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Abstract

Background: Intensive care research has predominantly relied on conventional methods like randomized controlled trials.
However, the increasing popularity of open-access, free databases in the past decade has opened new avenues for research, offering
fresh insights. Leveraging machine learning (ML) techniques enables the analysis of trends in a vast number of studies.

Objective: This study aims to conduct a comprehensive bibliometric analysis using ML to compare trends and research topics
in traditional intensive care unit (ICU) studies and those done with open-access databases (OADs).

Methods: We used ML for the analysis of publications in the Web of Science database in this study. Articles were categorized
into “OAD” and “traditional intensive care” (TIC) studies. OAD studies were included in the Medical Information Mart for
Intensive Care (MIMIC), eICU Collaborative Research Database (eICU-CRD), Amsterdam University Medical Centers Database
(AmsterdamUMCdb), High Time Resolution ICU Dataset (HiRID), and Pediatric Intensive Care database. TIC studies included
all other intensive care studies. Uniform manifold approximation and projection was used to visualize the corpus distribution.
The BERTopic technique was used to generate 30 topic-unique identification numbers and to categorize topics into 22 topic
families.

Results: A total of 227,893 records were extracted. After exclusions, 145,426 articles were identified as TIC and 1301 articles
as OAD studies. TIC studies experienced exponential growth over the last 2 decades, culminating in a peak of 16,378 articles in
2021, while OAD studies demonstrated a consistent upsurge since 2018. Sepsis, ventilation-related research, and pediatric intensive
care were the most frequently discussed topics. TIC studies exhibited broader coverage than OAD studies, suggesting a more
extensive research scope.

Conclusions: This study analyzed ICU research, providing valuable insights from a large number of publications. OAD studies
complement TIC studies, focusing on predictive modeling, while TIC studies capture essential qualitative information. Integrating
both approaches in a complementary manner is the future direction for ICU research. Additionally, natural language processing
techniques offer a transformative alternative for literature review and bibliometric analysis.
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Introduction

The start of critical care as a medical subspecialty can be traced
back to a polio epidemic during which a substantial number of
patients needed prolonged mechanical ventilation [1]. Over
time, the field of critical care has experienced significant growth
and continual evolution. Research in this field has played a
pivotal role in unraveling the complexities of numerous diseases
and treatment modalities, driving substantial advancements in
clinical practice over the past decades [2]. Groundbreaking
studies have investigated critical areas such as sepsis,
mechanical ventilation, acute lung and kidney injuries, intensive
care unit (ICU) delirium, and sedation in critically ill patients
[3].

These research studies have often been conducted in traditional
ways such as prospective and randomized controlled trials [4],
cohort and observational studies, clinical trials [5], and clinical
and translational research [6]. These traditional methods have
revolutionized patient care and improved outcomes significantly.
For instance, the implementation of protocol-driven,
goal-directed management of sepsis and appropriate fluid
therapy has led to remarkable reductions in mortality rates [7,8],
and these findings have been integral in developing
evidence-based practice guidelines that are now the gold
standard [9,10].

Despite their undeniable merits, traditional research methods
in intensive care also come with several limitations [11]. Clinical
trials are known for their high costs [12], stringent
standardization requirements, and ethical oversight [13]. Data
collection can be laborious, prone to human errors, and
constrained in terms of quantity and granularity [14]. Moreover,
obtaining patient consent for most randomized controlled trials
in the ICU poses challenges [15], necessitating alternative
consent models. These limitations have become increasingly
apparent as medical complexity continues to grow exponentially
[16].

The advent of electronic health records (EHRs) has heralded a
new era in clinical research by facilitating the digitization of
health care systems [17]. In this era of data science, a more
integrated approach can be adopted, using machine learning
(ML) algorithms to tackle the complexity of critical illness [18].
Open-access databases (OADs), such as the Medical Information
Mart for Intensive Care (MIMIC) database [19] and the Philips
eICU Collaborative Research Database (eICU-CRD) [20], have
played a transformative role by enabling free data sharing.

The concept of free and open databases plays a pivotal role in
promoting data sharing and advancing medical knowledge in
accordance with the findable, accessible, interoperable, and
reusable (FAIR) guiding principle. The FAIR principles, which
emphasize that data should be findable, accessible, interoperable,
and reusable, are essential for fostering a collaborative and
transparent scientific research environment [21,22]. By
removing barriers to access, free, and open databases allow
researchers, regardless of their affiliations or resources, to
contribute to and benefit from the collective pool of information.
Accessibility fosters inclusivity and diversity in research,
promoting a broader range of perspectives and approaches to

medical challenges. This democratization of knowledge leads
to a more equitable distribution of information. Researchers can
now leverage these vast repositories of information for ML and
artificial intelligence studies, marking a departure from
traditional intensive care (TIC) research approaches.

