
network's decision, especially in convolutional neural networks.

Statistical Analyses
For the baseline characteristics, depending on the distribution,
continuous parameters were presented as means with standard
deviations and categorical data were presented as proportions.
Comparisons between the groups having continuous variables

were analyzed using 2-sided Student t test, whereas χ2 test was
used for the categorical variables. The area under the receiver
operating characteristic curve (AUROC) was calculated to
compare the preprocessed images. Cases predicted to have an
actual fracture event and experienced it during follow-up were
defined as true positive. Those predicted to have but did not
experience a fracture was designated as false positive. Cases
predicted to be free from fracture events but experienced one
during follow-up were defined as false negative. True-negative
cases were predicted to be free of fracture events with no
fractures during follow-up. Sensitivity and specificity were
calculated for each time series as follows: sensitivity = true
positive / (true positive + false negative) and specificity = true
negative / (true negative + false positive). The risk prediction
performance measures were gauged using 10-fold
cross-validation.

The image-only 5-year risk analyses of vertebral fractures were
conducted by applying a fully connected layer, which generates
binary prediction results to the CNN-RNN feature extractor. In
addition to the image-only model, clinical models (models A,
B, C, and D) were developed by analyzing the corresponding
clinical variables via XGBoost. The clinical variables included
age, sex, BMI, use of steroids, smoking status, and possible
secondary osteoporosis. Model A included age and sex as
independent variables; model B additionally incorporated BMI;
model C further included clinical variables such as the use of
glucocorticoids, history of alcohol consumption, smoking, and
possible secondary osteoporosis; and model D included type 2

diabetes mellitus, HIV, hepatitis C infection [23], and renal
failure [24].

The matching of cases and controls in our study was conducted
based on age and sex. This process was facilitated using the
propensity score matching method, implemented through the
MatchIt package in R (version 4.1.2; R Foundation). PyTorch
and Scikit-learn libraries from Python were used for the
analyses. A P value <.05 was considered significant. Correction
for multiple testing was not performed across models. Statistical
analyses were performed using Python (version 3.8.10; Python
Software Foundation). The programs used in the experiments
were PyCharm (JetBrains s.r.o.) and Visual Studio (Microsoft
Corp).

Results

Clinical Characteristics
A total of 1709 individuals were included in the analysis. The
participants were divided into a development set from Seoul
National University Bundang Hospital (n=1214) and an external
validation set (n=495) from Seoul National University Boramae
Medical Center. As shown in Table 1, the development set was
older (mean 72.5, SD 7.9 years) than the external validation set
(mean 67.6, SD 8.6 years), with a statistically significant
difference (P<.001). The proportion of females in the external
validation set (390/495, 78.8%) was higher than that in the
development set (839/1214, 69.1%), with this difference also
being significant (P<.001). However, no significant differences
were observed in weight and BMI between the 2 sets. When
considering lifestyle factors, there was a higher prevalence of
current smokers (284/1214, 23.4% vs 28/495, 5.7%; P<.001)
and current drinkers (236/1214, 19.4% vs 34/495, 6.9%; P<.001)
in the development set than those in the external validation set,
respectively. The use of steroids was similar across both groups
(P=.56), while the prevalence of possible secondary osteoporosis
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was significantly higher in the development set (122/1214,
10.1% vs 16/495, 3.2%, respectively; P<.001). Within 5 years
of follow-up, 454 (37.4%) and 61 (12.3%) individuals
experienced vertebral fractures in the development and external
validation sets, respectively.

In the development set (n=1214), participants were matched
based on age, sex, and BMI to compare those with incident
fractures (n=608) to those without (n=606). There was a less
than 1-year age difference (mean age 72.0, SD 7.6 years in the
nonfracture group vs 72.9, SD 8.2 years in the fracture group;
P<.001) and a BMI difference of less than 0.5 (mean BMI 23.7,
SD 3.4 kg/m² in the nonfracture group vs 23.5, SD 3.5 kg/m²
in the fracture group; P=.39). Gender distribution was balanced

between the 2 groups (422/606, 69.6% females in the
nonfracture group vs 417/608, 68.6% females in the fracture
group; P=.96).

