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Abstract

Background: The adoption of predictive algorithms in health care comes with the potential for algorithmic bias, which could
exacerbate existing disparities. Fairness metrics have been proposed to measure algorithmic bias, but their application to real-world
tasks is limited.

Objective: This study aims to evaluate the algorithmic bias associated with the application of common 30-day hospital readmission
models and assess the usefulness and interpretability of selected fairness metrics.

Methods: We used 10.6 million adult inpatient discharges from Maryland and Florida from 2016 to 2019 in this retrospective
study. Models predicting 30-day hospital readmissions were evaluated: LACE Index, modified HOSPITAL score, and modified
Centers for Medicare & Medicaid Services (CMS) readmission measure, which were applied as-is (using existing coefficients)
and retrained (recalibrated with 50% of the data). Predictive performances and bias measures were evaluated for all, between
Black and White populations, and between low- and other-income groups. Bias measures included the parity of false negative
rate (FNR), false positive rate (FPR), 0-1 loss, and generalized entropy index. Racial bias represented by FNR and FPR differences
was stratified to explore shifts in algorithmic bias in different populations.

Results: The retrained CMS model demonstrated the best predictive performance (area under the curve: 0.74 in Maryland and
0.68-0.70 in Florida), and the modified HOSPITAL score demonstrated the best calibration (Brier score: 0.16-0.19 in Maryland
and 0.19-0.21 in Florida). Calibration was better in White (compared to Black) populations and other-income (compared to
low-income) groups, and the area under the curve was higher or similar in the Black (compared to White) populations. The
retrained CMS and modified HOSPITAL score had the lowest racial and income bias in Maryland. In Florida, both of these
models overall had the lowest income bias and the modified HOSPITAL score showed the lowest racial bias. In both states, the
White and higher-income populations showed a higher FNR, while the Black and low-income populations resulted in a higher
FPR and a higher 0-1 loss. When stratified by hospital and population composition, these models demonstrated heterogeneous
algorithmic bias in different contexts and populations.

Conclusions: Caution must be taken when interpreting fairness measures’ face value. A higher FNR or FPR could potentially
reflect missed opportunities or wasted resources, but these measures could also reflect health care use patterns and gaps in care.
Simply relying on the statistical notions of bias could obscure or underplay the causes of health disparity. The imperfect health
data, analytic frameworks, and the underlying health systems must be carefully considered. Fairness measures can serve as a
useful routine assessment to detect disparate model performances but are insufficient to inform mechanisms or policy changes.
However, such an assessment is an important first step toward data-driven improvement to address existing health disparities.
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Introduction

Background of Algorithmic Bias
Predictive algorithms and machine learning tools are
increasingly integrated into clinical decision-making and
population health management. However, with the increasing
reliance on predictive algorithms comes a growing concern of
exacerbating health disparities [1-3]. Evidence has shown that
widely used algorithms that use past health care expenditures
to predict high-risk patients have systematically underestimated
the health care needs of Black patients [4]. In addition, studies
have shown that predictive performances of models predicting
intensive care unit mortality, 30-day psychiatric readmission,
and asthma exacerbation were worse in populations with lower
socioeconomic status [5,6].

With algorithmic bias as a potentially pervasive issue, a few
checklists have been published to qualitatively identify and
understand the potential biases derived from predictive models
[7,8]. However, no agreed-upon quantitative method exists to
routinely assess whether deployed models will lead to biased
results and exacerbate health disparities faced by marginalized
groups [2,9]. In this study, we define algorithmic bias as the
differential results or performance of predictive models that
may lead to differential allocation or outcomes between
subgroups [10-12]. In addition, we define disparity as the
difference in the quality of health care (the degree to which
health services increase the likelihood of desired health
outcomes) received by a marginalized population that is not
due to access-related factors, clinical needs, preferences, and
appropriateness of intervention [10,13]. Fairness metrics, which
are a set of mathematical expressions that formalize certain
equality between groups (eg, equal false negative rates [FNRs]),
were proposed to measure and detect biases in machine learning
models [12,14]. Although the machine learning community has
shown that fairness metrics are a promising way to identify
algorithmic bias, these metrics are criticized for being
insufficient to reflect the heterogeneous and dynamic nature of
health care [15,16]. Fairness metrics can also be misleading or
conflicting due to their narrow focus on equal rates between
groups [12,15]. Furthermore, these metrics could be interpreted
without context-specific judgment or domain knowledge, thus
failing to connect predictions to interventions and the
downstream health care disparity [15,17]. Most importantly,
these measures are often not fully tested in real-world predictive
tasks and lack evidence on how well these measures’
interpretation could guide intervention planning.

Background of Disparity in 30-Day Hospital
Readmission
Predicting hospital readmissions is widely studied in health care
management and delivery [18-21]. Hospital readmissions,
especially unplanned or avoidable readmissions, are not only
associated with a high risk of in-hospital mortality but also
costly and burdensome to the health care system [19,22]. Since
2012, the Hospital Readmission Reduction Program by the

Centers for Medicare & Medicaid Services (CMS) has imposed
financial penalties for hospitals with excessive readmission
rates [22]. CMS has consequently incentivized hospitals to
segment patients by risk so that hospitals can target the delivery
of these resource-intensive interventions to the patients at
greatest risk, such as transitional care intervention and better
discharge planning [19,23,24]. Many hospital readmission
predictive models have been published, with >350 models
predicting 30-day readmission identified in prior systematic
reviews and our prior work [7,18,19,21,25]. The disparity in
hospital readmission rates is well studied. For example, past
studies have shown that Black patients have higher readmission
rates after adjusting for demographic and clinical characteristics
[26-29]. In addition to racial disparity, patients receiving care
at racial and ethnic minority-serving hospitals [29,30] or living
in disadvantaged neighborhoods have higher rates of
readmission [31-33]. Research has also shown that disparity in
health care use, including hospital readmission, is related to not
only individuals’ racial and ethnic identity but also their
communities [34]. Other research has also suggested that social
environments, either the place of residence or the hospital where
one receives care, may explain a meaningful portion of health
disparity [35,36].