Conducting a literature review [23] to investigate the disparities
between traditional ICU research and studies based on
open-access data sets holds significant importance as it provides
a comprehensive understanding of the strengths and limitations
of the latter. However, conventional methods of literature
reviews and bibliometric analysis have their limitations,
especially when dealing with large-scale literature due to
computational complexity and the labor-intensive nature of
manual interpretations [24-26]. To address these challenges,
natural language processing (NLP) offers a promising avenue,
while topic modeling techniques can be used to extract various
topic themes from extensive data sets [27,28].

Built on the foundations of bidirectional encoder representations
from transformers (BERT), BERTopic introduces a novel
approach to topic modeling [29,30]. Unlike traditional
unsupervised models like latent Dirichlet allocation, which rely
on “bag-of-words” model [31], BERTopic overcomes the
problem of semantic information loss, significantly enhancing
the accuracy of generated topics, and providing more
interpretable compositions for each topic, which greatly
facilitates the classification of topics.

With the aid of BERTopic, this study aims to shed light on the
disparities and commonalities between studies conducted
through OADs and TIC research. By analyzing the overall trends
and patterns in these 2 groups, we seek to identify knowledge
gaps and explore avenues for complementary contributions
between these research approaches.

Methods

Data

Data Filtering
We performed an ML-based analysis of research abstracts in
the Web of Science (WoS) database to automatically categorize
the research papers to conduct this literature mapping analysis.
There was no limit to the year of publication of the articles. The
search query consisted of the following keyword to identify all
the studies that were published under the umbrella of intensive
care: (“ICU” OR “intensive care”). The search terms were
deliberately left to be broad to cover broad spectrums of journals
in the field.

The inclusion criteria were as follows: (1) written in English,
(2) articles that had keywords related to intensive care, (3)
articles that had the article type of “article” or “review.” We
excluded articles with incomplete data fields (eg, title, abstract,
publication year, and paper citation). The articles included were
then further processed to identify if they were studies using
OADs. These articles were labeled as “open-access database,”
while the rest of the articles extracted were labeled as
“traditional intensive care.”
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The search used for this study was performed on January 18,
2023, from WoS. This generated 227,893 search results, which
were subsequently reselected using Python. An advanced search
from PubMed was done based on the broad search terms of ICU
studies used from previous Cochrane ICU literature review [32]
to ensure the accuracy of the results. The numbers corroborated
with a discrepancy of 4.9% (227,893 WoS keyword search vs
239,748 PubMed ICU keyword search).

Selection Criteria for OADs
A title search using keywords from all currently existing OADs
was conducted to identify OAD studies. These include (1)
MIMIC [19], (2) eICU-CRD [20], (3) Amsterdam University
Medical Centers Database (AmsterdamUMCdb) [33], (4) High
Time Resolution ICU Dataset (HiRID) [34], and (5) Pediatric
Intensive Care database [35]. We avoided including only
keywords in the search and restricted the search years by the
year that the OAD was made publicly available to reduce the
inadvertent inclusion of incorrect articles due to keywords. For
instance, the search term for OADs published with the MIMIC
database included title keyword search with the terms
(“MIMIC-IV” OR “MIMIC-III” OR “MIMIC-II” OR “MIMIC
Dataset” OR “medical information mart for intensive care” OR
“MIMIC IV” OR “MIMIC III” OR “MIMIC II”) in studies that
were published after 2003. The title keyword search for the
searches and the year of cutoff for each OAD are presented in
Multimedia Appendix 1.

Furthermore, to ensure the accuracy of the supervised keyword
classification, a manual review of the classification by 2 critical
care physicians was done for 100 articles from each category
that were randomly selected. The review was done
independently with the physicians labeling the extract
publications into OAD and TICs. An accuracy of 99% was
achieved on independent reviews, and full agreement was
achieved after discussion on the discrepancy. The final results
were matched with the supervised keyword classification.

We performed a bibliometric analysis by directly extracting
publication details from the WoS database using Python (Python
Software Foundation). The analysis involved assessing the
number of articles published per year, calculating total citation
counts, and identifying the top journals that published intensive
care-related articles. Comprehensive results are presented in
Multimedia Appendix 2.