Despite these matched parameters, a higher prevalence of current
smokers was noted in the fracture group than in the nonfracture
group (169/608, 27.8% vs 115/606, 18.9%, respectively; P=.001)
along with a significantly higher use of steroids (114/608, 18.8%
vs 47/606, 7.8%, respectively; P<.001) and a greater prevalence
of possible secondary osteoporosis (77/608, 12.7% vs 45/606,
7.4%, respectively; P=.001). No significant differences were
observed in the height, weight, and current drinking status
between the 2 groups (Table 2).

Table 1. Clinical characteristics of the development and external validation sets.a

P valueExternal validation set (n=495)Development set (n=1214)

<.00167.6 (8.6)72.5 (7.9)Age (years), mean (SD)

<.001390 (78.8)839 (69.1)Female, n (%)

<.001155.2 (7.9)157.0 (8.4)Height (cm), mean (SD)

.2257.6 (9.7)58.2 (9.9)Weight (kg), mean (SD)

.1823.9 (3.6)23.6 (3.5)BMI (kg/m2), mean (SD)

<.00128 (5.7)284 (23.4)Current smoker, n (%)

<.00134 (6.9)236 (19.4)Current drinker, n (%)

.5657 (11.5)161 (13.3)Use of steroids,b n (%)

<.00116 (3.2)122 (10.1)Possible secondary osteoporosis,c n (%)

<.00161 (12.3)608 (50)Vertebral fracture within 5 years, n (%)

aThe variables between the groups were compared using the 2-sided Student t test for continuous variables and the χ2 test for categorical variables.
bUse of steroids was defined as the use of prednisolone 5 mg daily or equivalent over 3 months.
cPossible secondary osteoporosis includes patients with osteoporosis and concurrent diagnosis with type 1 diabetes, osteogenesis imperfecta in adulthood,
hyperthyroidism, hypogonadism, premature menopause (<45 years), chronic malnutrition, malabsorption, and chronic liver disease.

Table 2. Baseline clinical characteristics of the development set comparing incident fracture groups.a

P valueIncident fracture (+) (n=608)Incident fracture (-) (n=606)

<.00172.9 (8.2)72.0 (7.6)Age (years), mean (SD)

.96417 (68.6)422 (69.6)Females, n (%)

.32157.1 (8.3)156.9 (8.5)Height (cm), mean (SD)

.2358.11 (10.4)58.29 (9.5)Weight (kg), mean (SD)

.3923.5 (3.5)23.7 (3.4)BMI (kg/m2), mean (SD)

.001169 (27.8)115 (18.9)Current smoker, n (%)

.92123 (20.2)113 (18.7)Current drinker, n (%)

<.001114 (18.8)47 (7.8)Use of steroids,b n (%)

.00177 (12.7)45 (7.4)Possible secondary osteoporosis,c n (%)

aThe variables between the groups were compared using the 2-sided Student t test for continuous variables and the χ2 test for categorical variables.
Fracture (-) and (+) groups represent participants who did not and did experience fractures at 5 years of follow-up, respectively.
bUse of steroids was defined as the use of prednisolone 5 mg daily or equivalent over 3 months.
cPossible secondary osteoporosis includes patients with osteoporosis and concurrent diagnosis with type 1 diabetes, osteogenesis imperfecta in adulthood,
hyperthyroidism, hypogonadism, or premature menopause (<45 years), chronic malnutrition, malabsorption, and chronic liver disease.
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Comparisons Between the Performances of Image
Models in Predicting Vertebral Fractures
As demonstrated in Table 3, for the development set, the models
using images that included both vertebral bone and paravertebral
muscle showed significantly better AUROC, accuracy, and
precision values compared to those using bone-only images.
Specifically, the bone-only images had an AUROC of 0.677
(95% CI 0.674-0.680) and accuracy of 0.669 (95% CI
0.665-0.673). In contrast, the images including both bone and
muscle exhibited an AUROC of 0.739 (95% CI 0.737-0.741)
and accuracy of 0.719 (95% CI 0.715-0.722; all P<.001). The
fracture risk assessment tool (FRAX) model for major
osteoporotic fracture and hip fracture showed lower AUROCs

of 0.557 and 0.563, respectively, indicating a significantly better
performance of our image model (all P<.001).