Objectives
Despite model abundance and known disparity in hospital
readmissions, research has been limited in evaluating how
algorithmic bias or the disparate performances of these
predictive models may impact patient outcomes and downstream
health disparities once deployed. Lack of evidence is more
prominent in how the model-guided intervention allocation may
reduce or aggravate existing health disparities between different
populations. To address this gap in evidence, in this study, we
aimed to (1) implement a selection of fairness metrics to
evaluate whether the application of common 30-day readmission
predictive models may lead to bias between racial and income
groups and (2) interpret the selected fairness metrics and assess
their usefulness in the context of facilitating equitable allocation
of interventions. In this paper, we represent the perspective of
a health system or payer who uses an established, validated
algorithm to identify patients at high risk of unplanned
readmission so that targeted intervention can be planned for
these patients. Thus, our main concern for algorithmic bias is
the unequal allocation of intervention resources and the unequal
health outcome as a result. Specifically, we are concerned about
risk scores systematically underestimating or overestimating
needs for a certain group, assuming the model we deploy is
validated and has acceptable overall predictive performance.

Methods

Study Population and Data
This retrospective study included 1.9 million adult inpatient
discharges in Maryland and 8.7 million inpatient discharges in
Florida from 2016 to 2019. The State Inpatient Databases (SIDs)
are maintained by the United States Agency for Healthcare
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Research and Quality, as part of the Healthcare Cost and
Utilization Project (HCUP), were used for this analysis. The
SIDs include longitudinal hospital care data in the United States,
inclusive of all insurance payers (eg, Medicare, Medicaid,
private insurance, and the uninsured) and all patient ages [37].
The SIDs capture >97% of all eligible hospital discharges in
each state [38]. Maryland and Florida were selected due to their
different population sizes, compositions (eg, racial and ethnic
distribution and urban to rural ratio), and health care
environment (Maryland’s all-payer model vs Medicaid
expansion not adopted in Florida) [39,40]. In addition, Maryland
and Florida are among a small subset of states in which the SIDs
contain a “VisitLink” variable that tracks unique patients within
the state and across years from 2016 to 2019, allowing for the
longitudinal analysis of readmissions across hospitals and
different calendar years [41]. The SIDs were also linked to the
American Hospital Association’s Annual Survey Database to

obtain hospital-level information. The study population excluded
admissions where patients were aged <18 years, died in
hospitals, were discharged against medical advice, or had
insufficient information to calculate readmission (eg, missing
the VisitLink variable or length of stay).

Study Outcome
The calculation of 30-day readmission followed the definition
used by the HCUP [42]. Any inpatient admission was counted
as an index admission. The all-cause 30-day readmission rate
was defined as the number of admissions with at least 1
subsequent hospital admission within 30 days, divided by the
total number of admissions during the study period. Unplanned,
all-cause 30-day hospital readmissions were identified using
the methodology developed by CMS [43,44]. The study cohort
selection process and determination of unplanned readmission
are outlined in Figure 1.

Figure 1. Determination of the study cohort and unplanned all-cause 30‐day readmission.

Predictive Models
The LACE index [45], the HOSPITAL score [46], and the CMS
hospital-wide all-cause readmission measure [43] were included
in the analysis as they were validated externally and commonly
used in practice based on our prior review [7]. The LACE index
and the HOSPITAL score were designed for hospital staff to
identify patients at high risk of readmission for targeted
intervention efforts and have been converted to a scoring system
and extensively validated. Thus, the 2 models were applied to
obtain the predicted risk scores without retraining, to mimic

how the models were used in practice. In total, 2 of the
HOSPITAL score predictors—low hemoglobin and low sodium
levels at discharge—were not available in the SIDs, and thus
were excluded. The total risk scores were adjusted as a result.
Details of model variables and how the 2 models were
implemented are reported in Multimedia Appendices 1 and 2.
The CMS measure was evaluated using 2 approaches: applied
as-is with existing coefficients and retrained to generate new
coefficients using 50% of the sample. To ensure comparability
between the CMS measure and other models, the predicted
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patient-level risk was used without the hospital-level effect from
the original measure, and the CMS measure was limited to the
“medicine cohort” [43]. On the basis of the CMS measure’s
specification report, the patient population was divided into 5
mutually exclusive cohorts: surgery or gynecology,
cardiorespiratory, cardiovascular, neurology, and medicine. The
cohorts were determined using the Agency for Healthcare
Research and Quality Clinical Classifications Software
categories [43]. The medicine cohort was randomly split 50-50
into a retraining and testing data set. The CMS measure includes
age and >100 variables, representing a wide range of condition
categories. The measure was trained on the retraining data set
with 5 cross-validations and then run on the testing data set
using the new coefficients to obtain the performance and bias
metrics for the CMS retrained model. Separately, the CMS
measure with the published coefficients was run on the full
medicine cohort data set to obtain performance and bias metrics
for the CMS as-is model. The existing model thresholds were
used to classify a positive, or high-risk, class: 10 points for
LACE, and high-risk (5 in the adjusted scoring) for modified
HOSPITAL. The optimal threshold identified using the Youden
Index [47] on the receiver operating characteristic curve was
used for the 2 CMS measures.