Data Analysis

Uniform Manifold Approximation and Projection
Uniform manifold approximation and projection (UMAP) is a
manifold learning technique for dimension reduction, which

can identify key structures in high-dimensional data space and
map them to low-dimensional space to accomplish
dimensionality reduction. Compared to other dimensionality
reduction algorithms, such as principal component analysis [36],
UMAP can retain more global features [37]. In this paper, we
constructed a corpus consisting of abstract words from all
studies. However, due to the massive size of the corpus,
visualizing and analyzing the high-dimensional data to explore
the differences in the vocabulary patterns between the OAD
and TIC studies is a challenge. The UMAP package in Python,
which implements the UMAP algorithm, was used to project
the high-dimensional corpus to 4 dimensions. By cross plotting
each dimension, we were able to investigate underlying
differences in corpus distribution between OAD and TIC studies.

BERTopic
Topic modeling can help us explore the similarities and
differences between research topics in OAD and TIC studies.
Unlike conventional topic modeling models, BERTopic uses
the BERT framework for embeddings, enabling a deeper
understanding of semantic relationships [30]. The BERTopic
model was implemented by the BERTopic package in Python
and divided 146,727 studies into 30 topic IDs. We also
performed latent Dirichlet allocation topic modeling through
Python’s LdaModel package for comparison. Through the
review of topic keywords by 2 critical care physicians,
BERTopic exhibited superior accuracy and sophistication in
topic identification, with enhanced interpretability and scientific
rigor.

Consequently, the BERTopic model was used for the final
analysis. Each of these topics was given a corresponding clinical
research category. The overlapping categories were merged into
topic families for easier comparisons. By using these advanced
techniques, we were able to uncover hidden patterns and
relationships within the literature and provide insights into the
current state of intensive care research.

Results

A total of 227,893 records were identified from the WoS
database on January 18, 2023, of which 195,463 full records
were subsequently processed. Records were excluded if they
are not “article” or “review” or if they do not contain keywords
related to intensive care. After exclusions, 145,426 articles were
identified as TIC studies and 1301 articles were categorized as
OAD (Figure 1).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) diagram of the study. The final studies were divided into
open-access database (OAD) and traditional intensive care (TIC) studies.

We examined the number of articles published per year to
analyze the trends in TIC and OAD studies (Figure 2). Over the
past 2 decades, TIC studies have experienced exponential
growth, culminating in a peak of 16,378 articles in 2021. A
subsequent decline in the number of publications occurred in
2022, likely attributable to delayed indexing within the WoS

database and a reduction in COVID-19–related studies as the
pandemic stabilized [38]. In contrast, the first OAD study
emerged in 2003, with its popularity experiencing a consistent
upsurge since 2018. Nonetheless, the number of OAD
publications remains markedly lower in comparison to TIC
publications.
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Figure 2. Number of publications of open-access database (OAD) and traditional intensive care (TIC) studies by year. The first study in the OAD
category started in the year 2003.

The OAD studies were published most frequently in new
open-access journals such as Frontiers in Medicine, Frontiers
in Cardiovascular Medicine, and Scientific Reports while the
TIC studies were published most frequently in established
journals like Critical Care Medicine, Intensive Care Medicine,
and Critical Care (Multimedia Appendix 2). Further analysis
of keywords from the abstracts showed 2.4% (3492/145,426)
TIC studies were meta-analyses or systematic reviews, while

only 0.08% (1/1301) OAD study was in this category. There
were 5.61% (73/1301) OAD studies, and 7.43%
(10,799/145,426) TIC studies that had the keyword of “cost.”
Examples of the data fields that are available within OADs such
as MIMIC and eICU-CRD are listed in Textbox 1. Some
information fields such as end-of-life goals and values and
health care provider psychology are not available within the
current EHRs extracted for OADs.
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Textbox 1. Examples of information available in the current open-access databases (OADs) and examples of information not available in OADs.

Examples of information that is available in current OADs

• Patient information: demographics and social set-up

• Hospital context: admission time and discharge time, intensive care unit (ICU) and hospital admissions, and pre-ICU admission

• Diagnosis: physician-curated ICU diagnosis and data-driven phenotypes

• Intervention: medications, procedures, and organ support

• Diagnostics: blood test, microbiology, and scans

• Clinical texts: clinical notes and diagnostic reports

• Physiological monitoring: basic monitoring and waveforms

Examples of information that is not readily available in current OADs

• Patient information: family set up and visiting, financial information, and special populations

• Hospital context: post-ICU discharge details, delayed admission or discharge, and health personnel psychology

• Diagnosis: pre-ICU history and diagnosis requiring clinical symptoms

• Intervention: indications for interventions, complications, and intraoperative and postoperative