Similar trends were observed in the external validation set,
where bone-only images resulted in an AUROC of 0.815 (95%
CI 0.806-0.824) and accuracy of 0.754 (95% CI 0.752-0.756),
while the combined bone and muscle images demonstrated an
AUROC of 0.827 (95% CI 0.821-0.833) and accuracy of 0.812
(95% CI 0.798-0.826; all P<.001), though the specificity value
was similar between the 2 groups. The FRAX model for major
osteoporotic fracture and hip fracture had AUROCs of 0.810
and 0.780, respectively. Again, these results confirmed the
superior predictive capability of our image-based model (all
P<.001).

Table 3. Performance comparisons of image models in predicting vertebral fractures.

External validation setDevelopment set

P valueBone + muscleBone onlyP valueBone + muscleBone only

.040.827 (0.821-0.833)0.815 (0.806-0.824)<.0010.739 (0.737-0.741)0.677 (0.674-0.680)AUROCa (95% CI)

<.0010.812 (0.798-0.826)0.754 (0.752-0.756)<.0010.719 (0.715-0.722)0.669 (0.665-0.673)Accuracy (95% CI)

.0540.704 (0.675-0.733)0.645 (0.613-0.677).230.761 (0.746-0.776)0.746 (0.739-0.753)Sensitivity (95% CI)

.430.855 (0.835-0.875)0.844 (0.810-0.877).0020.634 (0.625-0.643)0.601 (0.586-0.616)Specificity (95% CI)

aAUROC: area under the receiver operating characteristic curve.

Comparisons Between the Performances of Image and
Clinical Models
Compared to the clinical models, the image model using
vertebral bone and muscle showed significantly higher
performance than the clinical models in predicting the vertebral
fractures during the 5-year follow-up period in the development
and external validation sets (Figure 4, Table 4). In the
development set, the images that included vertebral bone and

muscle had significantly better AUROC and accuracy than the
clinical model D, which included age, sex, BMI, history of
alcohol consumption, smoking, possible secondary osteoporosis,
type 2 diabetes mellitus, HIV, hepatitis C infection status, and
renal failure (AUROC 0.667, 95% CI 0.661-0.672 and accuracy
0.640, 95% CI 0.661-0.649; all P<.001, Table 4). In addition,
the performance did not show a significant change when the
clinical variables were added to the image-only model (Table
S1 in Multimedia Appendix 1).

Figure 4. Receiver operating characteristic curves comparing models for 5-year vertebral fracture prediction: model A includes age and sex, model B
additionally includes BMI, and model C additionally includes a history of drinking, smoking, and possible secondary osteoporosis.
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Table 4. Performance comparisons of image and clinical variable models in predicting fractures.

P valueSpecificity (95%
CI)

P valueSensitivity (95%
CI)

P valueAccuracy (95%
CI)

P valueAUROCa (95%
CI)

Development set

Reference0.634 (0.625-
0.643)

Reference0.761 ± 0.024
(0.746-0.776)

Reference0.719 (0.716-
0.722)

Reference0.739 (0.737-
0.741)

Image-onlyb

<.0010.575 0.549-
0.601)

.030.681 (0.643-
0.719)

<.0010.620 (0.614-
0.626)

<.0010.647 (0.643-
0.651)

Clinical model

Ac

.0030.558 (0.517-
0.598)

.020.675 (0.639-
0.711)

<.0010.612 (0.610-
0.614)