Measures
We measured predictive performances and biases between Black
and White subpopulations and between low-income and
other-income subpopulations. Race is a normalized variable in
the HCUP that indicates race and ethnicity. The low-income
group was defined as the fourth quartile of the median state
household income, whereas the remaining 3 quartiles were
grouped as other income. The median state income quartiles
were provided in HCUP SIDs and were calculated based on the
median income of the patient’s zip code. Predictive
performances of each model were derived for all population
and each subpopulation using area under the curve (AUC), Brier
statistic, and Hosmer-Lemeshow goodness of fit. Bias was
represented by the group difference of the mathematical
measures: false positive rate (FPR) difference (eg, FPR between
Black and White patients), FNR difference, 0-1 loss difference,
and generalized entropy index (GEI). FNR was calculated as
the ratio between false negatives (those predicted as low risk
while having an unplanned 30-day readmission) and the total
number of positives. Similarly, the FPR was calculated as the
ratio of false positives out of the total number of negative cases.
Normalized total error rates is 0-1 loss, and it is calculated as
the percentage of incorrect predictions. Bias measured by FPR,
FNR, and 0-1 loss differences focus on unequal error rates. The
GEI is a measure of income inequality and proposed to measure
algorithm fairness between groups with a range between 0 and
infinity, in which lower scores represent more equity [48].

Ethical Considerations
This study was not human subjects research, as determined by
the Johns Hopkins School of Public Health Institutional Review
Board. No compensation was provided.

Statistical Analysis
Primary analyses were conducted using R (version 4.0.2; R
Foundation for Statistical Computing). The aggregate condition
categories required to calculate unplanned readmission and
CMS measures were calculated in SAS software (version 9.4;
SAS Institute) using the programs provided by the agencies
[49,50]. GEI measures were calculated using the AI Fairness
360 package published by IBM Corp [51]. The unit of analysis
was admission. FNR and FPR results were first stratified by
individual hospital and visualized in a scatter plot. The racial
bias results were then stratified by hospital population
composition (eg, percentage of Black patients), which was
shown to associate with the overall outcome of a hospital [35].
Hospitals were binned by the percentage of Black patients served
in a hospital (eg, >10% and >20%), and the racial bias measures
with their 95% CIs were calculated for each bin. For FNR
difference, FPR difference, and 0-1 loss difference, the
distribution across 2 groups was calculated, and the significance
of the measure difference was assessed using the Student t test
(2-tailed) under the null hypothesis that the group difference
was equal to 0. For all statistical tests, an α of .05 was used.

Results

Demographic and Clinical Characteristics
As presented in Table 1, among the 1,857,658 Maryland
inpatient discharges from 2016 to 2019, a total of 55.41%
(n=1,029,292) were White patients and 33.71% (n=626,280)
were Black patients, whereas in Florida, 64.49%
(5,632,318/8,733,002) of the inpatient discharges were White
patients and 16.59% (1,448,620/8,733,002) were Black patients.

White patients in both states were older, more likely to be on
private insurance, and less likely to reside in large metropolitan
areas or be treated in major teaching or large hospitals in urban
areas. Compared to White patients, Black patients in Maryland
had a longer length of inpatient stay, more inpatient procedures,
fewer inpatient diagnoses, higher inpatient charges, and more
comorbidities and were more likely to be discharged to home
or self-care. However, Black patients in Florida had fewer
inpatient diagnoses, fewer procedures, and fewer total charges.
These patients also had longer lengths of inpatient stays, more
comorbidities, and were more likely to be discharged to home
or self-care. In both Maryland and Florida, those in the lowest
income quartile were younger, had a longer length of inpatient
stay, had higher inpatient charges, had more comorbidities, and
had fewer procedures than other-income groups. The
low-income group was less likely to reside in metropolitan areas
but was more likely to be treated in major teaching hospitals.
Except for those noted in footnote c of Table 1, all
characteristics showed statistically significant differences
between racial and income groups (all P values <.001).
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Table 1. Demographic characteristics by race and by income in Maryland (n=1,857,658) and Florida (n=8,733,002).

IncomeRaceCharacteristics and state

Other incomeLow incomeOtherBlackWhite

Discharges, n (%)

1,225,820 (65.99)627,013 (33.75)187,935 (10.12)626,280 (33.71)1,029,292 (55.41)MDa

6,028,720 (69.03)2,600,326 (29.78)1,598,392 (18.3)1,448,620 (16.59)5,632,318 (64.49)FLb

Age (y), mean (SD)

58.0 (20.8)56.3 (19.8)46.8 (20.7)54.0 (19.4)61.4 (19.9)MD

60.6 (20.5)58.0 (20.4)56.1 (21.6)51.1 (19.8)63.1 (19.4)FL

Sex (female; yes), n (%)

733,135 (59.81)364,718 (58.17)128,138 (68.18)377,063 (60.21)586,641 (56.99)MD

3,372,155 (55.93)c1,454,239 (55.93)942,996 (59)856,343 (59.11)3,050,611 (54.16)FL

Payer, n (%)

Medicare

566,503 (46.21)293,009 (46.73)43,461 (23.13)262,512 (41.92)550,364 (53.47)MD

3,301,163 (54.76)1,358,285 (52.24)715,483 (44.76)589,574 (40.7)3,386,956 (60.13)FL

Medicaid

215,530 (17.58)192,624 (30.72)71,450 (38.02)192,443 (30.73)142,138 (13.81)MD

682,879 (11.33)505,805 (19.45)315,306 (19.73)373,896 (25.81)504,531 (8.96)FL

Private

398,459 (32.51)120,346 (19.19)59,381 (31.6)148,781 (23.76)306,929 (29.82)MD

1,439,482 (23.88)422,946 (16.27)398,712 (24.94)287,528 (19.85)1,183,304 (21.01)FL

Residence (large metropolitan), n (%)