• Diagnostics: pathology photographs, imaging, and molecular or genetic studies

• Clinical texts: patient narratives, end-of-life goals and patient value, and health personnel behavior

• Physiological monitoring: advanced monitoring

The UMAP algorithm was used to project the high-dimension
corpus to 4 dimensions and allowed exploration of the
vocabulary patterns between the OAD and TIC studies (Figure
3). The projection values are represented by the x-axis, while
the densities are represented by the y-axis. The presence of
considerable overlap between TIC studies and OAD studies

suggests that they share a substantial number of common
terminologies, which may correspond to similar research topics.
Nonetheless, TIC studies exhibit a more extensive coverage
than OAD studies, which may stem from broader research scope
and extended research duration.
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Figure 3. Corpus distribution of open-access database and traditional intensive care studies along dimensions 1-4. OAD: open-access database; TIC:
traditional intensive care.

Subsequently, the BERTopic model was then used to generate
30 topic IDs (Figure 4). The internal commonalities of each
topic ID were reviewed by critical care physicians and assigned
a specific subtopic in intensive care research. The model was
able to automatically classify the topics with high interpretability
and the topic components were interpreted with ease. For

instance, components in topic ID 5 consist of, in decreasing
order of weightage: “learning,” “model,” “machine,” “machine
learning,” “models,” “data,” “prediction,” and “performance.”
This topic was consequently labeled “predictive model” (topic
ID 5 in Multimedia Appendix 3).

Figure 4. The ratio of open-access database and traditional intensive care studies within each topic was identified by BERTopic.
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The overall topic distribution in TIC studies was more uniform,
while the OAD studies tended to be concentrated on several
topics including topic ID 2 (kidney injury), 5 (predictive model),
and 13 (sepsis). Some topics that were missing in OAD studies
included 6 (pediatrics care), 21 (viral infections), 23 (health
personnel and psychology), and 28 (nutrition and rehabilitation).

The similarity matrix shows that there was little overlap between
the topics (Multimedia Appendix 4). To facilitate the
interpretability of the categories, the overlapping topic IDs were
merged to form the final 22 topic families (Multimedia
Appendix 3).

Topics such as “healthcare associated infection,” “thoracic
surgeries,” and “pregnancy related” research were among the
more frequently discussed 15 topics in TIC studies but have
limited publications in OAD studies. The topics of “predictive
model,” “obesity,” and “fungal infections” were popular in OAD
studies but not the TIC studies. Overall, the topic distributions
of the TIC studies were distributed more evenly with the topic
family of sepsis accounting for a quarter of the studies, while
publications in the OAD studies were heavily skewed toward
the predictive model (>40%) and sepsis (>30%; Figure 5).

Figure 5. The top 15 topic families represented in open-access database and traditional intensive care studies.

Discussion

Principal Results
This study conducted a comprehensive review and bibliometric
analysis of OAD and TIC studies. NLP was used to facilitate
this large-scale literature review. Studies using OADs mainly
concentrated on a few topics, such as predictive modeling, while
TIC studies covered a wider range of topics with a more
balanced distribution.

Advantages of OAD Studies
OAD studies offer several advantages that have contributed to
their increasing popularity in intensive care research. The
granularity of data and easy access to large-cohort databases,
such as MIMIC [39], has enabled researchers to perform
predictive modeling and conduct various secondary analyses
efficiently [40,41]. This accessibility has provided valuable
opportunities for exploring specific aspects of patient care,
evident in studies investigating phenomena like “weekend
effects” and circadian rhythms in ICU patients before discharge
[42-46]. The vast amount of longitudinal and time series data
available in OADs has also facilitated the implementation of
complex ML and deep learning methods [47].

Limitations of OAD Studies
However, it is crucial to acknowledge the retrospective nature
of OAD data, which inherently limits the assessment of
confounding factors and the ability to draw strong causal
conclusions. The observational design of OAD studies may
result in lower-quality evidence according to the GRADE
(Grading of Recommendations, Assessment, Development, and
Evaluations) framework [48,49], and thus, the research from
OAD studies has yet to be fully integrated into existing
evidence-based guidelines, as exemplified by the omission of
OAD studies in the 2021 sepsis guidelines [50]. Nevertheless,
OADs remain a valuable resource for supplementing and
complementing TIC studies, providing unique insights and
enhanced predictive scores for intensive care settings.