<.0010.631 (0.626-
0.636)

Clinical model

Bd

<.0010.553 (0.521-
0.585)

.110.723 (0.694-
0.752)

<.0010.637 (0.631-
0.643)

<.0010.663 (0.659-
0.667)

Clinical model Ce

.0050.560 (0.527-
0.593)

.130.729 (0.690-
0.768)

<.0010.640 (0.661-
0.649)

<.0010.667 (0.661-
0.672)

Clinical model Df

<.0010.672i<.0010.442i<.0010.557i<.0010.557iFRAXg (MOF)h

<.0010.663i<.0010.449i<.0010.556i<.0010.563iFRAX (hip)

External validation set

Reference0.855 (0.834-
0.875)

Reference0.704 (0.675-
0.733)

Reference0.812 (0.798-
0.826)

Reference0.827 (0.821-
0.833)

Image-only

<.0010.656 (0.629-
0.683)

<.0010.715 (0.683-
0.747)

<.0010.651 (0.629-
0.673)

<.0010.731 (0.725-
0.737)

Clinical model A

<.0010.662 (0.621-
0.703)

<.0010.728 (0.673-
0.783)

<.0010.654 (0.625-
0.683)

<.0010.733 (0.725-
0.737)

Clinical model B

<.0010.720 (0.689-
0.751)

<.0010.713 (0.678-
0.748)

<.0010.669 (0.646-
0.692)

<.0010.745 (0.733-
0.757)

Clinical model C

<.0010.686 (0.650-
0.722)

<.0010.729 (0.690-
0.768)

<.0010.675 (0.643-
0.707)

<.0010.749 (0.736-
0.762)

Clinical model D

<.0010.887i<.0010.262i<.0010.810i<.0010.810iFRAX (MOF)

<.0010.682i<.0010.705i<.0010.685i<.0010.780iFRAX (hip)

aAUROC: area under the receiver operating characteristic curve.
bImage model represents the model using bone and muscle.
cModel A includes age and sex.
dModel B additionally includes BMI.
eModel C additionally includes history of drinking, smoking, and possible secondary osteoporosis.
fModel D includes age, sex, BMI, history of alcohol consumption, smoking, possible secondary osteoporosis, type 2 diabetes mellitus, HIV, hepatitis
C infection status, and renal failure.
gFRAX: fracture risk assessment tool.
hMOF: major osteoporotic fracture.
iSince this was calculated for a single data set, there are no 95% CI values.

As depicted in Figure 4, in the external validation set, the images
including vertebral bone and muscle showed a significantly
better AUROC and accuracy than the clinical model D (AUROC
0.749, 95% CI 0.736-0.762 and accuracy 0.675, 95% CI
0.643-0.707; all P<.001). The results were similar for clinical
models A, B, C, and D, which showed poorer performance than
the image model.

Discussion

In this study, we developed and externally validated a vertebral
fracture prediction model by using abdominal CT images. In

the development cohort, the performance of predicting vertebral
fractures represented by AUROC was 0.688 (SD 0.001) by
using images of vertebral bone-only and 0.736 (SD 0.003) by
using images of vertebral bone and paravertebral muscle. In the
validation cohort, the performances (AUROC) were 0.698 (SD
0.001) and 0.729 (SD 0.002) for images of vertebral bone-only
and images of vertebral bone and paravertebral muscle,
respectively. In addition, the performance of the model using
images of vertebral bone and muscle was significantly better
than that of the clinical models using age, sex, BMI, use of
steroids, smoking status, and possible secondary osteoporosis,
which showed performances of 0.635 (SD 0.002) and 0.698
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(SD 0.021), respectively, for the development and validation
cohorts.