1,154,341 (94.17)460,587 (73.46)178,015 (94.71)586,868 (93.72)839,688 (81.58)MD

3,738,731 (62.02)1,530,136 (58.84)1,319,976 (82.58)1,027,033 (70.9)2,939,039 (52.18)FL

Length of stay, mean (SD)

4.68 (6.32)5.17 (6.89)4.19 (6.22)5.22 (7.20)4.73 (6.10)MD

4.89 (6.51)5.16 (7.26)4.76 (6.76)5.24 (7.98)4.96 (6.37)FL

Total charges, mean (SD)

16,500 (23,200)18,000 (25,100)14,600 (23,000)17,800 (25,800)17,000 (22,700)MD

67,800 (92,000)67,300 (93,600)68,900 (100,000)62,800 (95,900)68,500 (88,800)FL

Discharge type (home or self-care), n (%)

956,510 (78.03)486,882 (77.65)165,538 (88.08)490,051 (78.25)780,238 (75.8)MD

4,873,457 (80.84)c2,102,035 (80.84)1,367,677 (85.57)1,240,314 (85.62)4,408,065 (78.26)FL

CCId score, mean (SD)

0.486 (1.06)0.573 (1.13)0.359 (0.962)0.594 (1.18)0.498 (1.04)MD

0.516 (1.07)0.575 (1.13)0.529 (1.13)0.616 (1.23)0.516 (1.04)FL

Number of procedures, mean (SD)

1.74 (2.44)1.69 (2.59)2.00 (2.38)1.71 (2.60)1.68 (2.44)MD

1.59 (2.33)1.49 (2.33)1.57 (2.31)1.50 (2.34)1.57 (2.34)FL

Number of diagnoses, mean (SD)

14.4 (8.08)15.3 (8.04)11.1 (7.07)14.6 (7.84)15.5 (8.20)MD

12.5 (7.29)12.6 (7.33)10.8 (6.91)11.7 (7.19)13.3 (7.33)FL
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IncomeRaceCharacteristics and state

Other incomeLow incomeOtherBlackWhite

Hospital type (major teaching; yes), n (%)

158,693 (12.95)172,092 (27.45)27,808 (14.80)120,649 (19.26)181,493 (17.63)MD

691,635 (11.47)354,901 (13.65)242,754 (15.19)231,379 (15.97)576,819 (10.24)FL

Hospital beds (≥200 beds), n (%)

878,817 (71.69)482,604 (76.97)150,745 (80.21)460,667 (73.56)741,956 (72.08)MD

3,730,066 (61.87)1,735,704 (66.75)967,036 (60.5)981,735 (67.77)3,546,967 (62.98)FL

Urban hospital (yes), n (%)

1,187,298 (96.86)548,230 (87.44)179,091 (95.29)602,779 (96.25)943,928 (91.71)MD

3,256,784 (54.02)1,340,735 (51.56)903,705 (56.54)858,993 (59.3)2,859,038 (50.76)FL

aMD: Maryland.
bFL: Florida.
cP values were computed between racial groups and between income groups, respectively. All P values are <.001 except for the ones in this footnote:
P value for female between income groups=.80 and for discharge type between income groups=.99.
dCCI: Charlson Comorbidity Index.

Predictive Performance
The observed 30-day unplanned readmission rates in Maryland
were higher in the Black and low-income patient groups (ie,

11.13% for White patients, 12.77% for Black patients, 10.59%
for other-income patients, and 12.73% for low-income patients;
Table 2).

Table 2. Observed and predicted 30-day unplanned readmission rates by model and state.

Predicteda (%)Observed (%)

CMS retrainedCMSd as-isHOSPITALcLACEb
FL
(n=8,733,002)

MD
(n=1,857,658)

FL
(n=1,318,335)

MD
(n=357,458)

FL
(n=2,636,671)

MD
(n=714,917)

FL
(n=8,733,002)

MD
(n=1,857,658)

FLf

(n=8,733,002)
MDe

(n=1,857,658)

16.514.7110.2610.4814.611215.8814.4814.3411.31Total

Race

15.9714.1410.1110.2714.0711.6214.8112.9213.9411.13White

18.9315.8410.8510.8218.2614.1221.3318.6217.1412.77Black

Income

16.1714.310.1910.3713.6610.8414.6212.8813.610.59Other

17.2515.4610.4310.6716.7714.2918.7217.616.0312.73Low

aPredicted: the predicted readmission rates for LACE and HOSPITAL were calculated as the percentage of patients at high risk of unplanned readmission
based on the model output for the group; and the predicted readmission rates for the two CMS models were the predicted probability of being at high
risk of unplanned readmission for the group.
bLACE: The LACE Index for readmission risk.
cHOSPITAL: The modified HOSPITAL score for readmission risk.
dCMS: Centers for Medicare & Medicaid Services (readmission measure).
eMD: Maryland.
fFL: Florida.

A fair and well-calibrated predictive model would be assumed
to overpredict or underpredict readmission rates to a similar
degree across racial or income groups. Compared to the
observed readmission rates, the LACE index overestimated
readmission rates in all subpopulations and was more
pronounced in Black and low-income populations. The
readmission rates estimated by the modified HOSPITAL score

were closest to the observed rates. The CMS as-is model
underestimated across subpopulations, and the estimated rates
of readmission were similar between subpopulations, while the
retrained CMS model overestimated in all subpopulations to a
similar degree. In Florida, the observed 30-day unplanned
readmission rates were higher than those in Maryland in all
populations. Similar to Maryland, Florida’s observed
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readmission rates were also higher in the Black and low-income
groups (ie, 13.94% for White populations, 17.14% for Black
populations, 13.6% for other-income populations, and 16.03%
for low-income populations) and had similar overestimation
and underestimation patterns (Table 2).