Furthermore, approximately 50% of the studies using OADs
published focused on predictive modeling. The increased usage
of ML methods in predictive modeling has not been without
critique. Some medical prediction problems inherently possess
linear characteristics, and the selection of features may
predominantly focus on already known strong predictors, leading
to limited improvements in prediction accuracy with ML [51].
Additionally, interstudy heterogeneity poses a challenge in
comparing results obtained from different ML models applied
to the same data sets [52]. The ethical implications of relying
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solely on ML models to make high-risk health care decisions
instead of involving clinical expertise are also relevant
considerations [51,53].

While OADs provide comprehensive patient data, there are
certain limitations in their ability to capture specific information
essential for certain critical care research areas. Notably, data
fields related to qualitative aspects such as ethics and end-of-life
care [54,55], and health care personnel psychology [56] may
be challenging, if not impossible, to obtain through OADs
generated from EHRs. Consequently, TIC studies have played
a pivotal role in addressing these limitations by capturing critical
information that is integral to understanding ethical
considerations, patient experiences, and health care provider
psychology in intensive care [57,58].

Synergy Between OAD and TIC Studies
The synergy between OAD and TIC studies is a promising
approach to enhance the comprehensiveness and robustness of
intensive care research. OADs, with their large cohort sizes,
can serve as external validation cohorts for ML models
developed from TIC studies, potentially reducing the sample
sizes required for prospective research. Furthermore, OAD
studies can corroborate the results of TIC studies, benefiting
from larger sample sizes and real-world data, thus providing
more practical insights for implementation in intensive care
settings [43]. The integration of OAD and TIC studies presents
an opportunity to bridge the gaps in data availability and
research methodologies, ultimately enriching the understanding
and practice of critical care medicine.

Potential Impact of NLP
The usage of large language models such as BERTopic has
proven to be a valuable tool for large-scale literature review
and topic extraction [58]. This approach has enabled accurate,
reliable, and granular topic generation, offering clinicians a
more effective means of interpreting data compared to traditional
bag-of-words models [59]. The potential of NLP to analyze
scientific articles and identify trends and knowledge gaps holds
promise for shaping the future of research in critical care
medicine. As the volume of publications in critical care
continues to grow and large language modeling continues to
advance in health care [60], AI technology will be crucial in
efficiently identifying and predicting emerging trends.

Future Directions
Future research in the field of critical care can explore novel
applications of ML beyond predictive modeling. For instance,
using ML to study patterns in how papers are cited, shared, and
discussed on the web could help predict their potential impact
on the scientific community. This analysis can aid in identifying
highly influential papers and understanding the factors that
contribute to their recognition. Additionally, investigations into
methods for enhancing the interpretability and transparency of

ML algorithms in critical care research would further facilitate
the ethical and responsible use of AI technologies.

Strengths and Limitations
The study’s application of NLP-driven in analyzing scientific
articles and identifying trends highlights the potential impact
of AI technologies in streamlining literature reviews and
identifying emerging trends more efficiently.

Another notable strength of this study is the usage of the WoS
database, the world’s oldest and most extensively used
repository of research publications and citations, encompassing
approximately 34,000 journals [61]. The comprehensiveness
of this database provides a robust representation of the literature
in the field of intensive care research. Nevertheless, it is essential
to acknowledge that some articles published in nonindexed
journals might not have been captured, and future studies could
benefit from considering additional databases to supplement
our findings.

One other limitation lies in the classification of OAD and TIC
studies, which may be subject to variations in the interpretation
of keywords. However, we optimized the keyword combinations
during the search process in the WoS database and implemented
Python filtering techniques, resulting in a relatively high level
of accuracy in our classifications. The number of studies was
further corroborated with a manual search on PubMed and a
review of the classifications of the studies was done by critical
care physicians.

Although there were no specific language restrictions, the nature
of the search term being in English inadvertently excluded
valuable contributions from non-English research. This may
potentially limit the generalizability of our findings to a broader
international audience. In future investigations, the inclusion
of articles from various languages could offer a more
comprehensive and diverse perspective on intensive care
research.

Conclusions
This study has provided valuable insights into the expanding
landscape of intensive care research through a comprehensive
bibliometric analysis of a large number of publications by
leveraging NLP technologies. While OAD studies have
demonstrated significant promise, it is essential to view them
as a complementary approach rather than a replacement for TIC
studies. The unique strength of TIC studies lies in their ability
to capture crucial qualitative information, which is essential for
comprehensive and ethical decision-making. The integration of
both OAD and TIC studies offers a synergistic approach to
enriching our understanding of critical care medicine and
advancing patient care outcomes. As NLP technology continues
to advance, it holds the potential to offer a feasible and
transformative alternative for literature review and bibliometric
analysis.
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