Our model shows that the image models using vertebral bone
and muscle had a better performance than those using images
of vertebral bone-only. Osteosarcopenia, defined by combined
occurrence of bone loss and sarcopenia, is one of the critical
risk factors for osteoporotic fractures [25,26]. The paravertebral
muscles are essential components of the vertebral column and
are associated with osteoporotic vertebral fractures [27,28]. In
previous studies, information retrieved from muscle images,
such as cross-sectional area, volume, and degree of fat
infiltration in the paravertebral muscle, was correlated with
vertebral stability and the risk of fractures [28,29]. Specifically,
Kim et al [30] reported lower cross-sectional areas and greater
fat infiltration of the paravertebral muscles in patients with
vertebral fractures than in those without fractures. This implies
that not only the density and quality of the bones are correlated
with the risk of fractures but also the quality of the muscles
supporting and communicating with the bones [17]. Fat
infiltration in the muscles, called myosteatosis, has been reported
to be associated with an increased risk of fractures [17,31].
Thus, in line with previous studies, our study results imply that
information from the images of the paravertebral muscles in
addition to the information from the images of vertebral bones
can help predict vertebral fractures more accurately.

Further, the image-based learning model with images of both
vertebral bone and muscle showed better performance than the
clinical variable–based models. This finding is consistent with
a previous report that showed that information from the images
of vertebral bones and muscles from CT scans can be used to
predict major osteoporotic fractures and is comparable with
FRAX [32]. Another group reported different algorithms by
using opportunistic CT-based bone assessments for osteoporotic
fracture prediction [33]. They showed that CT-based predictors
(vertebral compression fractures, simulated DXA T-scores, and
lumbar trabecular density) with metadata of age and sex showed
better performance in AUROC than FRAX [33]. However, in
that model, muscle information was not considered [33], which
may further improve the performance. In addition to the
attenuation information, we used information from the image
itself on the quality of the bone and muscle structure, similar
to the trabecular bone score [13]. The trabecular bone score is
an algorithm used to calculate the microstructure of the bone
based on DXA images [34]. More than 50% of the osteoporotic
fractures occur in patients with a normal or osteopenic range of
BMD [35], which implies that the microarchitecture of the bone
is also a key determinant of bone strength [36]. Similarly, in
our study, the model used the information on the qualities of
bones and muscles from CT images, demonstrating the potential
value of CT images that may include rich and various
informative data for the metabolic diseases of bones and
muscles.

We also observed that the performance did not significantly
change when clinical variables were added to the image-only
model. There is a possibility that information such as age and
gender could already be reflected to some extent in the image
itself [37]. Therefore, there could be an insignificant
improvement in the performance because the information poses

a redundant input to the model. It is widely accepted that there
is a noticeable sex difference in the size of the vertebral body
and paravertebral muscles [37], and BMI could be positively
correlated with the size of the vertebrae and muscles. In addition,
although the model was based on high-resolution peripheral
quantitative CT, each bone has different characteristics
according to age and sex, such as calcification and size, which
could have influenced our analysis [38]. In addition, the
vertebral endplate calcification increases with age, implying
that age information can be reflected in the image [39]. In
addition to that reported in previous studies, smoking and
alcohol consumption status can be associated with low muscle
mass [40], which may explain why adding simple clinical
variables to the image may not significantly improve the model,
as the image already contains some clinical information. The
results are clinically promising, and they can be utilized in the
future, as only opportunistic CT scans without detailed clinical
variables may automatically provide the risk of osteoporotic
fractures.

To extract pertinent information from each CT scan, we
designed an image-only model to prevent overfitting and to
focus on the essential regions. Since 3D CNN models, which
have a large number of parameters to be optimized, tend to
overfit the training data [41], the CNN encoder of our model
took consecutive 2D images as its input data while keeping their
sequential information with the RNN decoder [42]. The input
processing strategy served as a robust data augmentation method
because our model could exploit different 2D image sets from
a single 3D CT scan at each training iteration. In addition, an
attention module was applied to the CNN encoder to further
enhance its robustness. The attention module automatically
guided the image model to concentrate on essential regions [43]
for the prediction of vertebral fractures. Thus, the attention
CNN-RNN model avoids making predictions based on
background regions, except for the vertebral body and
paravertebral muscles. Unlike previous CNN model–based deep
learning algorithms, which were limited to 2D X-ray analysis
or bone texture analysis, our CNN-RNN model showed robust
performance in fracture prediction. Owing to its design to
mitigate the overfitting problem of conventional 3D CNN
models [42], the CNN-RNN model could extract effective
information from 3D CT images, which were intractable in
previous approaches. In addition, the attention module forced
our model to focus on important regions in the CT images by
removing the effects of the background regions [43].