As presented in Table 3, in Maryland, the retrained CMS model
had better predictive performance (AUC 0.74 in all
subpopulations) than the other 3 models, which only achieved
moderate predictive performance (AUC between 0.65 and 0.68).
The modified HOSPITAL score had the best calibration (Brier

score=0.16−0.19 in all subpopulations), whereas the CMS as-is
model performed poorly on the Brier score. Calibration was
better in the White (compared to the Black) population and
other-income (compared to low-income) populations in both
states, and the AUC was higher or similar in the Black
(compared to the White) population. In Florida, the CMS
retrained model also performed better than the other models in
all subpopulations (AUC 0.68-0.72), and the modified
HOSPITAL score had the best calibration (Brier score
0.19-0.21). All models demonstrated excellent goodness of fit
across subpopulations (Table 3).

Table 3. Predictive performances of each 30-day readmission model in Maryland and Florida.

CMS retrainedCMSc as-isHOSPITALbLACEa
All vs group and performance
measure

FLMDFLMDFLMDFLeMDd

All

0.690.740.650.660.660.650.680.68AUCf

0.320.320.370.440.200.170.210.19Brier statistic

<.001<.001<.001<.001<.001<.001<.001<.001Hosmer-Lemeshow, P value

Group

Race

White

0.680.740.630.650.650.640.670.68AUC

0.320.310.360.410.200.170.210.18Brier statistic

<.001<.001<.001<.001<.001<.001<.001<.001Hosmer-Lemeshow,
P value

Black

0.720.740.680.670.690.670.680.68AUC

0.360.330.430.490.210.190.250.22Brier statistic

<.001<.001<.001<.001<.001<.001<.001<.001Hosmer-Lemeshow,
P value

Income

Other

0.690.740.640.650.660.650.680.69AUC

0.320.310.360.430.190.160.200.17Brier statistic

<.001<.001<.001<.001<.001<.001<.001<.001Hosmer-Lemeshow,
P value

Low

0.700.740.660.670.670.660.670.68AUC

0.340.330.390.470.210.190.230.21Brier statistic

<.001<.001<.001<.001<.001<.001<.001<.001Hosmer-Lemeshow,
P value

aLACE: The LACE Index for readmission risk.
bHOSPITAL: The modified HOSPITAL score for readmission risk.
cCMS: Centers for Medicare & Medicaid Services (readmission measure).
dMD: Maryland.
eFL: Florida.
fAUC: area under the curve.
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Bias Measures
Misclassification rates (ie, FPR difference and FNR difference)
indicate relative between-group bias, whereas 0-1 loss
differences indicate the overall error rates between groups. The
between-group GEI indicates how unequally an outcome is
distributed between groups [48]. In Maryland, the retrained
CMS model and the modified HOSPITAL score had the lowest
racial and income bias (Table 4).

Specifically, the modified HOSPITAL score demonstrated the
lowest racial bias based on 0-1 loss, FPR difference, and GEI,
and the lowest income bias based on FPR and GEI. Retrained
CMS demonstrated the lowest racial bias based on 0-1 loss and
FNR difference, and the lowest income bias on all 4 measures.
In Florida, racial biases based on FPR and FNR differences was
generally greater than that in Maryland, especially for FNR
differences. In Florida, the modified HOSPITAL score showed

the lowest racial bias based on 0-1 loss, FPR difference, and
GEI; the LACE index showed the lowest racial bias in FNR
difference. Each model scored the best in at least one measure
of income bias, but the overall HOSPITAL score and retrained
CMS showed the lowest income bias in Florida. In both states,
the White and other-income patient groups had a higher FNR,
indicating that they were more likely to be predicted as low risk
while having a 30-day unplanned readmission. The Black and
low-income patient groups had a higher FPR, indicating that
they were more likely to be predicted to be high-risk and not
have a 30-day unplanned readmission. The overall error rates
were higher in the Black and low-income patient groups
compared to the White and other-income patient groups,
respectively. Except for GEI and the values noted with a
footnote in Table 4, all other measures showed statistically
significant differences (all P values <.001) between racial and
income groups, respectively.
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Table 4. Bias measures of evaluated 30-day readmission models in Maryland and Florida.

Difference (L-O)aLow incomeOther incomeDifference (B-W)aBlackWhiteAllMeasures and state

LACEb

Maryland

0.040.210.170.040.220.180.190-1 loss

−0.060.650.71−0.10d0.630.720.69FNRc

0.040.150.110.050.160.110.12FPRe

0.02N/AN/A0.03N/AN/AN/AgGEIf (between-group)

Florida

0.030.230.200.040.250.210.210-1 loss

−0.060.640.70−0.110.600.710.68FNR

0.040.160.120.050.180.120.13FPR

0.01N/AN/A0.02N/AN/AN/AGEI (between-group)

HOSPITALh

Maryland

0.030.190.160.020.190.170.170-1 loss

−0.060.690.75−0.070.690.750.73FNR

0.030.120.100.020.120.100.10FPR

0.01N/AN/A0.01N/AN/AN/AGEI (between-group)

Florida

0.020.210.190.010.210.200.200-1 loss

−0.070.640.71−0.120.590.710.68FNR

0.020.140.110.020.140.120.12FPR

0.01N/AN/A0.01N/AN/AN/AGEI (between-group)

CMSi (as-is)

Maryland

0.040.470.430.070.490.410.440-1 loss

−0.060.260.32−0.100.240.340.30FNR

0.060.510.450.110.540.430.47FPR

0.02N/AN/A0.05N/AN/AN/AGEI (between-group)

Florida

0.020.390.360.080.430.360.370-1 loss

−0.060.380.44−0.180.280.470.42FNR

0.040.400.350.130.470.340.36FPR

0.02N/AN/A0.05N/AN/AN/AGEI (between-group)

CMS (retrained)

Maryland

0.020.330.310.020.330.310.320-1 loss

−0.03d0.270.30−0.050.260.310.29FNR

0.030.350.310.040.350.310.32FPR

0.01N/AN/A0.02N/AN/AN/AGEI (between-group)

Florida
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Difference (L-O)aLow incomeOther incomeDifference (B-W)aBlackWhiteAllMeasures and state

0.020.340.320.040.360.320.320-1 loss

−0.05d0.350.40−0.130.280.410.38FNR

0.040.340.310.080.380.300.31FPR

0.01N/AN/A0.03N/AN/AN/AGEI (between-group)

aThe columns Difference (B-W) and Difference (L-O) indicate algorithmic bias measured as the difference in the bias measure (eg, FNR and FPR)
between Black and White patients and between low-income and other-income groups.
bLACE: The LACE Index for readmission risk.
cFNR: false negative rate.
dAll P values of the bias measures are <.001 except for the ones in this footnote: the P value for FNR difference of LACE in MD is .41, and the FNR
difference of CMS retrained in MD is .45, and FNR difference of CMS retrained in FL is .005. Statistical tests were not conducted for the GEI as this
measure produces one value for the population.
eFPR: false positive rate.
fGEI: generalized entropy index.
gN/A: not applicable.
hHOSPITAL: The modified HOSPITAL score for readmission risk.
iCMS: Centers for Medicare & Medicaid Services (readmission measure).

Stratification Analyses
The results were first stratified by hospital and then by patient
population composition (percentage of Black patients). As
shown in Figure 2, the models’ FNR differences and FPR
differences between the Black and White patients varied by
hospital within the state, indicating hospital shifts when applying
the same model. The modified HOSPITAL score was more
likely to cluster near the “equality lines” (ie, when the FNR or
FPR difference is 0) than other models in both states. Colors
representing LACE and CMS as-is were mostly distributed in
the first quadrant in Maryland, indicating that the majority of

hospitals had a positive FPR difference (ie, Black patients with
higher FPR) and a negative FNR difference (ie, White patients
with higher FNR) when applying these 2 models (Figure 2).
Despite most hospitals falling in the first quadrant, the variance
between hospitals appeared to be greater in Florida (Figure 3).
In addition, more hospitals in Florida fell in the far corners of
the first and fourth quadrants than those in Maryland, indicating
more hospitals with severe bias (eg, large racial differences in
FPR or FNR). Refer to Multimedia Appendix 3 for the measures
of income bias and hospital distribution for Maryland and
Florida.

Figure 2. Measures of racial bias in predicting readmission across individual hospitals in Maryland. CMS: Centers for Medicare & Medicaid Services;
FNR: false negative rate; FPR: false positive rate.
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Figure 3. Measures of racial bias in predicting readmission across individual hospitals in Florida. CMS: Centers for Medicare & Medicaid Services;
FNR: false negative rate; FPR: false positive rate.

Hospitals with a higher percentage of Black patients have been
shown to be associated with low resources and poorer outcomes
for their patients [35]; thus, the results were stratified by the
proportion of Black patients served in a hospital. In Figures 4
and 5, each data point represents the racial bias (FNR difference
or FPR difference) in a stratum of hospitals with a certain
percentage of Black patients (eg, hospitals with at least 20% of
Black patients). The error bars show the 95% CI of the bias
measure in the strata. In both figures, the racial biases of all
models, represented as FNR and FPR differences, decreased
and approached zero as the hospital population became more
diverse. In Maryland, the diminishing racial bias was particularly
notable in hospitals where >50% of patients were Black (Figure

4). The diminishing racial bias was also observed in Florida’s
hospitals (Figure 5). The direction of bias flipped for the LACE
index and the modified HOSPITAL score in Florida hospitals
with >50% of Black patients. In hospitals with a lower
percentage of Black patients, Black patients had a lower FNR
compared to White patients, while in hospitals with a higher
percentage of Black patients, White patients had a higher FNR
(Figure 4). In Florida, the widening gap shown in the 2 CMS
models for hospitals serving >60% of Black patients was likely
attributed to the small number of hospitals and small sample
size in the strata (Figure 5). Refer to Multimedia Appendix 4
for the details on the bias measures stratified by payers for both
Maryland and Florida.

Figure 4. Bias measures by hospital patient population composition (percentage of Black patients) in Maryland. CMS: Centers for Medicare & Medicaid
Services; FNR: false negative rate; FPR: false positive rate.
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Figure 5. Bias measures by hospital patient population composition (a percentage of Black patients) in Florida. CMS: Centers for Medicare & Medicaid
Services; FNR: false negative rate; FPR: false positive rate.