Our study has several limitations. The data set did not contain
BMD due to the retrospective study design, which is an essential
predictor for osteoporotic fracture. It was difficult to compare
the clinical model containing BMD with the image model. The
model showed a 5-year fracture prediction model instead of a
10-year model owing to the follow-up duration of the data set,
which is relatively short to be utilized in real-world practice.
Thus, due to the short time frame, we could not show the results
for nonvertebral fractures because the number of cases was too
small. In addition, the paravertebral muscles were included
without distinction among the psoas, intervertebral, multifidus,
longissimus, iliocostalis, and quadratus lumborum muscles.
Therefore, it is difficult to interpret the contribution of each
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muscle. In addition, the number of images in the development
set may not be sufficient for model optimization. Moreover, the
utilization could be low in various contrast settings because it
was based on contrast CT scans. There was also the disparity
in vertebral fracture incidence between the development and
the external validation set, which may affect the external validity
and generalizability of our fracture prediction model. The
retrospective nature inherently carries the potential for selection
bias, including confounding by indication. Although we have
employed propensity score adjustment to mitigate this bias, it
is important to acknowledge that residual bias may still be
present. Another limitation is the exclusion of radiographic
imaging data with poor quality from our models. This decision
might have introduced detection bias such that it may have
impacted the diagnostic accuracy of our models in correctly
identifying positive versus negative fracture cases. Further, we
could not assess the reproducibility of these measurements
through interexaminer and intraexaminer κ value assessments,
which could be considered a limitation of our study. Future
prospective studies could benefit from including such
reproducibility assessments.

Our study has several strengths. Our study was longitudinally
designed to observe future fracture events in patients who did
not have baseline fractures. Furthermore, in the development
cohort, we used controls with matched clinical variables, which
made it possible to attenuate the effects of the major clinical
variables in the model. It was also externally validated, which
helped prove the generalizability of the model. In addition, the
model used the image itself as an input, which made it possible
to utilize the information on vertebral bone and muscle quality
and quantity. This inclusion of the muscle image reflected the

interplay between muscle health and fracture risk. For instance,
factors such as muscle mass and muscle steatosis, which are
visible in CT images as darker and more heterogeneous areas
compared to normal muscle, could be crucial inputs. These
muscle attributes, automatically analyzed by the CNN,
contribute significantly to the model’s ability to discern patients
at higher risk of fractures, offering a more comprehensive view
than bone analysis alone. In addition, by sequentially applying
bones and muscles to the model, it was possible to check the
degree of contribution of muscles and bones to the model
performance, thereby increasing the interpretability of the model.
In addition, the differences in the clinical characteristics between
development and external validation sets were purposefully
leveraged to assess the generalizability of our model across
populations with varying clinical profiles.

In this study, we showed that a deep learning model of the
CNN-RNN structure based on CT images of the muscle and
vertebral bone could help predict the risk of vertebral fractures.
The model using images of the vertebral bone and muscle
showed better performance than the model using images of the
vertebral bone-only. This implies that the information from the
muscle images provides additional key information for
predicting fractures. In addition, the model using images showed
better performance than the model using clinical variables,
suggesting that images can provide useful information in
addition to having known clinical variables. This study has
clinical significance in suggesting that opportunistic CT
screening with deep learning algorithms utilizing bone and
muscle images may contribute to identifying patients with a
high fracture risk in the future. Further prospective studies are
needed to broaden the applicability of our model.
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