Discussion

Overall Findings
The abundance of research on fairness and bias has provided
potential means to quantify bias, but there has been a gap to
operationalize these metrics, interpret them in specific contexts,
and understand their impact on downstream health disparity
[7]. Our analysis demonstrated a practical use case for measuring
algorithmic bias when applying or deploying previously
validated 30-day hospital readmission predictive models in a
new setting. Our approach to testing the fairness measures could
serve as a framework for routine assessment of algorithmic bias
for health care predictive models, and our results also revealed
the complexity and limitations of using mathematical bias
measures. According to these bias measures, the retrained CMS
model and the modified HOSPITAL score showed the best
predictive performance and the lowest bias in Maryland and
Florida. However, the CMS as-is model showed subpar
performance in both states, indicating that retraining on the
local data not only improved predictive performance but also
reduced group bias. In addition, large variations were detected
between hospitals, and system- or hospital-level factors needed
to be considered when interpreting algorithmic bias.

Measure Interpretation
Caution must be taken when using algorithmic bias to guide
equitable intervention allocation, as the bias measures may not
include key context. When designing a risk-based intervention
based on model output, we would be naturally more concerned
about FNR, as a higher FNR means a groups that is more likely
to be predicted low in risk of readmission will indeed be
readmitted, indicating missed opportunities for intervention
[52]. Looking at bias measures alone, our results suggest that
the risk to White and higher-income patients has a systematically
higher proportion of false negatives estimated by common
readmission models, suggesting more missed opportunities to

intervene and prevent unplanned readmissions. This observation
is contrary to our assumption, and other parts of the results show
that White and higher-income patients were less sick with lower
readmission rates. An explanation would suggest that the higher
FNR observed in the White and higher-income patient groups
might be attributed to health care use patterns. For example,
research has shown that White individuals and higher
socioeconomic patient groups were more likely to overuse health
care resources, while Black patients and disadvantaged groups
tended to underuse them [53-55]. The overutilizers could have
more unplanned visits to the hospital when the risk was not
high, while the underusing group may be more likely to defer
or skip care and only use costly hospital resources when they
must. Similarly, a higher FPR in Black and low-income patient
groups would indicate more wasted resources on “false
positives.” However, such a conclusion did not align with the
rest of the study findings. These subpopulations, on average,
had more chronic comorbidities and longer inpatient stays,
indicating that Black and low-income patient groups were more
likely to have conditions that warrant an unplanned readmission
but did not show up in the observed data, potentially alluding
to a health care access gap in these groups. In this case, drawing
a conclusion simply based on the face value of higher FPR
would lead to a reduction in the resources allocated to the sicker,
more vulnerable populations. It is also important to note that,
despite the racial difference in health behaviors and outcomes,
race merely represents a social classification rather than the
driver of the observed differences [56]. Although the
performance of the evaluated readmission models differed by
race, we do not recommend including race as a variable in a
predictive model unless race is a biological or clinical risk factor
for the predictive outcome.

The interpretation of measurable bias requires considering
models’ predictive performance, the nature of health data,
analytic frameworks, and the underlying health care delivery
system. In our analysis, all models had modest performance,
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and the high FNRs may deter their application in a real setting,
especially in the score-based models of LACE and HOSPITAL
(ie, FNR ranges from 0.63 to 0.75). When calculating these
measures, we assumed the observed outcome (ie, 30-day
unplanned readmission) as the ground truth; however, it was
important to recognize the key limitations of this truth and the
measured bias. First, despite the HCUP state inpatient data being
one of the most comprehensive and high-quality data for
studying readmission, no guarantee existed that all readmissions
and their causes were captured. It is possible that a patient had
conditions that warranted an unplanned revisit to the hospital
but either did not occur due to the patient’s unwillingness to
seek treatment in time [57,58] or did not get documented (eg,
out-of-state admissions were not captured in HCUP’s state-wide
inpatient data by design). Such underdocumentation was more
likely to impact disadvantaged populations and those with
fragmented care, thus introducing embedded bias into the
underlying data. Second, a higher percentage of Black patients
sought care in academic teaching institutions (eg,
120,649/626,280, 19.26% of Black patients in Maryland and
231,379/1,448,620, 15.97% of Black patients in Florida,
compared to 181,493/1,029,292, 17.63% of White patients in
Maryland and 576,819/5,632,318, 10.24% of White patients in
Florida), which were generally considered to deliver high-quality
care [35,59,60]. These hospitals may have a more effective
readmission prevention program while serving sicker patients,
contributing to a higher FPR among Black and low-income
patients. Third, as shown in Figure 2, we observed that hospitals
that served a high proportion of Black patients had a lower
algorithmic bias. For example, in Maryland, the majority Black
hospitals (>70% of patients served are Black) were in
resource-poor neighborhoods, and both White and Black patients
had similar higher-than-average readmission rates in these
hospitals (data not shown). The fairer model performance in
these hospitals was not necessarily a reflection of a higher
quality of care, as all patients served in those hospitals had
higher unplanned readmission rates. Finally, whether a
readmission was unplanned or planned was determined using
a well-established algorithm developed by CMS [43,44], which
categorized readmissions based on the nature of the diagnoses
and procedures (eg, acute vs routine). Research demonstrated
that different diagnosis intensities existed between regions and
hospitals, and a higher intensity of services was associated with
a higher prevalence of common chronic diseases [61]. If
diagnosis was not just a patient attribute but indeed reflected
the systematic characteristics of the health care environment
[62], the quality of unplanned readmission classification and
other predictors in our models would be subject to encoded bias
in the health care system. In fact, in our population, the average
number of diagnoses was higher in White patients than in Black
patients and higher in Maryland than in Florida, indicating the
presence of such systematic variation (Table 1). Of course, this
is not a unique issue with our data set; electronic health records
and other health data sets also reflect histories of unequal access
to health care and carry racial, ethnic, socioeconomic, and other
societal biases due to how the data are collected [2,3,63].

Utility of Bias Measures
Once the limitations of real-world health data are acknowledged,
the expectation of equity and interpretation of the measurable
bias should adjust accordingly. First, it will be too restrictive
to expect mathematical equality for measurable bias; rather, it
is best viewed as a relative value to aid in the selection of a less
biased model. Most real-world problems are based on imperfect
data, and pushing the model to perform equally on these
measures will inevitably create unintended results (eg,
sacrificing accuracy and potentially increasing bias for other
subpopulations) [15]. Second, a validated and accurate model
may reveal the gap between the “supposed-to-be” state and the
reality in the underlying data, showing areas of unmet needs
[16,64], as we observed in our Black and low-income
populations. Finally, the bias measures alone provide limited
evidence about which group is being biased against and in which
way. A conclusion based solely on the face value of a few bias
measures can be misleading and may exacerbate the disparity
already faced by marginalized groups. These quantitative bias
measures are useful to evaluate a model’s disparate group
performance on a given data set, but they are insufficient to
inform the intervention allocation or mechanisms of potential
bias, which are key to the mitigation strategies [15]. In addition,
our study did not evaluate other definitions of bias, such as
calibration or predictive parity, which do not focus on error
rates and may require unique interpretation considerations.

This analysis addressed a fundamental gap in operationalizing
fairness techniques. The selection of a bias definition and
appropriate bias measures is as important as detecting bias itself,
yet it has remained a blind spot in practice [2]. In addition to
the fact that these mathematical notions cannot be satisfied
simultaneously, using the appropriate measures is also highly
contextual and data dependent [65,66]. For example, having a
model with equal positive predictions across groups (known as
demographic or statistical parity) would not be a meaningful
measure for inherently unbalanced outcomes such as 30-day
readmissions; however, based on the fairness concept, satisfying
any of the bias measures would mean a fair model. In this study,
the 4 evaluated bias measures showed consistent results, despite
each measuring a different definition of bias. All selected
measures were able to demonstrate the magnitude of bias, but
FNR and FPR differences were the most informative, as they
indicated the direction of bias and were more interpretable in
the context of mitigation actions. In our attempt to translate the
algorithmic bias findings to intervention planning, we found
that the bias measures could serve as a quick and routine
assessment to compare algorithms, subpopulations, or localities
(eg, hospitals) to help target further investigation of drivers of
potential disparity. However, simply relying on these statistical
notions to make decisions could obscure or underplay the causes
of health care disparities, and a more comprehensive approach
is necessary. In real-world applications, the practical goal of
predictive modeling must incorporate predictive accuracy and
algorithmic bias, among other operational considerations. As
there is usually a trade-off between these 2 model performance
goals, the best model is likely the one that balances the 2 goals
rather than the one achieving the highest possible accuracy or
fairness alone.
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Limitations
Our analysis has several limitations and caveats. First, none of
the models evaluated in this analysis had high accuracy, which
may affect the measurement of misclassifications. For simplicity
and the focus on interpreting the bias measures, we did not
evaluate machine learning models that usually improve local
accuracy [20]. While the LACE index and the HOSPITAL score
were used by hospitals to manage readmissions, the CMS
measure was mostly used in payer operations or population
health management in addition to CMS purposes (eg, budget
allocation and hospital penalties); thus, it was not used as a
typical predictive model. Although we believe the models
evaluated in this study represented practical scenarios, we were
unable to assess if a particular type of models, variables,
weights, or modeling structures were more likely to be
algorithmically biased. Second, we did not evaluate the scenario
in which models can be optimized to minimize and constraint
bias during training or retraining. Model optimization has been
a popular approach to developing fair models but, it was
considered out of scope as this analysis focused on model
application and bias identification. Third, we only included bias
measures that are algorithm-agnostic and can be routinely
calculated; thus, they were not comprehensive or exclusive.
Fourth, the conclusion was based on Maryland and Florida data,
which would not represent all states nor the national average.
For example, Maryland is a small state with an all-payer model
payment system [39] and a high percentage of patients seeking
care in neighboring states, whereas Florida is a large state with
a large Hispanic population and has not adopted Medicaid
expansion [40]. In addition, the data set we used was
administrative in nature and did not have the detailed medical
information (eg, medications, laboratory results, and clinical

notes) to fully evaluate the potential drivers of our results, such
as selection bias [67], data quality factors [68], and more
accurate ascertainment of the outcome (ie, unplanned
readmissions).

Conclusions
In conclusion, our analysis found that fairness metrics were
useful to serve as a routine assessment to detect disparate model
performance in subpopulations and to compare predictive
models. However, these metrics have limited interpretability
and are insufficient to inform mechanisms of bias or guide
intervention planning. Further testing and demonstration will
be required before using mathematical fairness measures to
guide key decision-making or policy changes. Despite these
limitations, demonstrating the differential model performances
(eg, misclassification rates) is often the first step in recognizing
potential algorithmic bias, which will be necessary as health
care organizations move toward data-driven improvement in
response to existing health care disparities. The potential
subtle—and not so subtle—imperfections of underlying health
data, analytic frameworks, and the underlying health care
delivery system must be carefully considered when evaluating
the potential bias that exists within predictive models. Finally,
future research is required to improve the methodology of
measuring algorithmic bias and to test more fairness definitions
and measures (eg, calibration parity) through an operational
lens. Future studies should also explore how modeling factors
influence algorithmic bias (eg, how variable inclusions, weights,
or scoring schemes affect the model’s differential performance).
We hope that algorithmic bias assessment can be incorporated
into routine model evaluation and ultimately inform meaningful
actions to reduce health care disparity.
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